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2 REQUIREMENTS

1 Introduction
It is a common desire for users of XMPP to want to store their messages in a central archive on
their server. This feature allows them to record conversations that take place on clients that
do not support local history storage, to synchronise conversation history seamlessly between
multiple clients, to read the history of a MUC room, or to view old items in a pubsub node.

2 Requirements
As this extension aims to make things easy for client developers, some research was made
into the way clients handle history today. The resulting protocol was designed to allow for
the following primary usage scenarios:

• Automatic history synchronization between multiple clients.

• Calendar-based on-demand display of historic messages in a client that doesn’t keep lo-
cal history.

• So-called ’infinite’ scrollback, whereby a client automatically fetches and displays his-
torical messages naturally in the message log as the user scrolls back in time.

Another extension for archiving already exists in XMPP, Message Archiving (XEP-0136) 1).
However implementation experience has shown that the protocol defined therein supports
rather more functionality than is typically needed for the above uses, and is significantly
more effort to implement.
This specification aims to define a much simpler and modular protocol for working with a
server-side message store. Through this it is hoped to boost implementation and deployment
of archiving in XMPP. It should be noted that (although not required) a server is free to
implement XEP-0136 alongside this protocol if it so chooses, though a mapping between both
protocols is beyond the scope of this specification.
Notable functionality in XEP-0136 that is intentionally not defined by this specification for
simplicity:

• Support for ’collections’. Few clients even support this concept for local history storage,
and it is possible to apply the logic for splitting a stream of messages into conversations
on the client-side, thus greatly simplifying the protocol.

• Support for uploading to the archive. On the assumption that a server automatically
archives messages to and from the client, it is typically rare for a client to end up with
messages that are not already in the archive. Uploading could be useful for bootstrap-
ping an empty archive however, and may be defined in a future specification if there is
demand for such functionality.

1XEP-0136: Message Archiving <https://xmpp.org/extensions/xep-0136.html>.
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3 MESSAGE ARCHIVES

• Support for ’off the record’ chats (OTR; not to be confused with the encryption algo-
rithm of the same name). This allowed complex negotiation for either the user or con-
tact to command specific conversations to bypass the archive. In reality the archiving
behaviour of a contact’s server cannot be enforced (they could ignore the OTR request
and archive the messages anyway without your consent) so this specification does not
try and regulate that. Equivalent functionality can be implemented with server logic for
not including encrypted or specially-tagged messages in the archive (out of scope for
this specification).

• Support per-session configuration. This feature was deemed unnecessary for the ma-
jority of implementations, and hence the configuration protocol in this specification is
much simplified, which allows for a simple user interface in clients. Advanced configu-
ration however may be performed through ad-hoc commands depending on the server
implementation.

3 Message archives
An archive contains a collection of messages relevant to a particular XMPP address, e.g. a
user, MUC, pubsub node, server. Note: while a service might have many ”archives” as defined
here (one per JID capable of being queried) this is a conceptual distinction, and a server is not
bound to any particular implementation or arrangement of data stores.
Exactly which messages a server archives is up to implementation and deployment policy, but
it is expected that all messages that hold meaningful content, rather than state changes such
as Chat State Notifications, would be archived. Rules are specified later in this document.
A stored message consists of at least the following pieces of information:

• A timestamp of when the message was sent (for an outgoing message) or received (for
an incoming message).

• The remote JID that the stanza is to (for an outgoing message) or from (for an incoming
message).

• A server-assigned UID that MUST be unpredictable and unique within the archive.

• The message stanza itself. The entire original stanza SHOULD be stored, but at a min-
imum only the <body/> tag MUST be preserved (ie. the server might, at its discretion,
strip certain extensions from messages before storage), in addition to all standard at-
tributes of the stanza (e.g. to, from, type, id).

Note that ’incoming’ and ’outgoing’ messages are viewed within the context of the archived
JID, rather than the system as a whole. For example, if romeo@montegue.lit sent a message
to juliet@capulet.lit, it would be an outgoing message in the context of archiving for Romeo,
and an incoming message in the context of archiving for Juliet.
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3.1 Order of messages
Order within the archive MUST be preserved, where the order of messages is the same as
the order that the client originally received them (or would have received them if online).
Throughout this document the term ’chronological order’ refers to this order, however
implementors should take care not to rely on timestamps alone for ordering messages, as
multiple messages may share the same timestamp.

