High-Quality AR Lipstick Simulation via Image Filtering Techniques
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Figure 1. Visual results of AR lipstick material simulation.

Abstract

This paper presents a new AR lipstick simulation tech-
nique that produces high-quality visual results. It is de-
signed with a strong emphasis on simplicity and the use of
existing image filtering techniques. Given its unique na-
ture, the proposed technique can be implemented by both
software engineers and visual designers. Our approach is
robust across various skin tones and lighting conditions. It
reaches real-time performance on modern mid- and high-
end smartphones in 720p resolution.

1. Introduction

Recently, multiple AR makeup material simulation tech-
niques have been proposed (including [!], [2], [4] and [5])
balancing visual result quality with performance on chal-
lenging hardware, such as mobile devices.

This paper proposes a new technique that produces high-
quality visual results and is designed with a strong emphasis
on simplicity and the use of existing image filtering tech-
niques. It combines well-known fundamental image filters
into a single pipeline to perform AR material property trans-
fer (such as base color, glossiness/matteness and others)
onto images of people.

Given its unique nature, the proposed technique can be
implemented by both software engineers and visual design-
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Figure 2. High-level AR lipstick material simulation pipeline. See
text for details.

ers by combining high-level blocks provided by popular
image processing libraries and graphics editors. Being a
composite of well-productionized high-level blocks, our ap-
proach has a clear benefit for visual designers since they can
create and iterate on AR lipstick materials with tools they
already have expertise with.

Our approach is robust across various of skin tones and
lighting conditions (as demonstrated in Figure 1). It also
maps well to the GPU programming model, which results in
real-time performance on modern mid- and high-end smart-
phones in 720p resolution.

2. Proposed Solution

A high-level diagram of the proposed pipeline is shown
in Figure 2. The dashed rectangles in this diagram (as well
as in any other diagram in this paper) refer to AR material
parameters, which together form the AR material definition.



Shadows
Highlights

Normalize

Input Frame

Figure 3. Intensity normalization pipeline.

Any image filter parameter, which is neither shown on a
diagram nor mentioned in the text, should be assumed to
have its neutral value.

Similar to previous work, our intuition is based on divid-
ing the light spectrum into multiple ranges, filtering each of
the individual ranges and then merging them before blend-
ing with the original image. After each individual range
is filtered, they are combined together using various blend-
ing modes, as in [7]. Following this basic intuition, we’ve
performed an extensive experimentation process in order to
converge on the pipeline presented in this paper.

We consider three light spectrum ranges: shadows, mid-
tones and highlights. Face detection and landmarking tech-
nology is used to identify high-fidelity facial semantic re-
gions for lips. Those are used to generate AR material maps
by warping canonical static material maps on top of the lip
3D surfaces detected on the input frame. AR material maps
are used during the final blending operations for masking
those areas, which should be augmented by various AR ma-
terial simulation pipeline stages.

All computations are being performed in the linear RGB
color space. There are global opacity values defined for
each blending operation; those provide a easier way to tune
the pipeline for a specific AR material without a need to
modify material map generation process.

2.1. Intensity Normalization

A diagram of the intensity normalization pipeline is
shown in Figure 3. In order to ensure that the transfer of the
AR material base color is robust to variations of skin tone
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Figure 4. Shadows filtering pipeline. See text for details.
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Figure 5. Highlights filtering pipeline.

Inbut Frame Highlights

and lighting conditions, we apply a normalization step. It
is invariant to above variations while maintaining local fea-
tures (e.g. shadows, tiny cracks on lips and color gradients).
Specifically for normalization, we first de-saturate the input
frame and then apply the “shadows/highlights” image filter,
as in [6], with carefully tuned handpicked parameters. As a
result, no matter how dark or bright the input lip color was,
it should approximately reach a unified well-lighted look
after applying our normalization technique.

