
Mining Method Handle Graphs for Efficient Dynamic JVM
Languages

Shijie Xu, David Bremner
IBM Centre for Advanced Studies (CAS Atlantic)

University of New Brunswick, Fredericton,
Canada E3B 5A3

{shijie.xu,bremner}@unb.ca

Daniel Heidinga
IBM Ottawa, 770 Palladium Dr
Ottawa, ON, Canada, K2V 1C8

Daniel_Heidinga@ca.ibm.com

ABSTRACT
The Java Virtual Machine (JVM) has been used as an ex-
ecution platform by many dynamically-typed programming
languages such as Ruby, Python, and Groovy. The main
challenge to compile such dynamic JVM languages is choos-
ing the most appropriate implementation of a method for
various types of an object at runtime. To address this chal-
lenge, a new Java bytecode instruction, invokedynamic, has
been introduced, allowing users to control the linkage be-
tween a call site and a method implementation. With this in-
struction, a method handle that refers to a method is linked
to the call site and then potentially transforms the invoca-
tion to a real implementation. As a referenced method of a
method handle might in turn refer to other method handles,
multiple method handles constitute a Method Handle Graph
(MHG).

In order to support more efficient dynamic JVM language
implementations, we present methods to mine patterns in
the method handle graph. We investigate two kinds of
method handle patterns: the transformation pattern and
the instance pattern. The transformation pattern refers to
a composition of multiple method handle transformations,
and the instance pattern refers to equivalent method han-
dles in MHGs. Both patterns are mined by the presented
suffix tree and equivalency detector, respectively, which are
implemented as modules in the Method Handle Mining Sys-
tem (MHMS). Our experiments on the JRuby Micro-Indy
benchmark reveal several findings: a) the frequency of dif-
ferent transformation patterns varies significantly, and the
JRuby interpreter prefers a small number of transformation
patterns, b) a large proportion of method handles, 28.83%,
are equivalent, and most of these equivalent method handles
can be eliminated to reduce consumed memory, and c) the
distribution of equivalent sets for length-two method handle
chains is also uneven. For example, only 7% of these sets
have more than 30 equivalent method handle chains. We
believe these insights are important steps towards further
optimizations based on method handle graphs.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

PPPJ ’15, September 08 - 11, 2015, Melbourne, FL, USA
c© 2015 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ISBN 978-1-4503-3712-0/15/09. . . $15.00

DOI: http://dx.doi.org/10.1145/2807426.2807440

Keywords
invokedynamic, JSR292, data mining, method handle, dy-
namically typed language

1. INTRODUCTION
Dynamically-typed languages1 such as Python,

Javascript, Ruby, and Groovy, are becoming increasingly
prevalent, as they provide high programming flexibility,
fast prototyping and agile interactive development. A
highly efficient runtime is crucial to support such dynamic
languages. To avoid developing a runtime for each language
from scratch, there is a trend to port such dynamic lan-
guages to the Java virtual machine (JVM), which can take
full advantage of the JVM’s maturity and highly optimized
JIT compiler.

However, as the JVM was originally designed only for
staticly-typed languages, i.e., Java [16], there are many“pain
points” [1, 2] to support dynamic languages on the JVM.
The key reason is that variables in dynamic languages do
not yield any type information at compilation time, while
a Java bytecode instruction typically requires type infor-
mation. For example, a Java instruction iload 1 indicates
that the operand is an int type, while the operand variable
in aload 2 is an Object type instead of a primitive type.
Moreover, existing Java method invocation instructions, ex-
cept invokestatic, also require availability of receiver types
at compilation time. Although several solutions such as Java
Reflection [12, 14] have been proposed, they are still ineffi-
cient due to the repeated type and security checks during
method invocation.

To better support dynamic languages, Java Specification
Request (JSR) 292, entitled Supporting Dynamically Typed
Languages on the Java Platform, introduced a new Java
bytecode instruction, invokedynamic, to allow user-defined
linkage behavior. By using this new instruction, a method
handle, which is a typed and direct reference to an underly-
ing method or field with potential method transformations2,
can be linked to a program call site at runtime. The compo-
sition of method handles then constitutes a method handle
graph (MHG), representing a number of method type trans-
formations from a call site to the target method type. An
illustrative example is shown in Figure 1, where a Guard-
WithTesthandle method handle, 0xFFF5BA48, references

1In this paper, we use the terms dynamic, dynamic JVM
and dynamically-typed language interchangeably.
2These method transformations include but not limited
to argument insertion, removal, conversion, and substitu-
tion [9, 10].

an if-else Java method adapter in Listing 1 and transforms
the invocation to either B (trueTarget) or falseTarget.

T adapter(Object obj1, Object obj2) {
if (A.invokeExact(obj1))

return B.invokeExact(obj1, obj2);
else

return falseTarget.invokeExact(obj1,
obj2);

}

Listing 1: Guard With Test Method handle

With the invokedynamic instruction, it is the responsibil-
ity of the language interpreter’s implementor to build MHGs
to transform the invocation at a call site to a real method
implementation. Therefore, it is necessary to mine usage
patterns in MHGs on the JVM level for detection of ineffi-
cient method handle usage as well as discovering other po-
tential optimizations. In this paper, we mainly investigate
two kinds of patterns: transformation pattern and instance
pattern. The transformation pattern refers to the compo-
sition of method handle transformations, and the instance
pattern refers to the equivalent MHG (An MHG is also rep-
resented by its root method handle, from which all method
handles in the MHG are reachable). The benefit of analyz-
ing these patterns is two-fold. First, these patterns can be
feedback to the language implementers, leading to a more ef-
ficient use of MHG. Second, the mined patterns can be used
to optimize dynamic languages at runtime. As a method
handle invocation is normally compiled to the JVM instruc-
tion invokevirtual, which defers method linkage according
to receiver’s type at program runtime (i.e., late binding3),
compiling these mined long and frequent method handle in-
vocation chains into a single method handle is potentially
significant to reduce the number of late bindings and bene-
fit program performance.

