Skip to content

Fix UUID support #2007

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Open
wants to merge 10 commits into
base: main
Choose a base branch
from
Open

Fix UUID support #2007

wants to merge 10 commits into from

Conversation

Fokko
Copy link
Contributor

@Fokko Fokko commented May 16, 2025

Rationale for this change

The UUID support is a gift that keeps on giving. The current support of PyIceberg is incomplete, and problematic. Mostly because:

I think we have to wait for some fixes in Arrow upstream until we can fully support this. In PyIceberg, we're converting the fixed[16] to a UUID, but Spark does seem to error because the logical type annotation in Parquet is missing:

E                   py4j.protocol.Py4JJavaError: An error occurred while calling o72.collectToPython.
E                   : org.apache.spark.SparkException: Job aborted due to stage failure: Task 0 in stage 1.0 failed 1 times, most recent failure: Lost task 0.0 in stage 1.0 (TID 1) (localhost executor driver): java.lang.UnsupportedOperationException: Unsupported type: UTF8String
E                   	at org.apache.iceberg.arrow.vectorized.ArrowVectorAccessor.getUTF8String(ArrowVectorAccessor.java:81)
E                   	at org.apache.iceberg.spark.data.vectorized.IcebergArrowColumnVector.getUTF8String(IcebergArrowColumnVector.java:143)
E                   	at org.apache.spark.sql.catalyst.expressions.GeneratedClass$GeneratedIteratorForCodegenStage1.processNext(Unknown Source)
E                   	at org.apache.spark.sql.execution.BufferedRowIterator.hasNext(BufferedRowIterator.java:43)
E                   	at org.apache.spark.sql.execution.WholeStageCodegenEvaluatorFactory$WholeStageCodegenPartitionEvaluator$$anon$1.hasNext(WholeStageCodegenEvaluatorFactory.scala:43)
E                   	at org.apache.spark.sql.execution.SparkPlan.$anonfun$getByteArrayRdd$1(SparkPlan.scala:388)
E                   	at org.apache.spark.rdd.RDD.$anonfun$mapPartitionsInternal$2(RDD.scala:893)
E                   	at org.apache.spark.rdd.RDD.$anonfun$mapPartitionsInternal$2$adapted(RDD.scala:893)
E                   	at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:52)
E                   	at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:367)
E                   	at org.apache.spark.rdd.RDD.iterator(RDD.scala:331)
E                   	at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:93)
E                   	at org.apache.spark.TaskContext.runTaskWithListeners(TaskContext.scala:166)
E                   	at org.apache.spark.scheduler.Task.run(Task.scala:141)
E                   	at org.apache.spark.executor.Executor$TaskRunner.$anonfun$run$4(Executor.scala:620)
E                   	at org.apache.spark.util.SparkErrorUtils.tryWithSafeFinally(SparkErrorUtils.scala:64)
E                   	at org.apache.spark.util.SparkErrorUtils.tryWithSafeFinally$(SparkErrorUtils.scala:61)
E                   	at org.apache.spark.util.Utils$.tryWithSafeFinally(Utils.scala:94)
E                   	at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:623)
E                   	at java.base/java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1128)
E                   	at java.base/java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:628)
E                   	at java.base/java.lang.Thread.run(Thread.java:829)
E                   
E                   Driver stacktrace:
E                   	at org.apache.spark.scheduler.DAGScheduler.failJobAndIndependentStages(DAGScheduler.scala:2856)
E                   	at org.apache.spark.scheduler.DAGScheduler.$anonfun$abortStage$2(DAGScheduler.scala:2792)
E                   	at org.apache.spark.scheduler.DAGScheduler.$anonfun$abortStage$2$adapted(DAGScheduler.scala:2791)
E                   	at scala.collection.mutable.ResizableArray.foreach(ResizableArray.scala:62)
E                   	at scala.collection.mutable.ResizableArray.foreach$(ResizableArray.scala:55)
E                   	at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:49)
E                   	at org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:2791)
E                   	at org.apache.spark.scheduler.DAGScheduler.$anonfun$handleTaskSetFailed$1(DAGScheduler.scala:1247)
E                   	at org.apache.spark.scheduler.DAGScheduler.$anonfun$handleTaskSetFailed$1$adapted(DAGScheduler.scala:1247)
E                   	at scala.Option.foreach(Option.scala:407)
E                   	at org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:1247)
E                   	at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.doOnReceive(DAGScheduler.scala:3060)
E                   	at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:2994)
E                   	at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:2983)
E                   	at org.apache.spark.util.EventLoop$$anon$1.run(EventLoop.scala:49)
E                   	at org.apache.spark.scheduler.DAGScheduler.runJob(DAGScheduler.scala:989)
E                   	at org.apache.spark.SparkContext.runJob(SparkContext.scala:2393)
E                   	at org.apache.spark.SparkContext.runJob(SparkContext.scala:2414)