Although this technique performs good color intensity
normalization, it comes the a cost of changing the color
intensity distribution. This leads to a loss of visual depth
as diminished gradients make the resulting picture look
flat. For this reason, the normalized color intensities are
only used to filter shadows and highlights; in contrast, mid-
tones are based on the original color intensities in order to
preserve “visual volume”. Carefully balancing normalized
shadows/highlights and “’voluminous” mid-tones at the fi-
nal blending stages helps to deliver robust recoloring while
keeping the original color intensity distribution perceptually
unaffected.

2.2. Shadow, Highlight and Mid-Tone Filtering

Diagrams of our shadow, highlight and mid-tone filtering
pipelines are shown on Figures 4, 5 and 6 respectively.

Our main instrument for selecting and re-mapping image
intensity ranges is the levels adjustment image filter, which
is commonly used in graphics editors. It performs a combi-
nation of three basic intensity transformations, as described
in [3]: contrast stretching from the [Binput, Winput| range
to the [0, 1] range (B and W stand for "black” and “white”
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Figure 6. Mid-tones filtering pipeline.



Figure 7. Visual result quality evaluation examples. Note how our
AR material (even rows) faithfully replicates real material proper-
ties (odd rows) across a variety of skin tones and lighting condi-
tions.

respectively); gamma transformation with fixed ¢ = 1 and
variable ~; contrast stretching from the [0, 1] range to the
[Boutputa Woutput]-

As mentioned in the previous section, filtered shadows
are based on normalized color intensities. After applying
our normalization technique, we apply the piecewise-linear
intensity transformation image filter, as in [3], to reproduce
the tritones image filter, which is commonly used in graph-
ics editors. In order to perform preliminary colorization to
the normalized color intensities, we move the gray point
(i.e. linear RGB color space midpoint) from (0.5, 0.5, 0.5)
to some other point defined as an AR material parameter.

For more details on each individual filtering stage, please
refer to the respective diagrams.

3. Results

To evaluate the visual result quality, we performed a
qualitative comparison of the material simulation results
and ground truth data on various skin tones and lighting
conditions (examples are shown on Figure 7). As can be
seen, the approach is able to realistically and robustly aug-
ment images with AR materials.

Additionally, we conducted a user survey with over 80
participants to investigate whether people are able to dis-
tinguish between images of real lipstick and images of lips
that have been altered with our AR lipstick simulation. We
selected 5 real images of lipstick and 5 images augmented
with our AR lipstick simulation. We then asked participants

Actual \ Predicted | Real AR
Real 62.38% | 37.72%
AR 46.43% | 53.57%

Table 1. Aggregated user survey results.

| Device | Avg Time Per Frame |
Google Pixel 3 (2018) 4 ms
Huawei Mate 9 (2017) 7.5 ms
iPhone 7 (2016) 8.2 ms

Table 2. Time measurement benchmark results, performance is
real-time on a variety of mid- to high-end devices.

to evaluate each image and to answer whether they believe
the image has been altered with the AR technique or not.
Aggregated results are shown on Table 1. The results show,
that people more often correctly detect real images compar-
ing to detecting AR images as real (62.38% versus 46.43%);
however, our participants struggled to correctly identify al-
tered images in those 46.43% cases, which means that our
AR simulation technology has reached high level of fidelity
and seems as good as real to many people.

Our implementation of this pipeline runs on the two most
popular mobile platforms (Android and i0S) and targets the
OpenGL ES 3.0 graphics API for improved performance on
GPU. Time measurement benchmark results are shown on
Table 2. Time performance of the pipeline has been mea-
sured by averaging time over a large batch of input frames
being processed without any intermediate CPU-GPU syn-
chronization. The input frame size is 720x1280, which is
commonly used in image processing pipelines on mobile.

4. Application

One possible application of our technology is in creat-
ing engaging AR experiences for online advertising plat-
forms. Together with internal and external collaborators,
we piloted a series of advertisement campaigns on a pop-
ular video-sharing platform that featured an AR lipstick
try-on experience hosted on a popular video-sharing plat-
form. While watching original creator content on beauty
and makeup topics, viewers were given the opportunity to
virtually “try-on” AR lipstick, as demonstrated in Figure 8.

-

Figure 8. Example of a user virtually “trying on” AR lipstick.
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