Our main contributions are as follows. We first identify
two method handle patterns, the transformation pattern
and the instance pattern, and provide related mining ap-
proaches to detect such patterns from MHGs. We further
build MHMS — an offline data mining framework for MHGs
— to collect method handle traces and conduct data mining
for both patterns, as a proof of concept. We also conduct
experiments with the MHMS. Our results with the Micro-
Indy benchmark for the Ruby language, one component of
the Computer Language Benchmark Game (CLBG) bench-
marks for different language implementations, reveal several
findings as follows.

• The frequency of different transformation patterns
varies significantly, and a small number of transfor-
mation patterns occur much more frequently than the
others in the JRuby interpreter.

• A large proportion of method handles, an average of
28.83% in our test, are equivalent.

• The distribution of equivalent length-two method han-
dle chains is also uneven. According to our experiment,

3Late binding or dynamic binding is a widely used technol-
ogy in object-orient programming languages where a method
being called upon an object is looked up by its name at pro-
gram runtime rather than static compilation. Compared to
early binding (static binding), late binding has performance
impacts on a program.

only 7% of method handle chain sets have more than
30 equivalent chains, which implies an optimization on
a small number of chains can maximize performance
improvement.

The rest of this paper is organized as follow. Section 2
introduces some background on the invokedynamic instruc-
tion, method handles. Section 3 presents how to mine use-
ful patterns from the MHG. Section 4 provides an overview
of our Method Handle Mining System (MHMS) framework,
where the provided method handle mining approaches are
implemented. Section 5 shows the mining results and find-
ings on JRuby CLBG Micro-Indy benchmark. Section 6
discusses related work on method handles and program be-
haviors. Finally, Sections 7 and 8 conclude this paper.

2. BACKGROUND

2.1 Method Invocation Instruction in the
JVM

A Java Virtual Machine (JVM) instruction contains an
opcode, followed by zero or more operands. The data
type (e.g., int, double, or complex class) of the performed
operands is typically embedded in the JVM instruction [7,
8]. For example, the instruction areturn implies the returned
object is an object reference, while the performed operand
for the instruction ireturn is int type.

Methods in Java are also strongly typed, and a method
invocation requires an exact matching of method name and
type signatures between method definition and object refer-
ences that are atop of JVM stack. Three of the existing JVM
method invocation instructions, i.e., invokevirtual, invoke-
special, and invokeinterface (invokestatic is an exception),
treat the first argument in the stack as invocation receiver
and statically cast it to the declared receiver’s type. Due to
variables’ un-revealed type information during compilation,
dynamically typed languages are not supported efficiently by
the JVM and have many “pain points” in their Java imple-
mentations, e.g., failed inlining and polluted profile [19]. To
address these “pain points”, a new invocation instruction,
invokedynamic was introduced in Java 7; this instruction
aims to support non-Java languages on the JVM. The dis-
tinctive feature of this new instruction is that it supports a
user-defined bootstrap method which links a method handle
to the dynamic call site at program runtime.

2.2 Method Handle
A method handle is a typed, direct reference to an under-

lying method, a constructor, or a field with potential method
type transformations [6, 9, 10]. These transformations in-
clude method argument insertion, removal, and substitution.
A summary of existing transformations is shown in Table 1.

1 MethodHandle cat = lookup().
findVirtual(String.class, "concat"
, methodType(String.class, String.
class));

2 assertEquals("xy", (String) cat.
invokeExact("x", "y"));

3 MethodType bigType = cat.type().
insertParameterTypes(0, int.class,
String.class);

4 MethodHandle d0 = dropArguments(cat,
0, bigType.parameterList().subList
(0,2));

A

BGuard
trueTarget falseTarget

...
......

Figure 1: Method Handle Sample

Adapters Description

convertArguments pairwise cast, (un)box, pad/truncate

dropArguments ignore N consecutive arguments

insertArguments insert N arguments at given location

permuteArguments reorder (also, drop and/or duplicate)

collectArguments collect N trailing (enter varargs)

spreadArguments spread N trailing (exit varargs)

filterArguments apply filter to arguments

guardWithTest wrapper if-else routine

foldArguments call target with arguments which

contain pre-processed result

catchException catch exception if target throws exception

Table 1: The Method Handle Adapters [19]

5 assertEquals(bigType, d0.type());
6 assertEquals("yz", (String) d0.

invokeExact(123, "x", "y", "z"));

Listing 2: Method Handle sample

There are two kinds of method handles, direct and non-
direct method handles. A direct method handle is a method
handle that refers to a method or field directly without
any transformation. A direct method handle does not have
any other method handle field members, and an invoca-
tion of a direct method handle is equivalent to the target
method invocation. In contrast to a direct method han-
dle, a non-direct method handle is a method handle that
has at least one method handle field member. Normally, a
non-direct method handle involves method type transforma-
tions. For example, the direct method handle cat in Listing 2
(from [11]) refers to the function concat of the String class,
and its method type is (String)String, indicating the method
only accepts one String parameter and returns String value,
while the non-direct method handle d0 adapts an invocation
method type (String, String, String)String to the cat.

