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Abstract

In this paper, we explore the viewport prediction problem
for 360-degree video streaming by utilizing a viewer’s recent
head movement trajectory, cross-viewer heatmap, and video
saliency detection. We propose a deep neural network (DNN)
model using long short-term memory network (LSTM) as
its backbone. This model fuses multi-modality features and
makes a joint prediction for a user’s future viewing direction.
We evaluate the proposed approach on a dataset recording
the viewing sessions of more than 100 users and show that it
outperforms several baseline schemes.

1. Introduction

As a primary Virtual Reality (VR) application, 360° video
streaming has become increasingly popular in recent years.
For example, in 2017 Facebook 360 witnessed 300 million
more 360° video viewers, and nearly 1 million newly up-
loaded 360° videos'; YouTube, another major video stream-
ing platform, can easily filter over 1 million videos with “360”
in the title and 360° as video type. This growing popularity
is caused by not only the availability of low-price panoramic
cameras, but also the immersive viewing experience where
viewers can changing their viewing directions freely.

However, it is well known that a 360° video is gener-
ally 5-6 times larger than a conventional video under the
same visual quality due to its coverage of a larger panoramic
scene [4]. Therefore, it requires a high network bandwidth
to stream such a video. This issue is getting severer as more
demands for higher resolution videos, e.g., 8K, or even 16K.
Motivated by this challenge, this study targets on accurate
viewport prediction (VP) for 360° video streaming. Prior
studies already showed that there is a waste for streaming
invisible area in 360° videos. Hence, a high-level idea of
viewport guided streaming is proposed, which prefetches
only the visible area (called viewport) instead of the entire
panoramic scene [5].
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(a) Example 360° frame.

(b) 360° video playback

Figure 1: 360° video frame and playback.

Usually, a 360° video is created using an omnidirectional
camera or a set of cameras. Then, by using projection, such
as Equirectangular projection, the spherical coordinates (lon-
gitude and latitude) are forward transformed to planar coor-
dinates in a 2D space, as exemplified in Figure 1a. CubeMap
is another commonly used projection method. During play-
back, as shown in Figure 1b, a player reversely projects each
frame from the plane back onto a 3D virtual sphere, and
a viewer, such as a user wearing a VR headset, is situated
in the center of this virtual sphere. The viewer can freely
change her viewing direction, which, together with the de-
vice’s Field of View (FoV), determine the viewport being
rendered on the display.

A device’s FoV is usually fixed. Therefore the viewport
is mainly determined by a user’s viewing direction. Since
accurate eye tracking and gaze detection is still not mature, in
this study we predict future viewing directions by using head
movement traces collected from the device’s motion sensors.
The direction is measured by longitude and latitude of the
virtual sphere centered at the viewer. Our assumption is that
a viewer’s future viewing direction may be predictable given
her recent head movement trajectory, provided video content,
and other viewers’ viewport trajectories when watching the
same 360° video.

In the rest of the paper, we first introduce the dataset in
Section 2. We then detail our VP models and features in
Section 3, and present evaluation results in Section 4. In
Section 5, we conclude this study.



2. Dataset

In this paper, we use a 360° video dataset created from a
user study, which involves 130 participants watching ten pop-
ular 360° videos from YouTube by wearing head-mounted
display (HMD), a Samsung Gear VR headset [5]. The videos
span a wide range of genres including documentary, scenery,
movie, performance, diving, driving, skydiving, efc. They
are all encoded in the standard H.264 format with a 4K reso-
lution, and use the Equirectangular projection. The bitrate
of these 360° videos ranges from 12 to 22 Mbps. The videos
are limited to be a few minutes to make the data-collection
session with a reasonable duration. The participants are di-
verse in terms of age, gender, and experience of watching
360° videos. In total, the dataset contains 1,300 (130x10)
viewing sessions from the subjects and the total duration
of the collected trace is 4,420 minutes. Compared to other
360° video datasets, it is the most comprehensive and diverse
dataset with the longest viewing time.

Preprocessing. The raw data is collected at 200Hz fre-
quency from the built-in gyroscope sensor using the aircraft
coordinate system, which rotates in three dimensions: pitch,
yaw and roll. Since viewports mainly change in the vertical
and horizontal directions [2], we convert the raw data into
the spherical coordinates (i.e. latitude and longitude) 2. We
also lower the sampling rate to 30Hz, in order to map the
collected data with video frames, which are displayed at the
same rate. Note that the horizontal movement can rotate in
circles for both left and right directions. For example, when
the reported consequent longitude values suddenly change
from -170° to +170°, the user actually only moves 20° hor-
izontally in the left direction instead of 340° in the right
direction. We handle this issue by adding or subtracting
the number of circular rotations (360° for one circulation)
for longitude values. This will result in longitude values
exceeding the [-180°, +180° ] boundaries.

