
Weird New Tricks for
Browser Fingerprinting

yan (@bcrypt)
ToorCon 2015

real pic of me

also work on these things

EFF staff photo, 2015

BETTER
TRACKING
METHODS

Tracking web users is all the rage

● Show ads!
● Inject QUANTUM malware
● Cybercatch cybercriminals
● Gather website analytics
● Detect fraud / droidnets
● Enforce paywalls
● etc.

A long time ago in a galaxy far, far away . . .
Obi-Wan tracked Luke using:

● cookies
● passive fingerprinting*

(IP address, locales,
user-agent, OS, etc.)

● sweet Jedi mind tricks

* In this presentation, fingerprinting ==
any non-cookie web tracking method.

THE ADBLOCKERS* STRIKE BACK

* In this
presentation,
adblocker == any
tool that blocks
web tracking
(including non-
advertising)

THE PHANTOM ADBLOCKER BLOCKERS

REVENGE OF THE ADBLOCKER BLOCKER BLOCKERS!!!

A New Hope: Browser Fingerprinting
● Evade blocking algorithms that blacklist

domains based on cookie frequency (ex:
Privacy Badger).

● Track users who disable 3rd party cookies
(ex: Safari).

● Harder to delete than cookies.
● Can reveal new information about a user.

new web features ==
new fingerprinting techniques

HOLY SHIT I HAVE 4 LIGHTSABERS ZOMG!!1

● active fingerprinting
(HTML5 canvas, clock
skew, installed fonts
& plugins, WebRTC...)

● supercookies (Flash
cookies, caches,
HSTS, etags...)

Fingerprinting attacks in the wild

geez thx a
lot Samy

#realtalk

How would you track a
paranoid user who clears
cookies & uses an adblocker?

Could fingerprint them, but
adblockers & browsers will
get better at blocking you…

…unless blocking causes too
much collateral damage.

Collateral:

Privacy-conscious users usually
care about security.

Can we fingerprint them using
security features that are too
important for them to turn off?

Trick #1: Abuse HTTP Public Key Pinning

HPKP (RFC 7469)

Server: One of these hashes must be
in the TLS cert chain you receive
from me.

Browser: DOPE!! NEXT TIME I SEE YOU
I WILL CHECK IT BEFORE I WRECK IT

Public-Key-Pins:

max-age=3000;

pin-sha256="
d6qzRu9zOECb90Uez27xWltNsj0e1Md
7GkYYkVoZWmM=";

pin-sha256="
E9CZ9INDbd+2eRQozYqqbQ2yXLVKB9+
xcprMF+44U1g=";

report-uri= “http://example.
com/report”;

includeSubdomains;

How long to
cache this shit for SHA-256 of a pub. key

in the cert chain.
Browser checks &
caches this.

SHA-256 of a backup
pub. key (required). Must
NOT be in the cert chain.
Browser caches this.

POST endpoint to report
pin validation failures
(optional).

Whether to pin for the host’s
subdomains as well (optional).

http://example.com/report
http://example.com/report
http://example.com/report

Supercookie #1: fake backup pins

1. https://example.com sets a unique backup
pin for each user + includeSubdomains +
report-uri.

2. serves a
chain that deliberately fails pin
validation.

3. A validation failure report is sent which
includes a unique cached backup pin!

Trick #2: Abuse HTTP Strict Transport
Security + Content Security Policy

HSTS (RFC 6797)

Server: Hey, I just met you, and
this is crazy, but please only call
me over HTTPS for the next 604800
seconds.

Browser: OK

Strict-Transport-Security:

max-age=3000;

includeSubdomains;

How long to
remember to only
connect to this host
via HTTPS

Whether subdomains
should also only be
connected to over
HTTPS (optional).

Supercookie #2: HSTS cache state

1. sneaky.com wants to fingerprint users.

2. example.com is known to support HSTS.

3. sneaky.com/index.html embeds <img src=

‘http://example.com’>.

http://example.com

What happens then?

Case 1: Browser has never visited example.com

 -> makes a network round-trip, gets 301/302 to

https://example.com

Case 2: Browser visited example.com before.

 -> HSTS causes an “internal” redirect (307) to

https://example.com/ ~immediately

https://example.com
https://example.com
https://example.com/
https://example.com/

If we can measure the HTTP to
HTTPS redirect latency, we can
distinguish Case 1 from Case 2!

Q: How do we measure that?
A: Abuse one more browser
security feature.

Content Security Policy (W3C spec)

Server: For your safety, please
only allow resources of type <X>
from origins <A> & while on
this page.

Browser: I GOT U FAM

Content-Security-Policy:

img-src: https://*;

script-src: ‘self’ *.

scripts.com cdn.example.com

Allow images to load
from HTTPS origins
only

Allow scripts to load
from the page’s origin,
*.scripts.com, and cdn.
example.com only.

The Missing Ingredient:
Set CSP to ‘img-src http://*’

HTTPS image requests are blocked and
fire an error event to JS listeners.

Why is this useful?

1. JS only lets us listen for img onerror and

onload events. Turns out CSP violation

triggers onerror consistently and early in

the fetch pipeline.

2. If browser ever completes a request for

https://example.com, it will get the HSTS

pin and future results are polluted. CSP

prevents this from happening!

https://example.com

After setting CSP:

Case 1: Browser has never visited example.com

 -> makes network request, gets 301/302 to

https://example.com, img onerror fires.

Case 2: Browser visited example.com before.

 -> HSTS rewrites src to https://example.com/

~immediately, img onerror fires.

https://example.com
https://example.com
https://example.com/

How long does the HTTP to HTTPS redirect take?

Case 1: Browser has never visited example.com

 -> Order of 100ms depending on network latency

and site response time.

Case 2: Browser visited example.com before.

 -> Order of 1ms, independent of the site and

network conditions.

Putting it all together

Remember the CSS visited-selector bug?

Slide from Michael
Coates, 2011 ->

That was soooooo 2010

New plan:

1. Scrape Alexa Top 1M for hosts that send HSTS

and aren’t preloaded.

2. Load all the HSTS hosts asynchronously on

one page.

3. Measure the onerror timing & separate hosts

into visited and unvisited.

Turns out...
Redirect timing is hard to
measure accurately for 300+
async image loads at once.

Improved by calibrating
timing drift using a request
to a preloaded HSTS host
every other request.

Chrome still had many false
positives; confirmed timings
for positive results using
synchronous loads.

demo:
http://zyan.scripts.mit.edu/sniffly

http://zyan.scripts.mit.edu/sniffly
http://zyan.scripts.mit.edu/sniffly

http://www.youtube.com/watch?v=F1GxtVU_MVU

scraper + tracker code:
https://github.com/diracdeltas/sniffly

https://github.com/diracdeltas/sniffly
https://github.com/diracdeltas/sniffly

Your mileage may vary

● Results depend on latest
HSTS preload list.

● HTTPS Everywhere & other
extensions cause false
positives.

● Doesn’t work as-is in Tor
Browser thanks to 100 ms
timing buckets.

Your mileage may vary

● Only leaks origin, not full path . . . or does it?

Actually, looks feasible to adapt this attack to leak
the 301 redirect cache instead of the HSTS cache. :)

The End

Call me maybe:

yan@mit.edu / @bcrypt

Special thanks to Scott
Helme, Jan Schaumann,
Chris Palmer, and Chris
Rohlf for feedback and
demo testing.

Many <3’s to White Ops for
sponsoring my trip to ToorCon!

mailto:yan@mit.edu
mailto:yan@mit.edu

