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Figure 1: Left: coloured 3D point cloud obtained by a sequence from KITTI[8]. Centre: voxelized point cloud ready to be
labeled together with the label (i.e. colour) selection tool. Right: labeled scene alongside with the label shooting tool.

Abstract

As availability of a few, large-size, annotated datasets,
like ImageNet, Pascal VOC and COCO, spawned the deep
learning revolution that has disrupted computer vision re-
search so dramatically, we argue that new tools to facilitate
generation of many more may finally popularize data-driven
Al throughout applications and domains. In this work we
propose a new tool based on Virtual Reality (VR) which
makes semantic annotation of 3D data as easy and fun as
a video game. Besides, our framework allows for project-
ing the 3D annotations into 2D images, thereby speeding
up a notoriously slow and expensive task such as pixel-wise
semantic labeling.

1. Introduction

Two major leitmotifs in nowadays computer vision read
like Convolutional Neural Networks have surpassed human
performance in classification tasks” [13] and "The success
of the modern Deep Neural Networks (DNNs) is ascribable
to the availability of large datasets” [5]. As for the latter,
one might just consider the dramatic advances brought in by
large annotated datasets like ImageNet [20] and Pascal VOC
[7] in the fields of image classification and object detection,
as well as by KITTI [8] and Cityscapes [5] in the realm of
dense scene understanding. Indeed, the key issue in modern
computer vision deals more and more with how to speed-up
and facilitate acquisition of large annotated datasets. In-

novative start-ups, like Scale.ai ( https://scale.ai/ ),
Superannotate.ai ( https://superannotate.ai/ ) and
many others, have received hundreds of millions of dollars
in funding to develop advanced image labeling tools. This
suggests data generation qualifying itself as a business as
relevant as the development of data-driven Al techniques.

The annotation processes is notoriously tedious and ex-
pensive. Moreover, the more complex the perception task,
the slower and more costly becomes the annotation work.
If we consider, e.g., 2D Semantic Segmentation [4], among
the most complex annotation tasks together with Instance
Segmentation [12], labeling a single image may take sev-
eral minutes and cost several dollars. Thus, as proposed in
[14, 6, 17, 3], directly annotating a 3D reconstruction of the
scene in order to then be able to project the 3D labels into
2D images may facilitate the data generation process.

Based on these considerations, in this work we pro-
pose a novel tool based on Virtual Reality (VR) to facil-
itate and speed-up dense 3D semantic labeling. This en-
ables to obtain both 3D and 2D data endowed with se-
mantic annotations. To the best of our knowledge, ours
is the first system which allows for handling efficiently
large-scale semantic labeling, such as, e.g. labeling whole
city blocks. Moreover, our approach is inspired by VR
games, which paves the way for full-fledged gamification
of this type of activities. Our open source framework,
based on Unity, Blender, and open3D [23] provides an im-
mersive VR experience within large environments repre-
sented as 3D meshes, wherein the user can “color” sur-
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Figure 2: 3D Labeling of a Kitti sequence. Top: RGB point cloud. Bottom: labeled point cloud obtained using our tool.

faces semantically in a highly engaging way by shoot-
ing labels. Figure | depicts some in-game visualizations.
Project page at https://github.com/pierlui92/
Shooting-Labels.git.

2. Related Works

Semantic Segmentation Datasets Several datasets fea-
turing 2D images annotated with semantic labels are avail-
able. The best known are KITTI [8] and Cityscapes [5],
which, yet, contain a relatively small number of images se-
mantically annotated by hand. They were two of the first
datasets proposed in this area (urban outdoor), so the focus
was more on the data than on how to generate them. On
the other hand, the Mapillary dataset [19] includes much
more images, though the labeling was still performed man-
ually image per image. The same is true for some indoor
datasets, such as [21] and [22], in which, although intelli-
gent graphic tools are used to produce 2D frame-by-frame
annotations, the order of magnitude of the available images
is only slightly higher. Conversely, the authors of [14] pro-
posed an efficient pipeline for indoor environments, which
allows for scanning a room, reconstruct it in 3D and then
label easily the gathered 3D data rather than each single
image. In [6] the authors formally extend the procedure
with the a re-projection module which brings back in 2D
the 3D labels based on known camera poses. The label
re-projection approach was then exploited in other datasets
such as [1] and [3]. It can be observed that, leveraging on
3D reconstruction and camera tracking to facilitate label-
ing, may be thought of as shifting the cost of labeling each
individual image toward the complexity of the requirements
necessary to obtain a suitable dataset (tracked camera). This
benefit is even more evident in similar synthetic datasets,
such as [11, 17, 16], where obviously both camera track-
ing and 3D reconstruction are no longer external elements
but inherent to the rendering engine. Recently [15, 10, 2
proposed large urban outdoor 2D and 3D datasets where la-
beling was carried out on point clouds and then 2D semantic
labeled images were attained by the re-projection.