3. Viewport Prediction

In this section, we describe how to extract features from a
viewer’s recent head movement, provided video content, and
other users’ viewports when watching the same 360° video,
and utilize them to make prediction separately and jointly.

3.1. Trajectory Only Approach

Existing studies showed that VR user’s head movement
is indeed predictable by examining trajectories [2, 4]. There-
fore, in this paper, we first follow a typical adaptive paradigm
to predict the viewports in the coming pw (prediction win-
dow) seconds by considering recent hw (history window)
seconds worth of head movement data. Given its time se-
quential nature, we propose a Long Short-term Memory

2In this study we consider only the pitch and yaw, as it is known that
users rarely change the roll (i.e. rotating head along the Z axis) when
watching VR contents [2].

(LSTM) network for the task, which can not only capture
the long-term dependancies in the data but also avoid the
vanishing and exploding gradient problem [1]. Specifically,
we implemente our LSTM model using Tensorflow °. In the
model, we employ 1 layer of LSTM with 64 neurons, with an
additional Subtraction layer to conduct point normalization
after the input layer, and an Add layer to restore the value
back before output. We use ADAM for optimization, and
Mean Absolute Error (MAE) as loss function.

For comparison, we investigate several regression meth-
ods. They consider time as an independable variable t, and
viewing direction y as the dependable variable. The goal is
to learn a regression function y = f(t) from hw, and predict
y in pw. For these methods, we model latitude and longi-
tude separately. Hence, there are two regression functions,
one for each input. Specifically, we train a linear regressor
(LR) and a non-linear regressor - MultiLayer Perceptron
regressor (MLP). For the MLP, we start with a simple archi-
tecture, which contains 1 hidden layer of 3 neurons, and uses
hyperbolic tangent function for activation and L-BFGS for
optimization. In addition, we use a Static baseline, which
takes the last observed viewport in hw for the entire pw.

3.2. Cross-viewer Heatmap

In addition to a viewer’s own recent head movement tra-
jectory, other viewers’ viewing directions for the same video
frame may be suggestive. To justify this assumption, we
random select a video in our dataset, and sample 30 viewers’
trajectories for the same video. We then plot the latitude and
longitude as shown in Figure 3, where the x-axis is the index
of video frame extracted at a rate of 30 frames per second
(FPS) to align with the HMD data at 30Hz. The black solid
line is the median positions cross the sampled viewers, and
the range is the mean position with +1 standard deviation.
From the figure, we can observe a commonality of multiple
viewers’ head movement traces.

Therefore, given a video frame, we first collect the users’
viewing directions (using the original coordinates without
longitude correction). Then we project these coordinates
(latitude € [—90,490], longitude € [—180,+180]) to
pixels of a 180x360 image. For each pixel in the image,
we count how many times it has been watched, and apply
a two-dimensional Gassuian smoothing to the surrounding
pixels. The process results in a heatmap for the video frame,
as exampled in Figure 2.

3.3. Video Frame Saliency

Given the cross-viewer commonalities when watching the
same 360° video, we further assume that it is the content that
drives multiple viewers to look at a common area. Therefore,
we propose to extract the saliency map for each video frame,

3https://www.tensorflow.org
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Figure 2: Heatmap.

Video 1 random 30 viewers latitudes

Figure 4: Temporal Tttykoch Saliency Map.

which shall tell us the region of interest and thus can help us
predict viewing direction for that frame.

For a particular video frame, in order to extract its saliency
map, we apply a classical feature intensive method - Ittykoch,
which first decomposes an image into multiple feature chan-
nels according to intensity, edge, colors and orientations, and
then combines them to identify saliency areas [3]. In addition
to the detection of saliency on a static video frame, we fur-
ther conduct background subtraction to reduce less interested
areas. We apply the well known Gaussian mixture-based
background/foreground segmentation algorithm for this pur-
pose. The high-level idea is to temporally filter changing
pixels between continuous frames [0]. By combining the
two processes, we could extract temporal saliency maps for
video frames as shown in Figure 4.

) Ground truth
History window

Prediction window

Figure 5: Multi-modality Fusion Model.