3. METHOD HANDLE DATA MINING

3.1 Method Handle Graph
A Method Handle Graph (MHG) is composed of multiple

method handle instances, and each method handle (specifi-
cally, non-direct method handle) represents a single method
invocation transformation. Therefore, an MHG expresses
a sequence of method type transformations for an invoca-

tion at a call site. Figure 1 shows a sample MHG created
by the JRuby interpreter. In this graph, both A and B
are GuardWithTestHandle (GWTHandle is short for Guard-
WithTestHandle), and chain A→ B transforms the invoca-
tion at A by the if-else routine twice.

In this paper, an MHG is abstracted by a number of
nodes and edges. A node is defined as a four-member tu-
ple: (nodeID, classType, fieldName, other), and a directed
edge between two method handles indicates there is a refer-
ence dependence between the source and the target method
handle. The nodeID is the method handle’s memory ad-
dress. The classType is the transformation name, i.e., class
name, of this method handle instance. The fieldName is
the name of the source method handle’s field that references
this method handle, and its value is also associated with the
directed edge from the source method handle to the current
method handle. fieldName is invalid if a method handle has
more than one parent. Normally, the root method handle of
a graph is the method handle that is linked to the call site
at runtime, and its fieldName value is set as “call site”. In
this paper, a root method handle is defined as the one which
can reach all method handle nodes in the MHG.

3.2 Method Handle Graph Patterns
Since a method handle is a reference to a Java method

or field, a single method handle inherently has two charac-
teristics: method type type and transformation name TN.
The method type of a method handle represents arguments
and the return type accepted and expected for the method
handle. For example, the type of method handle cat in List-
ing 2 is (String)String, indicating invocation of cat requires
a String argument and will return a String object. The
transformation name TN is the name of either the method
handle’s class type or the API that creates this method han-
dle. For example, a transformation name of a method han-
dle created by API guardWithTest is GuardWithTestHandle,
and the transformation name of the root method handle in
Figure 1 is MutableCallSiteDynamicInvokerHandle.

Correspondingly, we define two kinds of patterns for a
method handle graph: transformation patterns and instance
patterns. These are discussed in Section 3.3 and Section 3.4,
respectively.

3.3 Mining Frequent Transformation Pat-
terns

Given an MHG, a transformation chain refers to a trans-
formation sequence from the root method handle to a direct

Figure 2: Transformation Examples

method handle, and frequent transformation patterns are de-
fined as the method handle transformation sub-chains that
appear in an MHG (or MHGs) with a frequency no less than
a user-specified threshold. For example, two of the transfor-
mation chains in Figure 1 are
MutableCallSiteDynamicInvoker → GuardWithTestHandle →
MCSDynamicInvokeHandle → ConstantIntHandle,

and
MutableCallSiteDynamicInvoker → GuardWithTestHandle →
MoverHandle →Insert1Handle → DirectHandle.

Mining frequent transformation patterns can provide op-
portunities for method handle invocation optimizations. As
shown in Figure 2, there are three method handle sub-chains,
A→ B, C → D, and E → F . If A, C, and E have the same
transformation name, while B, D, and F also have the same
transformation name, then these three transformation sub-
chains are equal, and they might be a frequent transforma-
tion pattern. Accordingly, an intuition is to make intensive
optimization on this frequent transformation chain by merg-
ing the chain into a single but more efficient transformation
(e.g., inline cache), so that a number of late bindings dur-
ing method invocation can be reduced (three sub-chains are
changed to A’, C’, and E’ as shown on the right of Figure 2).

Mining frequent transformation patterns consists of two
steps: graph conversion and suffix tree mining. In the graph
conversion step, an MHG is converted to a transformation
chain set, which allows duplicate transformation chains. The
duplicates in a set might be very common for a large MHG,
because the transformation chains of different method han-
dle chains could be the same even though these method han-
dle chains are unique. In practice, duplicate transformation
chains in a set are simplified by a tuple, (chain, weight),
where the weight is the chain’s frequency.

The second step is suffix tree mining, which aims to detect
the most frequent transformation chains. The procedure
to find the most frequent transformation sub-chains is as
follows. First, a unique chain tuple is created for a pair
of two arbitrary unique chains in the set, and a weight is
associated with this new tuple, indicating its frequency. For
example, given two transform chains (chaini, weighti) and
(chainj , weightj), the corresponding unique chain tuple is

(chaini, chainj , weightj × weighti)

which indicates that the permutation (chaini, chainj) oc-
curs weightj × weighti times. Second, a suffix tree is built
for the chain tuple and the top 2N longest transformation
sub-chains are recorded as (subTransFormk, ok), in which
ok is the occurrence of this transformation sub-chain in both
chaini and chainj , and N is the number of most frequent
sub-chains to be mined. Third, all detected transformation

sub-chains are merged, and the rule to re-calculate frequency
of one transformation sub-chain is

sum(k) =
∑
i,j

ok × weightj × weighti.

for ith and jth chains. To reduce the computational cost,
the transformation chains with a length less than 2 are re-
moved before mining. The reason is that a length-two chain
inherently consists of two method handles, i.e., a call-site
method handle and a direct method handle, both of which
actually do not imply any transformation. Finally, transfor-
mation chains are sorted by sum(k), and the most frequent
N transformation chains are produced as the mining results.

