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1. Introduction

Estimating the illumination conditions of a scene is a
challenging problem. An image is formed by conflating
the effects of lighting with those of scene geometry, surface
reflectance, and camera properties. Inverting this image
formation process to recover lighting (or any of these other
intrinsic properties) is severely underconstrained. Typical
solutions to this problem rely on inserting an object (a light
probe) with known geometry and/or reflectance properties
in the scene (a shiny sphere [2], or 3D objects of known
geometry [6, 18]). Unfortunately, having to insert a known
object in the scene is limiting and thus not easily amenable
to practical applications.

Previous work has tackled this problem by using addi-
tional information such as depth [!, 12], multiple images
acquired by scanning a scene [7, 13, 20, 21] or user in-
put [10]. However, such information is cumbersome to ac-
quire. Recent work [5] has proposed a learning approach
that bypasses the need for additional information by predict-
ing lighting directly from a single image in an end-to-end
manner. While [5] represents a practical improvement over
previous approaches, we argue that this technique is still not
amenable for use in more interactive scenarios, such as aug-
mented reality (AR). First, it cannot be executed in real-time
since it decodes full environment maps. Second, and perhaps
more importantly, this approach produces a single lighting
estimate for an image (more or less in the center of the im-
age). However, indoor lighting is spatially-varying: light
sources are in close proximity to the scene, thus creating
significantly different lighting conditions across the scene
due to occlusions and non-uniform light distributions.

In this work, we present a method that estimates spatially-
varying lighting—represented as spherical harmonics (SH)—
from a single image in real-time. Our method, based on deep
learning, takes as input a single image and a 2D location in
that image, and outputs the Sth-order SH coefficients for the
lighting at that location. Our approach has three main ad-
vantages. First, spherical harmonics are a low-dimensional
lighting representation (36 values for Sth-degree SH for each
color channel), and can be predicted with a compact decoder
architecture. Indeed, our experiments demonstrate that our
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Figure 1. Indoor lighting is spatially-varying. Methods that estimate
global lighting [5] (left) do not account for local lighting effects
resulting in inconsistent renders when lighting virtual objects. In
contrast, our method (right) produces spatially-varying lighting
from a single RGB image, resulting in much more realistic results.

network can predict Sth-degree SH coefficients in less than
20ms on a mobile GPU (Nvidia GTX970M). Second, the
SH coefficients can directly be used by off-the-shelf shaders
to achieve real-time relighting [14, 16]. Third, and perhaps
more importantly, these local SH estimates directly embed
local light visibility without the need for explicit geometry
estimates. Our method therefore adapts to local occlusions
and reflections without having to conduct an explicit reason-
ing on scene geometry. Note that while using SH constrains
the angular frequency of the lighting we can represent, by
having a different estimate for every scene location, our
method does capture high-frequency spatial variations such
as the shadowing under the desk in Figure 1(b).

To the best of our knowledge, our paper is the first to
propose a practical approach for estimating spatially-varying
lighting from a single indoor RGB image. Our approach en-
ables a complete image-to-render augmented reality pipeline
that automatically adapts to both local and global light-
ing changes at real-time framerates. In order to evaluate
spatially-varying methods quantitatively, a novel, challeng-
ing dataset containing 79 ground truth HDR light probes in
a variety of indoor scenes is made publicly available'.

2. Dataset

In order to learn to estimate local lighting, we need a
large database of images and their corresponding illumina-
tion conditions (light probes) measured at several locations
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in the scene. Relying on panorama datasets such as [5]
unfortunately cannot be done since they do not capture lo-
cal occlusions. While we provide a small dataset of real
photographs for the evaluation of our approach (sec. 4.2),
capturing enough such images to train a neural network
would require a large amount of ressources. We therefore
rely on realistic, synthetic data to train our neural network.
In this section, we describe how we create our local light
probe training data.

2.1. Rendering images

As in [22], we use the SUNCG [17] dataset for training.
We do not use the Reinhard tonemapping algorithm [15]
and instead use a simple gamma [ 1]. We now describe the
corrections applied to the renders to improve their realism.

We render a total of 26,800 images, and use the same
scenes and camera viewpoints as [22]. Care is taken to split
the training/validation dataset according to houses (each
house containing many rooms). Each image is rendered at
640 x 480 resolution using the Metropolis Light Transport
(MLT) algorithm of Mitsuba [9], with 512 samples.