3.4. Multi-modality Fusion

After having multiple ways to predict a user’s viewing
direction, we design a deep learning model as shown in Fig-
ure 5 to fuse these modalities. It is composed of three LSTM
branches. The trajectory LSTM (green color) takes n coor-
dinates from hw, and predicts m future coordinates in pw,
denoted as trj_y;. The heatmap LSTM (blue color) takes
heatmaps of video frames corresponding to each prediction
step as input, and outputs a second group of m predictions in
pw, denoted as ht_y;. For each heatmap, we let it go through
3 convolutional layers with a max pooling layer following
each. Then, after this image feature extraction, we apply a
flatten step and 1 dense layer to regress a coordinate (lati-
tude and longitude). The utilization of LSTM captures the
status changes over prediction steps. A similar architecture
is also applied to take the saliency maps aligned with the
prediction steps, with its outputs denoted as sal_y;. Finally,
we concatenate trj_y, ht_y, and sal_y at each prediction step,
and yield one final output y.

When training such a model, we choose MAE as the
loss function and ADAM as optimization. We examine the
losses for not only the final outputs, but also each branch so
that their parameters could be better tuned individually and
jointly. For both heatmap and saliency-map LSTM branches,
we apply TimeDistributed layers so that their parameters
are consistent over prediction steps. There are other hyper-
parameters we choose for the model architecture and training,
which we give more details in Section 4.

4. Evaluation

In order to evaluate the performance of our proposed
models, we conduct a 2-fold cross validation on the dataset.
There are two experiment setup decisions we need to make:
(1) The size of pw. We highlight 3 options: 0.1s,1.0s and
2.0s, with each we vary hw from 0.05, 0.6s, and 1.0s. (2)
The number of viewers for training. Despite we split the
data into 2 folds, we investigate the impact of the number
of training viewers. We select the number of training view-
ers from [3, 10, 30]. We generate heatmap by checking the
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Figure 6: AE CDF comparisons for pw sizes: 0.1s, 1.0s, and 2.0s
evaluated on 8 videos.

trajectories from the training viewers for the same video.

Prediction Results. We check Absolute Error (AE) for
each prediction of viewing direction compared with the
ground truth, the same as computing the MAE loss in model
training. Figure 6 shows the cumulative distributions of the
AEs for the three pw sizes, with each separately reporting
latitude and longitude results. To highlight the differences
between models, we only show CDF above 80%.

We have the following observations from the experiment
results. (1) For all models the prediction accuracy decreases
for longer pw, which indicates long term VP is a more diffi-
cult problem to solve. The models can achieve nearly perfect
predictions for short pw. (2) For all models, predictions of
longitude have around doubled errors than latitude, which
is due to the horizontally doubled size of activity area. (3)
Regression models can provide accurate predictions only
for short pw, and the accuracy decreases faster than other
models when pw increases. (4) LSTM based trajectory mod-
els consistently outperform baseline models for all pw, but
more training viewers does not help improve the accuracy
dramatically. (5) Cross-viewer heatmap and saliency map
can help with long term VP. They can give a reasonable
off-line whole video VP (M2) with consistent performance
(independent of pw and no need of hw trajectory inputs),
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Figure 7: AE CDF comparisons at pw = 2.0s evaluated on 2 videos
(Mega.Coaster and GTR.Drives.First.Ever).
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Figure 8: Cross-viewer trajectory for videos GTR.Drives.First.Ever.

which exceeds some of the trajectory-based models when
pw increases. (6) When joining all three modalities (M3), it
balances inputs from recent trajectory, cross-viewer interests,
and content saliency, which produces optimized predictions
for both short and long pw.

However, we observe that the outperformance of M3
in longitude does not apply to two videos (Mega.Coaster
and GTR.Drives.First.Ever) as their pw = 2.0s AE CDF
shown in Figure 7. After analyzing the data, we notice
these two videos are characterized as driving content with
high motion content at the side of the driving trails. When
watching these videos, the viewports for most of the users
are consistently centered around the driving trails. Thus,
the audiences are unlikely to change their viewing direction,
which results in higher prediction accuracy from trajectory
models even at pw = 2.0s. The content analysis does not
help but may introduce diversions that the audiences may
ignore. Figure 8 shows the 30 viewers’ longitude trajectories
for the GTR.Drives.First.Ever video. We also observe that
these two videos have the lowest mean standard deviation of
heatmaps compared to other videos.

5. Conclusion

In this study, we explored the problem of viewport predic-
tion for 360° videos. We proposed a DNN model based on
LSTM to fuse inputs from a viewer’s recent head movement
trajectory, cross-viewer heatmap, and video saliency detec-
tion, and demonstrated its effectiveness over several base-
lines and singular modality on a large 360° video dataset.
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