3.4 Mining Instance Pattern
Instance pattern refers to equivalent method handle sub-

graphs in given MHGs, and the purpose of their mining is
to find equivalencies for future runtime method handle op-
timizations, e.g., method handle deduplication for efficient
memory usage. Two MHGs are equivalent, indicating that
all corresponding nodes in the method handle graphs are
also equivalent.

Algorithm 1 Two Method Handles’s Equivalency Detec-
tion

1: MH is short for method handle
2: TN is Transformation Name.
3: a: method handle candidate to be added
4: b: The 1st method handle in a equivSet of list

equivMap.get(a.TN).
5: procedure Detection(a, b)
6: if a.countChild()!=b.countChild() then
7: return false
8: end if
9: if a.isDirect() and b.isDirect() then . Rule 3

10: return a.targetMethod().isEqual(b.targetMethod())
11: end if
12: if a.boxDataCompare(b) is false then . Rule 4
13: return false
14: end if
15: for all HM Field’s name f in a do . Rule 2
16: MH a′ = a.getField(f); MH b′=b.getField(f);
17: if precheck(a′,b′) then
18: continue . a’ and b’ previously compared
19: end if
20: Ta=a’.getTerminalFuns();Tb=b’.getTerminalFuns()
21: if !Ta.equal(Tb) then
22: return false;
23: end if
24: if !Detection(a′, b′) then
25: return false
26: else
27: b’.getEquivSet().add(a’)
28: end if
29: end for
30: b.getEquivSet().add(a)
31: return true
32: end procedure
33: procedure precheck(a′, b′)
34: return b′.getEquivSet().contains(a′)
35: end procedure

Definition 1. Let Gmh denote the method handle graph
that starts from root mh. Two MHGs Gmh = (V , E)
and Gmh′ = (V ′, E′) are equivalent if there exists map-
pings f : V → V ′ and g : E → E′, such that ∀{u, v} ∈
E g({f(u), f(v)}) ∈ E′.

Figure 3: Illustration for method handle equivalency

Therefore, the comparison starts at root method handle,
and the combined equivalence predicate is the and operation
of below four rules.

Rule 1. Both mh and mh’ have the same transformation
name (TN) and type (type).

Rule 2. The child method handles referenced by the
same fieldName in mh and mh’ are also equivalent.

Rule 3. The referenced functions have the same method
type and signature if both are direct method handles.

Rule 4. If present, corresponding boxed data values are
also equivalent.

According to these rules, two method handles in Figure 3,
i.e., 0xC0930830 and 0xC0930328, are equivalent because
they have the same transformation name and equivalent chil-
dren.

The overhead to detect all equivalency recursively is huge
when the size of the MHG becomes large. In order to reduce
this cost, we take advantage of method handle types and the
unique method handles that have already been identified.
In our solution, we use an equivalent method handle set,
equivSet, to keep method handles that have already been
classified as equivalent. All method handles in an equivSet
have the same transformation name and type, and a method
handle will be added to an equivSet if it is equivalent to
either one already in the set. A global equivMap is created
to index the equivSets with the same transformation name,
which has type

1 Map<TransformName, List<EquivSet>>
equivMap;

The main task of equivalency detection is to place a
method handle into the right equivSet. Therefore, the
candidate method handle a is compared to a method
handle b from equivSet, which is the head of the list
equivMap.get(a.TN), and added to the equivSet if compari-
son returns true. Otherwise, a new equivSet with a is created
and appended to the corresponding list in the equivMap.
The detailed comparison between a and b is shown in Al-
gorithm 1. One of the procedures is precheck that checks
whether two child method handles, a′ and b′, are in the
same equivSet. The true return value of precheck indicates
both a′ and b′ are equivalent, and the comparison has al-
ready done previously. Similiarly, the function getTerminal-
Funs() returns all the names of the terminal functions that
the method handle, the caller, can reach, and the compar-
ison of getTerminalFuns’s result aims to avoid unnecessary

Figure 4: Method Handle Mining System (MHMS)
Overview.

recursive comparison. For example, both 0xC0930A98 and
0xC0930790 in Figure 3 have been placed into the same
equivSet, and this information can be directly used for com-
parison with 0xC0930830 and 0xC0930328 so that recursive
access of child method handles can be avoided.

4. METHOD HANDLE MINING SYSTEM
A Method Handle Mining System (MHMS) is built to im-

plement the data mining task for dynamically typed lan-
guage implementation on the JVM. MHMS provides a way
to collect MHG traces at program runtime and then per-
form the data mining task offline. Furthermore, MHMS also
provides some extensions, e.g., MHG visualizer and trace
dumper, for advanced method handle trace analysis if the
developers have their own specific purposes.

The whole MHMS mainly comprises two components, base
component and data mining component, which are shown in
Figure 4. The base component provides all basic function-
ality for trace collection and formatting at program run-
time, and builds method handle graphs, which will be put
in the MHG pool. In contrast to the base component, the
data mining component fetches MHG from the pool and
conducts data mining tasks, including the aforementioned
transformation pattern mining and instance pattern mining.
Besides these two components, an API layer is also pro-
vided to facilitate tasks in the base component and data
mining component. For example, the chain builder module
in the API layer provides functions that convert an MHG to
transformation chain and instance chains directly, while the
Statistics API formats the data mining results and generates
a report.

4.1 Base Component
The base component consists of three separate modules:

core generator, analyzer, and extension.