E                   	at org.apache.spark.SparkContext.runJob(SparkContext.scala:2433)
E                   	at org.apache.spark.SparkContext.runJob(SparkContext.scala:2458)
E                   	at org.apache.spark.rdd.RDD.$anonfun$collect$1(RDD.scala:1049)
E                   	at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151)
E                   	at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:112)
E                   	at org.apache.spark.rdd.RDD.withScope(RDD.scala:410)
E                   	at org.apache.spark.rdd.RDD.collect(RDD.scala:1048)
E                   	at org.apache.spark.sql.execution.SparkPlan.executeCollect(SparkPlan.scala:448)
E                   	at org.apache.spark.sql.Dataset.$anonfun$collectToPython$1(Dataset.scala:4149)
E                   	at org.apache.spark.sql.Dataset.$anonfun$withAction$2(Dataset.scala:4323)
E                   	at org.apache.spark.sql.execution.QueryExecution$.withInternalError(QueryExecution.scala:546)
E                   	at org.apache.spark.sql.Dataset.$anonfun$withAction$1(Dataset.scala:4321)
E                   	at org.apache.spark.sql.execution.SQLExecution$.$anonfun$withNewExecutionId$6(SQLExecution.scala:125)
E                   	at org.apache.spark.sql.execution.SQLExecution$.withSQLConfPropagated(SQLExecution.scala:201)
E                   	at org.apache.spark.sql.execution.SQLExecution$.$anonfun$withNewExecutionId$1(SQLExecution.scala:108)
E                   	at org.apache.spark.sql.SparkSession.withActive(SparkSession.scala:900)
E                   	at org.apache.spark.sql.execution.SQLExecution$.withNewExecutionId(SQLExecution.scala:66)
E                   	at org.apache.spark.sql.Dataset.withAction(Dataset.scala:4321)
E                   	at org.apache.spark.sql.Dataset.collectToPython(Dataset.scala:4146)
E                   	at java.base/jdk.internal.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
E                   	at java.base/jdk.internal.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
E                   	at java.base/jdk.internal.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
E                   	at java.base/java.lang.reflect.Method.invoke(Method.java:566)
E                   	at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:244)
E                   	at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:374)
E                   	at py4j.Gateway.invoke(Gateway.java:282)
E                   	at py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:132)
E                   	at py4j.commands.CallCommand.execute(CallCommand.java:79)
E                   	at py4j.ClientServerConnection.waitForCommands(ClientServerConnection.java:182)
E                   	at py4j.ClientServerConnection.run(ClientServerConnection.java:106)
E                   	at java.base/java.lang.Thread.run(Thread.java:829)
E                   Caused by: java.lang.UnsupportedOperationException: Unsupported type: UTF8String
E                   	at org.apache.iceberg.arrow.vectorized.ArrowVectorAccessor.getUTF8String(ArrowVectorAccessor.java:81)
E                   	at org.apache.iceberg.spark.data.vectorized.IcebergArrowColumnVector.getUTF8String(IcebergArrowColumnVector.java:143)
E                   	at org.apache.spark.sql.catalyst.expressions.GeneratedClass$GeneratedIteratorForCodegenStage1.processNext(Unknown Source)
E                   	at org.apache.spark.sql.execution.BufferedRowIterator.hasNext(BufferedRowIterator.java:43)
E                   	at org.apache.spark.sql.execution.WholeStageCodegenEvaluatorFactory$WholeStageCodegenPartitionEvaluator$$anon$1.hasNext(WholeStageCodegenEvaluatorFactory.scala:43)
E                   	at org.apache.spark.sql.execution.SparkPlan.$anonfun$getByteArrayRdd$1(SparkPlan.scala:388)
E                   	at org.apache.spark.rdd.RDD.$anonfun$mapPartitionsInternal$2(RDD.scala:893)
E                   	at org.apache.spark.rdd.RDD.$anonfun$mapPartitionsInternal$2$adapted(RDD.scala:893)
E                   	at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:52)
E                   	at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:367)
E                   	at org.apache.spark.rdd.RDD.iterator(RDD.scala:331)
E                   	at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:93)
E                   	at org.apache.spark.TaskContext.runTaskWithListeners(TaskContext.scala:166)
E                   	at org.apache.spark.scheduler.Task.run(Task.scala:141)
E                   	at org.apache.spark.executor.Executor$TaskRunner.$anonfun$run$4(Executor.scala:620)
E                   	at org.apache.spark.util.SparkErrorUtils.tryWithSafeFinally(SparkErrorUtils.scala:64)
E                   	at org.apache.spark.util.SparkErrorUtils.tryWithSafeFinally$(SparkErrorUtils.scala:61)
E                   	at org.apache.spark.util.Utils$.tryWithSafeFinally(Utils.scala:94)
E                   	at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:623)
E                   	at java.base/java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1128)
E                   	at java.base/java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:628)
E                   	... 1 more