User Experience As for “how to generate the data”, and
specifically to the case of the real datasets, the user experi-
ence that takes place during labeling, which almost all au-
thors define as 3D Dense Annotation, is rarely addressed in
literature as it basically concerns a 3D modeling experience
or the likes (e.g. think of the interaction needed to “color”
a table inside a 3D model of an entire room). Some authors
have expressly addressed this by proposing valid smart so-
lutions. In [9] the authors have proposed an interactive pro-
cedure by means of which the user can physically touch the
scene within a classical 3D reconstruction pipeline, so as to
“color” large parts of the scene by exploiting region grow-
ing techniques. In [18], instead, the authors build a physical
device able to reproduce the pipeline while the user navi-
gates the environment in Augmented Reality, using a laser
pointer to identify the homogeneous areas of the scene and
assign them a correct label. Our proposed method takes ad-
vantage of the reconstruction pipeline but introduces a Vir-
tual Reality framework to navigate within the reconstructed
environments, providing the user with a series of tools, ori-
ented to gamification, to “color” the world in a fast and in-
tuitive manner. To the best of our knowledge, our is the first
method that allows for labeling very-large-scale scenes in a
short time by a VR approach.

3. Tool

In this section we will briefly describe the most im-
portant features of our VR labeling tool, which can work
with the most popular 3D representations, such as point
cloud and meshes, obtained by any kind of 3D reconstruc-
tion technique. Moreover, with our tool we can also load
a 3D labeling already obtained by any technique (e.g. a
CNN for 3D semantic segmentation) in order to refine it.
Our pipeline can be summarized in 3 main steps: 1) Pre-
Processing of 3D Data; 2) Virtual Reality Labeling; 3) Post-
Processing of 3D Labeled Data.

Pre-Processing of 3D Data When dealing with point
clouds we need to obtain a suitable visualization in terms of
both efficiency and user experience. The tool proposes two
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Figure 3: Qualitative results on a scene of Matterport 3D
dataset [3]. Left: our labeling; Right: Matterport labels.

different visualization experience depending on the kind of
3D data at hand. If we deal with meshes we can directly
visualize and interact with them in the tool, whilst point
clouds need to be converted into a lighter format to enable
efficient and responsive interaction with the game rendering
engine. Thus, we voxelize an input point cloud and dur-
ing labeling the player will navigate in a voxelized world.
Moreover, when dealing with large scale scenarios we need
to optimize the run time rendering. We employ a Level-Of-
Detail strategy where objects closer to the player are loaded
at a higher resolution than those farther away. We split our
3D data into several chunks and we save several versions
at different resolution. Depending on the distance between
the player and the object we load the version at the most
suitable resolution.

Virtual Reality Labeling In this step the user can ex-
plore the reconstruction immersively through Virtual Re-
ality. The player can teleport or physically move around
the scene to reach each portion of the scene. Several fea-
tures are implemented to ease the user experience provided
by the tool. The user can pick the label directly from a
color palette and choose between different label shooting
weapons which feature different action ranges, thereby en-
abling either a more precise or faster labeling. Two differ-
ent visualization are implemented: play and visualization
mode. In play mode (Figure 1 middle and right images) the
user can shoot labels and visualize the progress by seeing
only those surfaces not yet labeled (i.e. not colored). On
the other hand, in visualization mode (Figure 1 left image)
the tool visualizes the RGB version of the 3D data (if avail-
able) so as to provide the user with a better understanding
of the semantics of the scene and thus facilitate the process.

Post-Processing of 3D Labeled Data The labeled scene
can be exported as either a 3D mesh or a point cloud, de-
pending on the input type. We also employ the Blender ren-
der engine to project the 3D labels into 2D images. Thus,
if camera parameters are available, we can easily obtain la-
beled 2D images by positioning the camera in Blender, set-
ting the parameters and rendering it. As we are interested
in rendering only the labels even a computer graphic render
engine is perfect for this purpose. In those 3D points where
we do not have any information we assume a void label.