Core Generator.
This module consists of a number of configuration files and

Python scripts, and its main purpose is to generate JVM
core files by scheduling dynamic languages on the JVM.
In total, three kinds of configurations are provided here,
benchmark script configurations, including scripts location
and parameters, dynamic typed language interpreters (e.g.,
JRuby interpreter), and JVM options that trigger JVM core
images before JVM exits. With these configurations, the
benchmark scripts can be scheduled on the JVM success-
fully, and the JVM core files that have snapshots of created
method handle graphs are collected.

Analyzer.
This module restores MHGs from the core files. It works

as follows. First, it moves the reader cursor to a region
where all Java objects reside in the cores and then iterates
all objects’ call sites which have been linked. Second, for the
method handle that is linked to the call site in the core, the
analyzer creates a method handle as the root method han-
dler of MHG and initializes it with attributes read from the
core. These attributes include field names, transformation
name (class type), and method type. Third, similar to the
second step, the analyzer visits the method handle structure
in the core and adds a newly created method handle to the
MHG recursively. This procedure continues until all direct
method handles are reached.

Note that the analyzer is built upon two third party li-
braries: IBM Direct Dump Reader (DDR) tool, which pro-
vides a set of Java interfaces for reading J9 structure blob
from the core file (running J9 processing), and IBM Diag-
nostic Tools for Java (DTFJ) [4], which wraps low level DDR
interfaces to load and analyze core file structures. Similar to
HotSpot, J9 here is IBM’s independent JVM implementa-
tion [5]. Our analyzer is also exposed as the DDR command:
dumpmethodhandle.

Extension.
In order to support advanced data mining methods and

further work, the base component also provides a default
API to write MHG data to an external disk. This extension
provides external tool for MHG visualization and future data
mining purposes.

The data persistence is accomplished by graph dumping.
In our implementation, the data is written to disk file in
Graphviz dot format [13]. This dot format data makes any
languages with the Graphviz extension capable of visualizing
MHG directly.

4.2 Data Mining Component
Following the analyzer tool component, the data mining

component fetches the analyzer output, i.e. MHG set, from
MHG pool and applies some pre-defined algorithms to these
graph data. The purpose of these algorithms is to provide
quantitative analysis for both transformation and instance
patterns inside the MHG.

In the data mining component, two kinds of patterns,
i.e., transformation pattern and instance pattern, are imple-
mented in the Transformation Pattern Miner and Instance
Pattern Miner respectively. In the Transformation Pattern
Miner, the input, MHG, is first converted to a transforma-

tion chain set and then a suffix tree is created for mining.
Similarly, an equivalent method handle detector in the In-
stance Pattern Miner is created to compare equivalency of
two method handles.

5. EVALUATION
In this section, we first introduce our evaluation method-

ology including the hardware platform, the evaluated bench-
mark suite, and execution parameters. Then we show the
mining results of transformation patterns and instance pat-
terns, and our findings for these results.

5.1 Evaluation Methodology

Components Configurations

CPU 4 × Intel Xeon E7520 1.8 GHz

Cores/Threads 16/32

DRAM 64 GB DDR3 800 MHz

Table 2: Hardware Platform Configuration

The mining of transformation and instance patterns is im-
plemented in the MHMS. Our experiments are conducted on
an Intel Xeon server; the hardware configuration is shown
in Table 2.

In the experiments, we configured MHMS with JRuby in-
terpreter, a Java implementation of the popular Ruby pro-
gramming language. Correspondingly, the evaluated bench-
mark is the JRuby Micro-Indy benchmark of Computer Lan-
guage Benchmarks Game [3] (CLBG), which is used to com-
pare different interpreters’ performance of the same lan-
guages. The benchmark contains 41 JRuby test cases in
total. The Java Virtual Machine used in our experiments is
the IBM J9 JVM, and the JRuby interpreter (Version 1.7.6
with 1024M max heap size and 10240K size for thread stack)
with the invokedynamic feature enabled.

5.2 Transformation Pattern Data Mining
As discussed previously, the transformation pattern data

mining can find frequent transformation chains. Meanwhile,
the Statistics module in the MHMS summarizes the mining
results.

In order to quantify the mining results, a metric, called
Relative Frequency (RF), is used to indicate the relative fre-
quency of a transformation chain. This metric is defined
as

RFi =
ni∑
j nj

, (1)

where ni is the frequency of i-th transformation chain found
in all MHGs. According to this definition, the higher the
RF value is, the more frequently this transformation chain
occurs.

Finding 1. The frequency of the different transforma-
tion patterns varies significantly, and a small number of
transformation patterns occur much more frequently than the
others.

There are, in total, 412 transformation chains identified
by the MHMS and their lengths range from 2 to 10. The 11
most frequent transformation chains are shown in Table 3,
in which BruteArgumentMoverHandle denotes a special kind

RF Pattern

10.67% GuardWithTestHandle → GuardWithTestHandle

7.695% GuardWithTestHandle → BruteArgumentMoverHandle

5.957% GuardWithTestHandle → GuardWithTestHandle

→ BruteArgumentMoverHandle

3.754% BruteArgumentMoverHandle → Insert1Handle

3.274% GuardWithTestHandle → BruteArgumentMoverHandle

→ Insert1Handle

2.853% GuardWithTestHandle → GuardWithTestHandle→
BruteArgumentMoverHandle → Insert1Handle

2.462% BruteArgumentMoverHandle → DirectHandle

1.988% BruteArgumentMoverHandle → PermuteHandle

1.949% GuardWithTestHandle → GuardWithTestHandle →
FoldNonvoidHandle

1.498% GuardWithTestHandle → BruteArgumentMoverHandle

→ DirectHandle

1.30% BruteArgumentMoverHandle → Insert1Handle →
AsTypehandle

Table 3: Transformation Pattern Statistics

of method handle that can hold additional values to pass to
the next method handle. According to this table, the fre-
quency of the different transformation chains varies signifi-
cantly, and a small number of transformation patterns occur
far more frequently than others. In the result, the chain with
the largest RF accounts for 10.67% of all identified chains,
while the 11th most frequent chain only accounts for 1.3%
of all identified chains. The short transformation chains are
likely to have larger RF values while the longer chains are
opposite. For example, the lengths of the top three chains
with largest RF values are either 2 or 3.

