NASA (Posts tagged moons)

1.5M ratings
277k ratings

See, that’s what the app is perfect for.

Sounds perfect Wahhhh, I don’t wanna

Celestial Mechanics Around the Solar System During December 2019

The dance of planets, moons and spacecraft around the solar system creates a host of rare alignments in late December 2019. Here’s what’s coming up.

Dec. 21: Winter solstice in the Northern Hemisphere

Dec. 21 is the 2019 winter solstice for the Northern Hemisphere. A solstice marks the point at which Earth’s tilt is at the greatest angle to the plane of its orbit, also the point where half of the planet is receiving the longest stretch of daylight and the other the least. There are two solstices a year, in June and December: the summer and winter solstices, respectively, in the Northern Hemisphere.

image

The winter solstice is the longest night of the year, when that hemisphere of Earth is tilted farthest from the Sun and receives the fewest hours of sunlight in a given year. Starting Dec. 21, the days will get progressively longer until the June solstice for those in the Northern Hemisphere, and vice versa for the Southern Hemisphere.  

Dec. 26: Annular solar eclipse visible in Asia

On Dec. 26, an annular solar eclipse will be visible in parts of Asia. During an annular eclipse, the Moon’s apparent size is too small to completely cover the face of the Sun, creating a “ring of fire” around the Moon’s edge during the eclipse.

image

Credit: Dale Cruikshank

Solar eclipses happen when the Moon lines up just right with the Sun and Earth. Though the Moon orbits Earth about once a month, the tilt in its orbit means that it’s relatively rare for the Moon to pass right in line between the Sun and Earth — and those are the conditions that create an eclipse. Depending on the alignment, the Moon can create a partial, total or annular solar eclipse.

image

On Dec. 26, the Moon will be near perigee, the point in its orbit when it’s farthest from Earth. That means its apparent size from Earth is just a bit smaller — and that difference means that it won’t completely cover the Sun during the Dec. 26 eclipse. Instead, a ring of the bright solar surface will be visible around the Moon during the point of greatest eclipse. This is called an annular eclipse.

It is never safe to look directly at an annular solar eclipse, because part of the Sun is always visible. If you’re in the path of the annular eclipse, be sure to use solar viewing glasses (not sunglasses) or another safe viewing method to watch the eclipse.

Dec. 26: Parker Solar Probe flies by Venus

After the eclipse, more than 100 million miles away from Earth, Parker Solar Probe will pull off a celestial maneuver of its own. On Dec. 26, the spacecraft will perform the second Venus gravity assist of the mission to tighten its orbit around the Sun.

image

During the seven gravity assists throughout the mission, Parker Solar Probe takes advantage of Venus’s gravity to slow down just the right amount at just the right time. Losing some of its energy allows the spacecraft to be drawn closer by the Sun’s gravity: It will fly by the Sun’s surface at just 11.6 million miles during its next solar flyby on Jan. 29, 2020. During this flyby, Parker Solar Probe will break its own record for closest-ever spacecraft to the Sun and will gather new data to build on the science already being shared from the mission.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com

NASA Sun Moon Earth solar system space science Parker Solar Probe eclipse Venus December solstice seasons Moons planets

Solar System: 10 Things to Know

Movie Night

Summer break is just around the corner. Hang a sheet from the clothesline in the backyard and fire up the projector for a NASA movie night.

1. Mars in a Minute

image

Back in the day, movies started with a cartoon. Learn the secrets of the Red Planet in these animated 60 second chunks.

2. Crash of the Titans

image

Watch two galaxies collide billions of years from now in this high-definition visualization.

3. Tour the Moon in 4K

image

Wait for the dark of the waning Moon next weekend to take in this 4K tour of our constant celestial companion.

4. Seven Years of the Sun

image

Watch graceful dances in the Sun’s atmosphere in this series of videos created by our 24/7 Sun-sentinel, the Solar Dynamic Observatory (SDO).

5. Light ‘Em Up

image

Crank up the volume and learn about NASA science for this short video about some of our science missions, featuring a track by Fall Out Boy.

6. Bennu’s Journey

image

Follow an asteroid from its humble origins to its upcoming encounter with our spacecraft in this stunning visualization.

7. Lunar Landing Practice

Join Apollo mission pilots as they fly—and even crash—during daring practice runs for landing on the Moon.