2.2. Rendering local light probes

For each image, we randomly sample 4 locations in the
scene to render the local light probes. The image is split
into 4 quadrants, and a random 2D coordinate is sampled
uniformly in each quadrant (excluding a 5% border around
the edges of the image). To determine the position of the
virtual camera in order to render the light probe (the “probe
camera”), a ray is cast from the scene camera to the image
plane, and the first intersection point with geometry is kept.
From that point, we move the virtual camera 10cm away
from the surface, along the normal, and render the light
probe at this location. Note that the probe camera axes are
aligned with those of the scene camera—only a translation
is applied.

3. Learning to estimate local indoor lighting
3.1. Main architecture for lighting estimation

We now describe our deep network architecture to learn
spatially-varying lighting from an image. We require an
input RGB image of 341 x 256 resolution and a specific
coordinate in the image where the lighting is to be estimated.
The image is provided to a “global” path in the CNN. A local
patch of 150 x 150 resolution, centered on that location, is
extracted and fed to a “local” path.

The global path processes the input image via the three
first blocks of a pretrained DenseNet-121 network to gen-
erate a feature map. A binary coordinate mask, of spatial
resolution 16 x 21, with the elements corresponding to the
local patch set to 1 and O elsewhere, is concatenated as an ad-
ditional channel to the feature map. The local path processes

Global Global Local + Global
SH Degree (w/o mask)  (w mask) Local (w mask)
0 0.698 0.563 0.553 0.520
1 0.451 0.384 0412 0.379
2-5 0.182 0.158 0.165 0.159

Table 1. Ablation study on the network inputs. The mean absolute
error (MAE) of each SH degree on the synthetic test set are reported.

SHDegree  Liw  +Low  TEmme g
+£rs—recons
0 0.520  0.511 0.472 0.449
1 0379  0.341 0.372 0.336
2-5 0.159  0.149 0.166 0.146
Degree 1 angle  0.604 0.582 0.641 0.541

Table 2. Comparing the mean absolute error (MAE) of the lighting
SH degrees for each loss from 10,000 synthetic test probes.

the local patch with a similar structure. Both global and local
encoders share similar structures and use Fire modules [£].

The vectors coming from the global and local paths
respectively are concatenated and processed by a fully-
connected (FC) layer. The Sth-order SH coefficients in RGB
are then predicted by another FC layer of dimensionality
36 x 3. We use an MSE loss on the SH coefficients.

3.2. Learning additional subtasks

It has recently been shown that similar tasks can ben-
efit from joint training [19]. We now describe additional
branches and losses that are added to the network to learn
these related tasks, and in sec. 4.1 we present an ablation
study to evaluate the impact of each of these subtasks.

Learning low-frequency probe depth Since lighting is
affected by local visibility—for example, lighting under a
table is darker because the table occludes overhead light
sources—we ask the network to also predict SH coefficients
for the low-frequency probe depth. To do so, we add another
36-dimensional output to the last FC layers. The loss for this
branch is the MSE on the depth SH coefficients.

Learning patch albedo and shading To help disam-
biguate between reflectance and illumination, we also ask
the network to decompose the local patch into its reflectance
and shading intrinsic components. For this, we add a 3-layer
decoder that takes in a 4 x 4 x 4 vector from the last FC layer
in the main branch, and reconstructs 7 x 7 pixel resolution
(color) albedo and (grayscale) shading images.

Adapting to real data We apply unsupervised domain
adaptation [4] to adapt the model trained on synthetic
SUNCG images to real photographs.

4. Experimental validation

We now present an extensive evaluation of our network
design as well as qualitative and quantitative results on a



All Center Off-center
m global-[5]  0.081 £0.015 0.079 £0.021  0.086 + 0.019
§ local-[5] 0.072 £0.013  0.086 £ 0.027  0.068 + 0.019
&  Ours 0.049 + 0.006 0.049 + 0.019  0.051 + 0.012
gg global-[5]  0.120 £ 0.013  0.124 +0.018  0.120 4 0.031
= local-[5] 0.092 £0.017 0.120 £0.035 0.084 + 0.016
Pé, Ours 0.062 £ 0.005  0.072 £ 0.011  0.055 + 0.009

Table 3. Comparing the relighting error between each method.

new benchmark test set. We evaluate our system’s accuracy
at estimating S5th order SH coefficients. We chose order 5
after experimenting with orders ranging from 3 to 8, and
empirically confirming that order 5 SH lighting gave us a
practical trade-off between rendering time and visual qual-
ity (including shading and shadow softness). In principle,
our network can be easily extended to infer higher order
coefficients.