Moreover, we only select length-two transformation chains
from the mining results and re-calculate their RFs. Our
results show that the accumulated RF of the top 5 trans-
formation chains, which are the 1st, 2nd, 4th, 7th, and 8th

transformation chains in Table 3, is 68.28% while that of
the remaining 214 length-two transformation chains is only
31.72%. This data supports that a small number of chains
occurs far more frequently than others.

Finding 2. The JRuby interpreter has preferences for
some specified transformation patterns.

We can also easily observe that some kinds of method
handles, e.g., GuardWithTestHandle and BruteArgument-
MoverHandle, appear very frequently in these transforma-
tion chains. This is determined by the implementation of
the language interpreter. In other words, the dynamic JVM
language implementations have preferences for some speci-
fied transformations. In our example, JRuby interpreter is
likely to have a number of if-else method invocation trans-
formations (GuardWithTestHandle) and argument permu-
tation transformations (BruteArgumentMoverHandle).

Both Finding 1 and Finding 2 suggest optimization op-
portunities for both language implementations and JVMs.
On the one side, both mining results (especially if general-
ized to the appropriate dynamic language) make language
implementations aware of overall transformation chains dur-
ing method invocation, and drive them to use it efficiently.
On the other side, these results also reduce the number of

Figure 5: Percentage of saved memory theoretically

optimization candidates sharply, and make it feasible for a
JVM to intensively optimize these small numbers of transfor-
mation chains and method handles within at an affordable
cost. That is, a JVM can only concentrate on optimizing
the most frequent transformation chains, e.g., GuardWith-
TestHandle→GuardWithTestHandle, and compiling them
into native code by Just-In-Time compilers. The unnec-
essary costs for optimizing infrequent chains are avoided,
leading to negligible overhead on the execution time of pro-
grams.

5.3 Instance Pattern Data Mining
In order to quantify our instance pattern data mining re-

sults, two metrics, SMR and IMHE, are used. The SMR
stands for Saved Memory Ratio, which is the ratio of the
number of method handles can theoretically be eliminated
to the total number of the method handles created during
program runtime. With the assumption that all method
handles in an equivSet can be represented by one of method
handles in the equivSet, a higher SMR value indicates that
more method handles can be eliminated, thus increasing ef-
ficiency. More specifically, SMR can be formally defined as

SMR(j) =
Nj − Sj

Tj
, (2)

where j is a benchmark test name, Nj is the number of
equivalent method handles4 of j, Sj is the number of equiva-
lent sets equivSets, and Tj is total number of method handles
for the benchmark.

IMHE, Inverse of Method Handles per Equivalent Set,
represents a distribution of equivalent method handles per
equivalent set. The smaller this value is, the more equivalent
method handles there are per equivalent set. IMHE can be
formally defined as

IMHE(j) =
Sj

Nj
. (3)

Finding 3. A large number of equivalencies exist among

4An equivalent method handle is the one that is in a equiv-
alent set equivSet, and there must be more than one other
method handle, which is equivalent to it.

(a) app tarai (b) fractal

(c) mbari bogus1 (d) printff

(e) pi (f) socket transfer 1mb

Figure 6: Equivalent MethodHandle Set Chain Length Distribution

method handles, and a method handle has 7.4 equivalent
method handles on average.

The distributions of both SMR and IMHE are shown in
Figure 5. We can see that SMR of different test cases from
JRuby CLBG are relatively stable, ranging from 25% to
32%, and the average SMR for all cases is 28.83%. This
result is very encouraging as it demonstrates that there ex-
ists a large percentage of equivalent method handles, and
there is a potential to eliminate equivalent method handles
for the JRuby interpreter. In contrast to the SMR, IMHE
varies among different test cases (ranging from 5% to 23%),
and the average IMHE is 13.46% (A method handle has 7.4
equivalent method handles on average). Since an equivalent
set equivSet is only associated with an unique transforma-
tion name (method handles of one equivalent set have the
same transformation name and type), it can be explained
that method handle preferences for different cases are not
the same. For example, the most frequently used transfor-
mation for eval case is Insert1Handle, while it is BruteAr-
gumentMoverHandle for case pi.

Finding 4. Similar to Finding 1, short instance chains
are likely to have more equivalent method handles, and the
distribution of equivalent set’s size is also uneven even when
the chains in these sets have the same length.

Figure 6 shows the equivSet ’s size, versus the length of
chains in the equivSet for six randomly selected CLBG test
cases, where equivSet is used as equivalent method handle
chain set. In these figures, the x axis is the length of the
method handle chain, which is calculated as a floor function
on x axis’s value, and the y axis is the size of equivalent
chain set (equivSet ’s size), which is the number of method
handle chains in the set. For example, the six bars in Fig-
ure 6a when x axis’s value is from 4 to 5 represent six unique
four-length equivalent chain sets. A short method handle in-
stance chain would not be counted if it is a sub chain of other
longer chains.

