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A 3D scene generated by our proposed network. From left to right: (1) the input RGB image, (2) instance segmentation, (3)
a preliminary 3D scene generated by projecting 2D predictions to 3D using existing depth estimation methods, (4) 6-DOF
pose and 3D object retrieval for relevant objects. Note: Training data included SUN2012 [[13]] and Pascal 3D+ [4].

Abstract

Scene understanding is critical in Computer Vision ap-
plications, particularly in settings like Augmented/Virtual
Reality where interactions between the virtual environment
and the physical world are needed. We present a novel end-
to-end learning method for generating semantic-rich 3D
scenes from images. Scene understanding techniques have
often been limited to the 2D space with object detection and
segmentation. While new methods infer the 3D models and
6-DOF object pose from images, they either support very
few object categories or assume object locations are known.
Our solution learns to detect, classify, segment, retrieve 3D
models and poses from an image to generate 3D scenes.
Our proposed network architecture builds on top of MaskR-
CNN to infer 3D information. Our shape retrieval has a
Top-1 accuracy of about 40% on Pascal 3D+, on par with
prior work on single object retrieval and pose estimation.

1. Introduction

Recent advancements in object detection and instance
segmentation help us not only in recognizing objects e.g.
chairs, cups etc., but also understanding the scene in 2D.
Moving this understanding from 2D to 3D requires retriev-
ing 3D models and placing these objects in 3D space with
correct pose and scale. Such 3D scene representation is crit-
ical in areas like Robotics and Augmented/Mixed Reality.

Recent works in shape retrieval, [9, 8|2, [111[12], use con-
volutional neural networks (CNN’s) to retrieve a 3D model
with pose using a learned similarity between RGB image
features and pre-computed features from synthetic render-
ings of 3D models. However, recovering both the 3D model
and pose from a similarity measure can be computationally
expensive when applied at scale since it requires very large
number of shape renderings. Additionally, it limits the esti-
mated pose to three degrees of freedom. [5] address this in
their recent work with a method that first predicts a pose
through 2D projections of 3D bounding box corners and
then use this pose as a prior for 3D model retrieval.

We take an alternative approach and present a scalable
end-to-end solution to (1) detect the objects, (2) predict and
retrieve the 3D model for the detected objects and (3) pre-
dict the 6-DOF pose for detected objects. We achieve this
by building on top of MaskRCNN [6]. We add three ex-
tra output heads to MaskRCNN network to recover 6-DOF
pose and feature vectors for the detected objects. We also
attach a second network that learns the similarity between
the feature vectors and depthmap descriptors (rendered and
pre-computed offline from 3D models) to predict the 3D
model of the detected object. This provides an end-to-end
solution from detection to retrieval with pose. In compari-
son, [S] work assume object detection as a separate problem
and focus on shape retrieval and pose estimation, trained
separately. Similarly, [[12] use pre-computed bounding box
proposals to recover the 3D representation of a scene.
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Figure 1. Our network architecture. (Top) We modify MaskRCNN, the state-of-art in instance segmentation by adding 3 additional output
layers: 3D rotations, 3D translations, and 500-D object descriptors. (Bottom) We attach a second network based on DenseNet [7] classifier,
where the classification output is replaced with a regressor that learns depthmap descriptors. The last layers in both networks have shared
weights such that the network learns common features in images and depthmaps that enhances similarity learning.

2. 3D scene generation

We describe our approach for detecting, segmenting, and
predicting pose of objects detected in an image below.

MaskRCNN is the current state-of-art in instance seg-
mentation, with the ability to predict bounding boxes,
classes and segmentation masks. It relies on the well-
studied Feature Pyramid Network to extract image fea-
tures at multiple scales and use an ROI (Region-Of-Interest)
pooling method to produce object features for individual
region proposals. The original MaskRCNN network gen-
erates 3 outputs from these object features: 2D bounding
boxes, class labels and 2D binary masks per object. We
modified (See Sec. @ for the modifications) the original
network architecture (See Fig[T] for overview) and trained
an open-source implementation of MaskRCNN [[1] on the
diverse SUN 2012 dataset[3]], with 400 classes. 3D models
were retrieved from the PASCAL 3D+ dataset.

2.1. Network architecture

In addition to the three heads in the MaskRCNN network
(2D bounding boxes, categories, segmentation), we add ex-
tra output layers: (1) 3D object rotations (2) 3D translations
and (3) 500-D vectors representing the objects descriptors.

We use the quaternion representation of 3D rotation,
commonly used for pose regression [10]. Each rotation is
represented by a unit quaternion ¢ = w, x,y, z, with the
additional constraint w >= 0. 3D translation is simply rep-
resented by 3 scalars ¢, t,, ¢, representing the X, Y and Z
axes. Thus 6-DOF pose is a 7D vector consisting of both
rotation and translation parameters.