8. Earthrise

image

Join the crew of Apollo 8 as they become the first human beings to see the Earth rise over the surface of the Moon.

9. Musical Descent to Titan

image

Watch a musical, whimsical recreation of the 2005 Huygens probe descent to Titan, Saturn’s giant moon.

10. More Movies

image

Our Goddard Scientific Visualization Studio provides a steady stream of fresh videos for your summer viewing pleasure. Come back often and enjoy.

Read the full version of this article on the web HERE

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.  

nasa space movie movie night video science spacecraft planets solar system moons sun Earth visualization

Cassini Mission: What’s Next?

It’s Friday, Sept. 15 and our Cassini mission has officially come to a spectacular end. The final signal from the spacecraft was received here on Earth at 7:55 a.m. EDT after a fateful plunge into Saturn’s atmosphere.

image

After losing contact with Earth, the spacecraft burned up like a meteor, becoming part of the planet itself.

image

Although bittersweet, Cassini’s triumphant end is the culmination of a nearly 20-year mission that overflowed with discoveries.

But, what happens now?

Mission Team and Data

Now that the spacecraft is gone, most of the team’s engineers are migrating to other planetary missions, where they will continue to contribute to the work we’re doing to explore our solar system and beyond.

image

Mission scientists will keep working for the coming years to ensure that we fully understand all of the data acquired during the mission’s Grand Finale. They will carefully calibrate and study all of this data so that it can be entered into the Planetary Data System. From there, it will be accessible to future scientists for years to come.

image

Even beyond that, the science data will continue to be worked on for decades, possibly more, depending on the research grants that are acquired.

Other team members, some who have spent most of their career working on the Cassini mission, will use this as an opportunity to retire.

Future Missions

In revealing that Enceladus has essentially all the ingredients needed for life, the mission energized a pivot to the exploration of “ocean worlds” that has been sweeping planetary science over the past couple of decades.

image

Jupiter’s moon Europa has been a prime target for future exploration, and many lessons during Cassini’s mission are being applied in planning our Europa Clipper mission, planned for launch in the 2020s.

image

The mission will orbit the giant planet, Jupiter, using gravitational assists from large moons to maneuver the spacecraft into repeated close encounters, much as Cassini has used the gravity of Titan to continually shape the spacecraft’s course.

In addition, many engineers and scientists from Cassini are serving on the new Europa Clipper mission and helping to shape its science investigations. For example, several members of the Cassini Ion and Neutral Mass Spectrometer team are developing an extremely sensitive, next-generation version of their instrument for flight on Europa Clipper. What Cassini has learned about flying through the plume of material spraying from Enceladus will be invaluable to Europa Clipper, should plume activity be confirmed on Europa.

image

In the decades following Cassini, scientists hope to return to the Saturn system to follow up on the mission’s many discoveries. Mission concepts under consideration include robotic explorers to drift on the methane seas of Titan and fly through the Enceladus plume to collect and analyze samples for signs of biology.

image

Atmospheric probes to all four of the outer planets have long been a priority for the science community, and the most recent recommendations from a group of planetary scientists shows interest in sending such a mission to Saturn. By directly sampling Saturn’s upper atmosphere during its last orbits and final plunge, Cassini is laying the groundwork for an potential Saturn atmospheric probe.

image

A variety of potential mission concepts are discussed in a recently completed study — including orbiters, flybys and probes that would dive into Uranus’ atmosphere to study its composition. Future missions to the ice giants might explore those worlds using an approach similar to Cassini’s mission.

Learn more about the Cassini mission and its Grand Finale HERE.

Follow the mission on Facebook and Twitter for the latest updates.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.

nasa space cassini grandfinale saturn moons goodbyecassini whatsnext spacecraft planets solarsystem science research engineers scientists team

Cassini Spacecraft: Top Discoveries

Our Cassini spacecraft has been exploring Saturn, its stunning rings and its strange and beautiful moons for more than a decade.

image

Having expended almost every bit of the rocket propellant it carried to Saturn, operators are deliberately plunging Cassini into the planet to ensure Saturn’s moons will remain pristine for future exploration – in particular, the ice-covered, ocean-bearing moon Enceladus, but also Titan, with its intriguing pre-biotic chemistry.