According to Figure 6, the short chains are likely to have
more equivalent chains. As shown in these figures, bars on
the left are crowded and tall while they become sparse on
the right of the figures. Besides, the equivalent chain sets’s
size distribution is uneven even when the chains’ lengths are
fixed. Take length-three equivalent sets in the Figure 6d for
example: three sets’ sizes exceed 100 while the remaining
are less than 45 (The majority of equivSets’ size is less than
25).

Furthermore, the distribution of length-two equivSets for
41 benchmark test cases is shown in Figure 7. In the figure,
the x axis is the index of the equivalent chain set, and y
axis is corresponding equivalent set’s size. According to the
figure, the distribution is uneven, as 93% of set’s size is less
than 30. This result, as well as the result in Figure 6, implies
that the optimization of the complementary 7% would be the
most economical.

All of these conclusions are valuable for dynamically typed
language implementers and JVM optimizations, especially
if generalized to other dynamic languages. For the former,
they can leverage these results by implementing efficient con-
structions of the method handle chain, while many kinds of
method handle optimizations, e.g., method handle dedupli-
cation and method handle compilation, can be applied in
the future. Another direct implication is that both can only

Figure 7: Global length-two EquivSet’s Size Summary

concentrate on the optimization of these small numbers of
instance chains to maximize the performance benefits while
the cost is minimized.

6. RELATED WORK

6.1 Method Handle
Some industrial and academical work has been done to

optimize dynamic invocation instruction and method han-
dle efficiency. Rose [19] from Sun Microsystems (now Or-
acle) outlines all aspects of JSR 292 and presents a case
study of how inline cache works with the invokedynamic, as
well as other potential optimization directions. Based on
Rose’s work, Thalinger et al. [23] describe the instruction
implementation tactics (and related optimizations) on the
Hotspot JVM, which use internally-generated bytecodes as
an intermediate language to freeze dynamic call sites and de-
sign an “adapter” calling sequence to match caller and callee
of different method type signatures. Roussel et al. [20] de-
scribe their implementation of the JSR 292 in Dalvik, a vir-
tual machine for Android OS. In their work, they explained
detailed design idea of the instruction, as well as the method
handle combination, on the Dalvik for resource constrained
devices.

Some other work has also been done to illustrate the us-
age of invokedynamic. One of the most famous examples is
JRuby, a Ruby language implementation on the JVM. Bod-
den [15] extends their existing Soot framework to support
invokedynamic instruction for static analysis and transfor-
mation of Java programs. Similarly, Ponge et al. [18] intro-
duce a dynamic programming language for the Java Virtual
Machine (JVM) using the invokedynamic instruction and
new APIs.

6.2 Program Behavior
Researchers have been interested in the characteristics of

dynamically typed languages in the last ten years. In con-
trast to statically typed languages, their endeavor mainly
focuses on either type behavior of dynamically typed lan-
guages or pattern distinction between dynamically typed
languages and statically typed languages. For example, Li

et al. [17] examine four non-Java JVM languages, including
Clojure and Scala, and use exploratory data analysis tech-
niques to investigate differences in their dynamic behavior
when they are compared to Java. Their results are based
on a number of measurements, which are collected by ex-
ecuting the CLBG project and real-world applications on
the JVM. Similarly, Sarimbekov et al. [21] apply their own
toolchain [22] for workload characterization of dynamically
typed languages on the JVM. However, both Li et al.’s and
Sarimbekov et al.’s work is too general to be applied to the
method handle patterns.

Little work has been done for research method handle pat-
terns for invokedynamic instruction. So far as we know, our
work is the first effort to mine patterns of MHG for dynam-
ically typed languages on the JVM.

7. DISCUSSION AND EXTENSIONS
Our current method handle data mining is a mixture of

online and offline analysis, which aims to reduce perfor-
mance degradation caused by the mining process. The work
can be extended in at least two areas.

Online method handle data mining.
As the benchmark (Computer Language Benchmark

Game) is written intentionally to collect performance mea-
surements, it is different from real applications. Because we
have already reached the conclusion that there is much room
for method handle optimization, our next step is to apply
these data mining methods to a real application at program
runtime. Meanwhile, the cost to do this task should be care-
fully checked.

JVM optimization.
In collaboration with the IBM J9 development team, we

will implement some optimizations to take advantage of ex-
isting data mining results. Two of our next plans are online
method handle elimination, which aims to remove equivalent
method handles during program runtime, and dynamic code
(bytecode or native code) generation, which compiles the
hot transformation chains into a single method (or method
handle) at runtime to remove the amount of late binding.

8. CONCLUSION
This paper introduces an MHG mining methodology for

dynamically typed language implementation on the JVM.
The resultant Method Handle Mining System (MHMS) is
capable of collecting and mining useful method handle pat-
terns, transformation patterns and instance patterns. Both
patterns have the potential to be utilized to improve the
overall performance of dynamically typed languages on the
JVM. Based on the proposed mining algorithms of such pat-
terns, we further implemented the MHMS. Our experimen-
tal results with the JRuby CLBG benchmark shows that
a) the frequency of different transformation patterns varies
significantly, b) a large proportion of method handle chains,
28.8%, are equivalent, and the most of these duplicates can
be eliminated to reduce consumed memory, and c) distribu-
tion of equivalent length-two chains are not even, and only
7% of these chain sets have more than 30 equivalent chains.
These conclusions imply that it is possible to optimize a
small fraction of these chains to maximize performance ben-
efits.