To retrieve the right 3D shape, we compute descriptors
for 3D shapes and 2D objects such that given the descrip-
tor of an object in an image, we can provide the relevant 3D

shape for it. Hence, we add a descriptor head to the MaskR-
CNN network to extract them. We also add a separate net-
work that generates descriptors for synthetically generated
depthmaps of 3D shapes. The aim is to train both networks
such that the distance between object descriptors and shape
descriptors represents the similarity between an object in a
scene and its shape.

2.2. Loss function

To jointly learn 3D object poses and their descriptors, we
use two loss functions to obtain a total loss function

Li — Lpose + Ldtr

Similar to prior work for rotation regression [10]], we use
the mean squared error of unit quaternions for computing
the pose loss (LF°%).

LY = |lgi = ¢f"[l2 + 011t — ][
where (g;, t;) is the predicted quaternion and translation
of an object 7, and (¢7*, t9") is the ground-truth.
For descriptor loss (Lft’”), we use the well-known triplet
loss function which maximizes the distance between nega-
tive pairs while reducing the distance between similar pairs:

LI =||d; — 5% + [|di — 59|l + m
where m is the margin (by default m = 1) and s; the
descriptor of a random object with a shape different from ¢.

2.3. Shape retrieval

Once the above network has been trained with our loss
function, we can generate descriptors for arbitrarily gener-
ated depthmaps and save them offline for fast retrieval with



Table 1. View Estimation using ground-truth detections on Pascal 3D+ Val.

Category Agnostic aero bike boat bottle bus car chair table mbike sofa train tv  mean
MedErr ([3]]) 109 122 234 93 34 52 159 162 122 11.6 63 112 115
MedErr (Ours) 5277 740 628 11.6 222 548 430 21.1 479 378 199 233 336
Accr 6 (15 0.80 0.82 0.57 090 097 094 072 067 09 080 0.82 0.85 0.81
Accy /6 (Ours) 031 0.19 028 086 069 040 036 0.71 034 037 064 061 047
Table 2. Retrieval results: Top-1 retrieval accuracy using ground-truth detections and poses on Pascal 3D Val.
Method aero bike boat bottle bus car chair table mbike sofa train tv = mean
Top-1-Acc ([3]) 0.53 038 051 037 079 044 032 043 048 033 066 0.72 0497
Top-1-Acc (Ours) 0.46 054 053 020 044 031 028 062 055 051 043 040 0.397

object descriptor queries at runtime. Similarly to [5]], we use
pose prior to improve retrieval accuracy. When given an ob-
ject descriptor and its predicted query, we restrict retrieval
to only those depthmaps with a similar pose, and return the
shape whose depthmap descriptor is closest to the query.
The above provides a framework for jointly estimating
the 6-DOF pose and relevant models for objects in a scene.

3. Results

Here, we present pose estimation and shape retrieval re-
sults on the Pascal3D dataset, a popular dataset for pose es-
timation. It was used for shape retrieval by [3] for the first
time and thus we compare our work mainly against them
with quantitative results on the validation dataset.

Our results in comparison with [5] on pose estimation
and shape retrival are shown in Table[T|and Table 2] respec-
tively. In line with previous pose estimation evaluation on
this dataset, we only compute metrics for non-occluded and
non-truncated objects. The median viewpoint estimation
error (MedErr), computed from the angle difference be-
tween predicted and the ground-truth pose, increases from
11.5 to 33.6, and the Top-1 retrieval accuracy Top—1— Acc
decreases from 50% to 40%. There is a net decrease in per-
formance when using our end-to-end solution as our neural
network has a lot more tasks to learn when compared to
learning only pose or shape retrieval.

It is interesting to see that when occluded and truncated
objects are also taken into account, MedErr is 30% and
Top—1— Accis 34.7%, indicating that our network is able
to use cues from surrounding objects to perform pose and
retrieval. Note that all previous work including [5]] do not
present performance data for occluded/truncated objects.

Moreover, unlike prior work, our network performs in-
stance segmentation on top of pose estimation and retrieval.
This is the first time this has been done to our knowledge.

There have been other work in 3D scene generation from
images such as IM2CAD [9]]. However IM2CAD is limited

to indoor scenes and 8 object categories, with no instance
segmentation. For objects with no available 3D shapes we
provide cuboids as shapes.
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Figure 2. Examples of our 3D scene generation. Top to bottom: (1)
input image, (2) instance segmentation, (3) 3D scene generated.

4. Conclusions and Future Work

3D scene generation from RGB images is a critical and
challenging task and applicable in a wide variety of vision
applications. We address this problem and present our on-
going work on the first end-to-end learning method for gen-
erating semantic rich 3D scenes from RGB images. Our
solution builds on MaskRCNN to not only detect and clas-
sify objects but also retrieves a 3D model with 3-DOF pose.
Our approach is scalable and matches the state-of-the-art for
shape retrieval, detecting up to 400 different objects. We are
further investigating the use of keypoints to improve pose.
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