Figure 4: 2D Semantic labels of the Kitti dataset [8] ob-
tained through re-projection technique. On the left the RGB
image, on the right the semantic labels.

4. Experiments

To evaluate the efficiency and performance of our tool
we tested it with both indoor and large outdoor scenarios.

Indoor Labeling We labeled a few scenes from Matter-
port 3D [3] and we qualitatively compared our results with
their labeling. In Figure 3 we show on the left the labeling
obtained by our tool and on the right that provided by Mat-
terport 3D. We could obtain almost the same 3D labeling in
only a few minutes while walking immersively within the
reconstructed room.

Large Scale Outdoor Labeling We evaluated the effec-
tiveness of our tool in a challenging outdoor scenario: the
Kitti Odometry dataset [8]. We used the provided 3D Lidar
data of the static sequence ! consisting of more than 1000
images equipped with ground truth camera poses. We re-
constructed the point cloud, then voxelized and labeled it
by our tool. Thus, we obtained both point cloud and 2D
images exploiting the re-projection technique. In Figure 2
we can see the 3D reconstructed sequence in both RGB
and Labeled version. In Figure 4 we can see some qual-
itative examples of 2D semantic images obtained through
re-projection. We were able to label the whole sequence in
approximately 8 hours, a very shorter time with respect to
other non-VR tool such as [2] which needed about 51 hours
for each sequence.

5. Conclusions and Future Works

We have proposed the first 3D semantic labeling tool
based on Virtual Reality (VR). Our tool exploits VR along-
side with gamification to ameliorate and expedite semantic
labeling of large scale scenarios. The tool works with the
most popular 3D data structures, such as meshes and point
clouds. We will release both the 3D and corresponding 2D
semantic labels for a whole outdoor sequence from the Kitti
dataset which accounts for more than 1000 images. We
hope that our contribution will help in vastly simplifying
and accelerating the tedious and time-consuming data an-
notation process required by state-of-the-art deep learning
architectures for computer vision.

Igitei Sequence 2011_09_30_drive_0020_sync



References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

(1]

(12]

Iro Armeni, Sasha Sax, Amir R Zamir, and Silvio Savarese.
Joint 2d-3d-semantic data for indoor scene understanding.
arXiv preprint arXiv:1702.01105, 2017. 2

Jens Behley, Martin Garbade, Andres Milioto, Jan Quenzel,
Sven Behnke, Cyrill Stachniss, and Juergen Gall. A dataset
for semantic segmentation of point cloud sequences. arXiv
preprint arXiv:1904.01416, 2019. 2, 3

Angel Chang, Angela Dai, Thomas Funkhouser, Maciej Hal-
ber, Matthias Niessner, Manolis Savva, Shuran Song, Andy
Zeng, and Yinda Zhang. Matterport3d: Learning from rgb-
d data in indoor environments. International Conference on
3D Vision (3DV),2017. 1,2, 3

Liang-Chieh Chen, George Papandreou, lasonas Kokkinos,
Kevin Murphy, and Alan L Yuille. Deeplab: Semantic image
segmentation with deep convolutional nets, atrous convolu-
tion, and fully connected crfs. IEEE transactions on pattern
analysis and machine intelligence, 40(4):834-848, 2018. 1
Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo
Rehfeld, Markus Enzweiler, Rodrigo Benenson, Uwe
Franke, Stefan Roth, and Bernt Schiele. The cityscapes
dataset for semantic urban scene understanding. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 3213-3223, 2016. 1,2

Angela Dai, Angel X Chang, Manolis Savva, Maciej Hal-
ber, Thomas Funkhouser, and Matthias NieBner. Scannet:
Richly-annotated 3d reconstructions of indoor scenes. In
Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 5828-5839, 2017. 1,2
Mark Everingham, SM Ali Eslami, Luc Van Gool, Christo-
pher KI Williams, John Winn, and Andrew Zisserman. The
pascal visual object classes challenge: A retrospective. Inter-
national journal of computer vision, 111(1):98-136, 2015. 1
Andreas Geiger, Philip Lenz, Christoph Stiller, and Raquel
Urtasun. Vision meets robotics: The kitti dataset. The Inter-
national Journal of Robotics Research, 32(11):1231-1237,
2013. 1,2,3