Despite dependence on the IBM J9 implementation and its
library tools, e.g., DDR and DTFJ, MHMS can be extended
to different JVM platforms, e.g., HotSpot, by replacing the
APIs that read the core files. Also, the idea of data mining
method handle patterns is not only applicable for JRuby,
but also for other dynamic JVM language implementations,
e.g., Javascript and Groovy.

9. ACKNOWLEDGMENTS
This work is supported by the Atlantic Canada Oppor-

tunities Agency (ACOA) through the Atlantic Innovation
Fund (AIF) program. Furthermore, we would also like to
thank the New Brunswick Innovation Fund for contributing
to this project. Finally, we would like to thank the Centre
for Advanced Studies - Atlantic for access to the resources
for conducting our research.

10. REFERENCES
[1] Charles Nutter. A First Taste of InvokeDynamic.

http://blog.headius.com/2008/09/
first-taste-of-invokedynamic.html.

[2] Charles Nutter. Invokedynamic in 45 minutes.
http://www.jfokus.se/jfokus13/preso/jf13
InvokeDynamic.pdf.

[3] Computer Programming Benchmark Game.
http://benchmarksgame.alioth.debian.org/.

[4] IBM Diagnostic Tools for Java. http://www.ibm.com/
developerworks/java/jdk/tools/dtfj.html.

[5] J9 VM. https://www-01.ibm.com/support/
knowledgecenter/SSYKE2\ 7.0.0/com.ibm.java.win.
70.doc/user/java\ jvm.html.

[6] JSR 292: Supporting Dynamically Typed Languages
on the JavaTM Platform.
https://jcp.org/en/jsr/detail?id=292.

[7] JVM instruction set HotSpot. http://docs.oracle.com/
javase/specs/jvms/se7/html/jvms-6.html.

[8] JVM instruction set wiki. http://en.wikipedia.org/
wiki/Java bytecode instruction listings.

[9] Method Handle-An IBM implementation.
http://wiki.jvmlangsummit.com/images/a/ad/J9
MethodHandle Impl.pdf.

[10] MethodHandle Implemention Tips and Tricks.
http://wiki.jvmlangsummit.com/images/6/6b/2011
Heidinga.pdf.

[11] MethodHandles-Java Platform SE7.
http://docs.oracle.com/javase/7/docs/api/java/lang/
invoke/MethodHandles.html#dropArguments\
%28java.lang.invoke.MethodHandle,\%20int,\%
20java.lang.Class...\%29.

[12] New JDK 7 Feature: Support for Dynamically Typed
Languages in the Java Virtual Machine.
http://www.oracle.com/technetwork/articles/java/
dyntypelang-142348.html.

[13] The DOT Language in Graphviz.
http://www.graphviz.org/content/dot-language.

[14] Trail: The Reflection API.
http://docs.oracle.com/javase/tutorial/reflect/.

[15] E. Bodden. Invokedynamic support in soot. In
Proceedings of the ACM SIGPLAN International
Workshop on State of the Art in Java Program

Analysis, SOAP ’12, pages 51–55, New York, NY,
USA, 2012. ACM.

[16] J. Gosling, B. Joy, G. L. Steele, Jr., G. Bracha, and
A. Buckley. The Java Language Specification, Java SE
7 Edition. Addison-Wesley Professional, 1st edition,
2013.

[17] W. H. Li, D. R. White, and J. Singer. Jvm-hosted
languages: They talk the talk, but do they walk the
walk? In Proceedings of the 2013 International
Conference on Principles and Practices of
Programming on the Java Platform: Virtual
Machines, Languages, and Tools, PPPJ ’13, pages
101–112, New York, NY, USA, 2013. ACM.

[18] J. Ponge, F. Le Mouël, and N. Stouls. Golo, a
dynamic, light and efficient language for
post-invokedynamic jvm. In Proceedings of the 2013
International Conference on Principles and Practices
of Programming on the Java Platform: Virtual
Machines, Languages, and Tools, PPPJ ’13, pages
153–158, New York, NY, USA, 2013. ACM.

[19] J. R. Rose. Bytecodes meet combinators:
Invokedynamic on the jvm. In Proceedings of the
Third Workshop on Virtual Machines and
Intermediate Languages, VMIL ’09, pages 2:1–2:11,
New York, NY, USA, 2009. ACM.

[20] G. Roussel, R. Forax, and J. Pilliet. Android 292:
Implementing invokedynamic in android. In
Proceedings of the 12th International Workshop on
Java Technologies for Real-time and Embedded
Systems, JTRES ’14, pages 76:76–76:86, New York,
NY, USA, 2014. ACM.

[21] A. Sarimbekov, A. Podzimek, L. Bulej, Y. Zheng,
N. Ricci, and W. Binder. Characteristics of dynamic
jvm languages. In Proceedings of the 7th ACM
Workshop on Virtual Machines and Intermediate
Languages, VMIL ’13, pages 11–20, New York, NY,
USA, 2013. ACM.

[22] A. Sarimbekov, A. Sewe, S. Kell, Y. Zheng,
W. Binder, L. Bulej, and D. Ansaloni. A
comprehensive toolchain for workload characterization
across jvm languages. In Proceedings of the 11th ACM
SIGPLAN-SIGSOFT Workshop on Program Analysis
for Software Tools and Engineering, PASTE ’13, pages
9–16, New York, NY, USA, 2013. ACM.

[23] C. Thalinger and J. Rose. Optimizing invokedynamic.
In Proceedings of the 8th International Conference on
the Principles and Practice of Programming in Java,
PPPJ ’10, pages 1–9, New York, NY, USA, 2010.
ACM.