Let’s take a look back at some of Cassini’s top discoveries:  

Titan

image

Under its shroud of haze, Saturn’s planet-sized moon Titan hides dunes, mountains of water ice and rivers and seas of liquid methane. Of the hundreds of moons in our solar system, Titan is the only one with a dense atmosphere and large liquid reservoirs on its surface, making it in some ways more like a terrestrial planet.

image

Both Earth and Titan have nitrogen-dominated atmospheres – over 95% nitrogen in Titan’s case. However, unlike Earth, Titan has very little oxygen; the rest of the atmosphere is mostly methane and traced amounts of other gases, including ethane.

image

There are three large seas, all located close to the moon’s north pole, surrounded by numerous smaller lakes in the northern hemisphere. Just one large lake has been found in the southern hemisphere.

Enceladus

image

The moon Enceladus conceals a global ocean of salty liquid water beneath its icy surface. Some of that water even shoots out into space, creating an immense plume!

image

For decades, scientists didn’t know why Enceladus was the brightest world in the solar system, or how it related to Saturn’s E ring. Cassini found that both the fresh coating on its surface, and icy material in the E ring originate from vents connected to a global subsurface saltwater ocean that might host hydrothermal vents.

image

With its global ocean, unique chemistry and internal heat, Enceladus has become a promising lead in our search for worlds where life could exist.

Iapetus

image

Saturn’s two-toned moon Iapetus gets its odd coloring from reddish dust in its orbital path that is swept up and lands on the leading face of the moon.

image

The most unique, and perhaps most remarkable feature discovered on Iapetus in Cassini images is a topographic ridge that coincides almost exactly with the geographic equator. The physical origin of the ridge has yet to be explained…

image

It is not yet year whether the ridge is a mountain belt that has folded upward, or an extensional crack in the surface through which material from inside Iapetus erupted onto the surface and accumulated locally.

Saturn’s Rings

image

Saturn’s rings are made of countless particles of ice and dust, which Saturn’s moons push and tug, creating gaps and waves.

image

Scientists have never before studied the size, temperature, composition and distribution of Saturn’s rings from Saturn obit. Cassini has captured extraordinary ring-moon interactions, observed the lowest ring-temperature ever recorded at Saturn, discovered that the moon Enceladus is the source for Saturn’s E ring, and viewed the rings at equinox when sunlight strikes the rings edge-on, revealing never-before-seen ring features and details.

image

Cassini also studied features in Saturn’s rings called “spokes,” which can be longer than the diameter of Earth. Scientists think they’re made of thin icy particles that are lifted by an electrostatic charge and only last a few hours.  

Auroras

image

The powerful magnetic field that permeates Saturn is strange because it lines up with the planet’s poles. But just like Earth’s field, it all creates shimmering auroras.

image

Auroras on Saturn occur in a process similar to Earth’s northern and southern lights. Particles from the solar wind are channeled by Saturn’s magnetic field toward the planet’s poles, where they interact with electrically charged gas (plasma) in the upper atmosphere and emit light.  

Turbulent Atmosphere

image

Saturn’s turbulent atmosphere churns with immense storms and a striking, six-sided jet stream near its north pole.

image

Saturn’s north and south poles are also each beautifully (and violently) decorated by a colossal swirling storm. Cassini got an up-close look at the north polar storm and scientists found that the storm’s eye was about 50 times wider than an Earth hurricane’s eye.

image

Unlike the Earth hurricanes that are driven by warm ocean waters, Saturn’s polar vortexes aren’t actually hurricanes. They’re hurricane-like though, and even contain lightning. Cassini’s instruments have ‘heard’ lightning ever since entering Saturn orbit in 2004, in the form of radio waves. But it wasn’t until 2009 that Cassini’s cameras captured images of Saturnian lighting for the first time.

image

Cassini scientists assembled a short video of it, the first video of lightning discharging on a planet other than Earth.

image

Cassini’s adventure will end soon because it’s almost out of fuel. So to avoid possibly ever contaminating moons like Enceladus or Titan, on Sept. 15 it will intentionally dive into Saturn’s atmosphere.

image

The spacecraft is expected to lose radio contact with Earth within about one to two minutes after beginning its decent into Saturn’s upper atmosphere. But on the way down, before contact is lost, eight of Cassini’s 12 science instruments will be operating! More details on the spacecraft’s final decent can be found HERE.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com

nasa space cassini spacecraft saturn enceladus titan moons moon planets exploration science rings solarsystem