Stuart Golodetz, Michael Sapienza, Julien PC Valentin, Vib-
hav Vineet, Ming-Ming Cheng, Victor A Prisacariu, Olaf
Kahler, Carl Yuheng Ren, Anurag Arnab, Stephen L Hicks,
et al. Semanticpaint: interactive segmentation and learning
of 3d worlds. In ACM SIGGRAPH 2015 Emerging Technolo-
gies, page 22. ACM, 2015. 2

Timo Hackel, N. Savinov, L. Ladicky, Jan D. Wegner, K.
Schindler, and M. Pollefeys. SEMANTIC3D.NET: A new
large-scale point cloud classification benchmark. In ISPRS
Annals of the Photogrammetry, Remote Sensing and Spatial
Information Sciences, volume IV-1-W1, pages 91-98, 2017.
2

Ankur Handa, Viorica Patraucean, Vijay Badrinarayanan, Si-
mon Stent, and Roberto Cipolla. Understanding real world
indoor scenes with synthetic data. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recog-
nition, pages 4077-4085, 2016. 2

Kaiming He, Georgia Gkioxari, Piotr Dolldr, and Ross Gir-
shick. Mask r-cnn. In Proceedings of the IEEE international
conference on computer vision, pages 2961-2969, 2017. 1

[13]

(14]

[15]

[16]

(17]

(18]

(19]

(20]

(21]

(22]

(23]

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Delving deep into rectifiers: Surpassing human-level perfor-
mance on imagenet classification. In Proceedings of the
IEEFE international conference on computer vision, pages
1026-1034, 2015. 1

Binh-Son Hua, Quang-Hieu Pham, Duc Thanh Nguyen,
Minh-Khoi Tran, Lap-Fai Yu, and Sai-Kit Yeung. Scenenn:
A scene meshes dataset with annotations. In 2016 Fourth In-
ternational Conference on 3D Vision (3DV), pages 92-101.
IEEE, 2016. 1, 2

Xinyu Huang, Xinjing Cheng, Qichuan Geng, Binbin Cao,
Dingfu Zhou, Peng Wang, Yuanqging Lin, and Ruigang Yang.
The apolloscape dataset for autonomous driving. In The
IEEE Conference on Computer Vision and Pattern Recog-
nition (CVPR) Workshops, June 2018. 2

Wenbin Li, Sajad Saeedi, John McCormac, Ronald Clark,
Dimos Tzoumanikas, Qing Ye, Yuzhong Huang, Rui Tang,
and Stefan Leutenegger. Interiornet: Mega-scale multi-
sensor photo-realistic indoor scenes dataset. In British Ma-
chine Vision Conference (BMVC), 2018. 2

John McCormac, Ankur Handa, Stefan Leutenegger, and
Andrew J Davison. Scenenet rgb-d: Can 5m synthetic im-
ages beat generic imagenet pre-training on indoor segmenta-
tion? In Proceedings of the IEEE International Conference
on Computer Vision, pages 2678-2687,2017. 1,2

Ondrej Miksik, Vibhav Vineet, Morten Lidegaard, Ram
Prasaath, Matthias NieBner, Stuart Golodetz, Stephen L
Hicks, Patrick Pérez, Shahram Izadi, and Philip HS Torr. The
semantic paintbrush: Interactive 3d mapping and recognition
in large outdoor spaces. In Proceedings of the 33rd Annual
ACM Conference on Human Factors in Computing Systems,
pages 3317-3326. ACM, 2015. 2

Gerhard Neuhold, Tobias Ollmann, Samuel Rota Bulo, and
Peter Kontschieder. The mapillary vistas dataset for semantic
understanding of street scenes. In Proceedings of the IEEE
International Conference on Computer Vision, pages 4990—
4999, 2017. 2

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, San-
jeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy,
Aditya Khosla, Michael Bernstein, et al. Imagenet large
scale visual recognition challenge. International journal of
computer vision, 115(3):211-252, 2015. 1

Nathan Silberman, Derek Hoiem, Pushmeet Kohli, and Rob
Fergus. Indoor segmentation and support inference from
rgbd images. In European Conference on Computer Vision,
pages 746-760. Springer, 2012. 2

Shuran Song, Samuel P Lichtenberg, and Jianxiong Xiao.
Sun rgb-d: A rgb-d scene understanding benchmark suite. In
Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 567-576, 2015. 2

Qian-Yi Zhou, Jaesik Park, and Vladlen Koltun. Open3D: A
modern library for 3D data processing. arXiv:1801.09847,
2018. 1