Are these changes tested?

Are there any user-facing changes?

Closes #1986
Closes #2002

@Fokko Fokko marked this pull request as draft May 16, 2025 09:00
@simw
Copy link

simw commented May 26, 2025

Following issue #1986 , I was about to make a smaller PR without the knowledge of the extra spark-related complications.

In case it's useful, the only extra thing I had that you haven't (yet) added is a small unit test in tests/io/test_pyarrow_visitor.py at roughly line 235:

def test_pyarrow_uuid_to_iceberg() -> None:
    pyarrow_type = pa.uuid()
    converted_iceberg_type = visit_pyarrow(pyarrow_type, _ConvertToIceberg())
    assert converted_iceberg_type == UUIDType()
    assert visit(converted_iceberg_type, _ConvertToArrowSchema()) == pa.uuid()

@Fokko
Copy link
Contributor Author

Fokko commented Jun 14, 2025

Going down the rabbit hole, I'm able to reproduce this on the Java main branch:
image

Fokko added a commit to Fokko/iceberg that referenced this pull request Jun 16, 2025
While fixing some issues on the PyIceberg ends to fully support UUIDs:
apache/iceberg-python#2007

I noticed this issue, and was suprised since UUID used to work with
Spark, but it turns out that the dictionary encoded UUID was not
implemented yet.

For PyIceberg we only generate little data, so therefore this wasn't
caught previously.
Fokko added a commit to Fokko/iceberg that referenced this pull request Jun 16, 2025
While fixing some issues on the PyIceberg ends to fully support UUIDs:
apache/iceberg-python#2007

I noticed this issue, and was suprised since UUID used to work with
Spark, but it turns out that the dictionary encoded UUID was not
implemented yet.

For PyIceberg we only generate little data, so therefore this wasn't
caught previously.
Fokko added a commit to Fokko/iceberg that referenced this pull request Jun 16, 2025
While fixing some issues on the PyIceberg ends to fully support UUIDs:
apache/iceberg-python#2007

I noticed this issue, and was suprised since UUID used to work with
Spark, but it turns out that the dictionary encoded UUID was not
implemented yet.

For PyIceberg we only generate little data, so therefore this wasn't
caught previously.
Fokko added a commit to Fokko/iceberg that referenced this pull request Jun 16, 2025
While fixing some issues on the PyIceberg ends to fully support UUIDs:
apache/iceberg-python#2007

I noticed this issue, and was suprised since UUID used to work with
Spark, but it turns out that the dictionary encoded UUID was not
implemented yet.

For PyIceberg we only generate little data, so therefore this wasn't
caught previously.
@Fokko Fokko marked this pull request as ready for review June 16, 2025 21:52
@kevinjqliu kevinjqliu self-requested a review June 17, 2025 03:50
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

Successfully merging this pull request may close these issues.

UUIDType with BucketTransform incorrectly converts int to str in PartitionKey Error creating table from pyarrow schema with pa.uuid()
3 participants