4.1. Validation on synthetic data

A non-overlapping test set of 9,900 probes from 2,800
synthetic images (sec. 2) rendered from different houses is
used to perform two ablation studies to validate the design
choices in the network architecture (sec. 3.1) and additional
subtasks (sec. 3.2).

First, we evaluate the impact of having both global and
local paths in the network, and report the mean absolute
error (MAE) in SH coefficient estimation in tab. 1. For this
experiment, the baseline (“Global (w/o mask)”) is a network
that receives only the full image, similar to Gardner et al. [5].
Without local information, the network predicts the average
light condition of the scene and fails to predict local changes,
thus resulting in low accuracy. Lower error is obtained by
concatenating the coordinate mask to the global DenseNet
feature map (“Global (w mask)”).

Second, tab. 2 shows that learning subtasks improves the
performance for the light estimation task [19]. Activating the
MSE loss on the low frequency probe depth significantly im-
proves the directional components of the SH coefficients, but
has little impact on the degree 0. Conversely, training with
an albedo/shading decomposition task improves the ambient
light estimation (SH degree 0), but leaves the directional
components mostly unchanged.

4.2. A dataset of real images and local light probes

To validate our approach, we captured a novel dataset of
real indoor scenes and corresponding, spatially-varying light
probes. For each scene, an average of 4 HDR light probes are
subsequently captured by placing a 3-inch diameter chrome
ball [3] at different locations, and shooting the entire scene
with the ball in HDR once more. In all, a total of 20 indoor
scenes and 79 HDR light probes were shot. In the following,
we use the dataset to compare our methods quantitatively,
and through a perceptual study.

4.3. Comparison on real photographs

We use the real dataset from sec. 4.2 to compare our
method against two versions of the approach of Gardner
et al. [5], named global and local. The global version is
their original algorithm, which receives the full image as
input and outputs a single, global lighting estimate. For a
perhaps fairer comparison, we make their approach more
local by giving it as input a crop containing a third of the
image with the probe position as close as possible to the
center. We also show qualitative comparison against Barron
and Malik [1]. While their approach yields spatially-varying
SH lighting, it typically produces conservative estimates that
do not capture the spatial variation in lighting accurately. In
contrast, our method requires only RGB input, runs in real-
time, and yields more realistic lighting estimates. The results
on NYU-v2 are presented in the supplementary material.

Relighting error We compare all methods by rendering a
diffuse bunny model with the ground truth environment map,
with the algorithms outputs, and compute error metrics on
the renders. A comparison against [5] is provided in tab. 3.
To provide more insight, we further split the light probes
in the dataset into two different categories: the center and
off-center probes. The center probes were determined, by
manual inspection, to be those close to the center of the
image, and not affected by the local geometry or close light
sources. Our method outperforms both versions of [5].

User study We further conduct a user study to evaluate
whether the quantitative results obtained in the previous
section are corroborated perceptually. For each of the 3 tech-
niques (ours, global-[5], local-[5]), we show the users pairs
of images: the reference image rendered with the ground
truth light probe, and the result rendered with one of the
lighting estimates. Each user is presented with all of the 20
scenes, and for each scene a random probe and a random
technique is selected. The study was conducted using Ama-
zon Mechanical Turk. Our method achieves a confusion of
35.8% (over a maximum of 50%), compared to 28% and
31% for the local and global versions of [5]. Our method
outperforms both method on the probes affected by local
geometry only. It achieves 34.5% compared to 27.1% and
29.5% on the two versions of [5].

5. Conclusion and Future Work

We present a real-time method, particularly suitable for
AR, to predict local lighting for indoor scenes. As demon-
strated via extensive evaluations on synthetic and real data,
our method significantly outperforms previous work. A
future direction will be to explore different lighting represen-
tations to improve the angular frequency of our predictions
leading to crisper shadows, and ultimately suitable reflection
maps, for a seamless physically-based rendering pipeline
and AR experience.
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