3.2 Message retention and deletion
A server MAY impose limits on the size of an individual archive. For example a server might
begin to discard old messages once the archive reaches a certain size, or only keep messages
until they reach a certain age. Any such deleted messages MUST be the oldest in the archive,
i.e. it is not permitted to create gaps or ”holes” in the archive. The UIDs of deleted messages
MUST NOT be reused for new messages.
However a server that wishes to remove messages from the middle of an archive, e.g. to
remove accidentally transmitted sensitive information may omit the <message> stanza from
inside the <forwarded> element or replace the message with an appropriate placeholder
when transmitting the result in response to a query. However servers MUST retain the
UID, timestamp and JID of the original message internally to ensure that all queries remain
consistent. It should also be understood that clients maintaining their own local copy of the
archive may still retain the original message locally in this case, and this protocol provides no
mechanism for forcibly removing messages from any local archive or cache that clients may
keep.

3.3 Archiving entities
There is no restriction on which services can expose archives, although only user and MUC
archives are discussed here.

3.3.1 User archives

The most typical address is that of a user’s own bare JID, within which those messages sent
to or from that user’s account would generally automatically be stored by the server. The
collection is ordered chronologically by the time each message was sent/received.
Servers that expose archive messages of sent/received messages on behalf of local users
MUST expose these archives to the user on the user’s bare JID.
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3.3.2 MUC archives

A MUC service allowing MAM queries for a room MUST expose the MAM archive on the
room’s bare JID.

3.4 Querying Entities
While this document talks about ’clients’ and ’servers’, as these are the common cases, the
querying entity (referred to as a ’client’) need not be an XMPP client as defined by RFC6120,
but could potentially be any type of entity, and the queried entity (referred to as a ’server’)
need not be an XMPP server as defined by RFC6120, although access controls might prohibit
any given entity from being able to access an archive.

3.5 Communicating the archive ID
When a message is archived, the server MUST add an <stanza-id/> element as defined in
Unique and Stable Stanza IDs (XEP-0359) 2 to the message, which informs the recipient of
where and under what ID the message is stored. When doing this the server MUST follow
the business rules defined in XEP-0359. The ’by’ attribute MUST be set to the address of the
archive. For regular users that’s the bare JID of the account and for MUC that’s the bare JID of
the room.
Servers MUST NOT include the <stanza-id/> element in messages addressed to JIDs that do not
have permissions to access the archive, such as a users’s outgoing messages to their contacts.
However servers SHOULD include the element as a child of the forwarded message when
using Message Carbons (XEP-0280) 3

Listing 1: Client receives a message that has been archived
<message to=’juliet@capulet.lit/balcony ’

from=’romeo@montague.lit/orchard ’
type=’chat’>

<body>Call me but love , and I’ll␣be␣new␣baptized;␣Henceforth␣I␣never
␣will␣be␣Romeo.</body >

␣␣<stanza -id␣xmlns=’urn:xmpp:sid:0 ’␣by=’juliet@capulet.lit’␣id=’
28482 -98726 -73623 ’␣/>

</message >

Note: Previous versions of this protocol did not specify any interaction with stanza-id,
and clients MUST NOT interpret XEP-0359 IDs in messages as archive IDs unless the server
advertises support for ’urn:xmpp:mam:2’ specifically.

2XEP-0359: Unique and Stable Stanza IDs <https://xmpp.org/extensions/xep-0359.html>.
3XEP-0280: Message Carbons <https://xmpp.org/extensions/xep-0280.html>.
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4 Querying an archive
An entity is able to query (subject to appropriate access rights) an archive for all messages
within a certain timespan, optionally restricting results to those to/from a particular JID. To
allow limiting the results or paging through them a client may use Result Set Management
(XEP-0059) 4, which MUST be supported by both the client and the server.
A query consists of an <iq/> stanza of type ’set’ addressed to the account or server entity
hosting the archive, with a ’query’ payload. On receiving the query, the server pushes to the
client a series of messages in chronological order from the archive that match the client’s
given criteria. After the results it then returns the <iq/> result to indicate that the query is
completed.
The final <iq/> result response MUST include an RSM <set/> element, wrapped into a <fin/>
element qualified by the ’urn:xmpp:mam:2’ namespace, indicating the UID of the first and last
message of the (possibly limited) result set. This allows clients to accurately page through
messages.

Listing 2: A user queries their archive for messages
<iq type=’set’ id=’juliet1 ’>

<query xmlns=’urn:xmpp:mam:2 ’ queryid=’f27’ />
</iq>

Listing 3: Their server sends the matching messages
<message id=’aeb213 ’ to=’juliet@capulet.lit/chamber ’>

<result xmlns=’urn:xmpp:mam:2 ’ queryid=’f27’ id=’28482 -98726 -73623 ’>
<forwarded xmlns=’urn:xmpp:forward:0 ’>

<delay xmlns=’urn:xmpp:delay ’ stamp=’2010 -07 -10 T23:08:25Z ’/>
<message xmlns=’jabber:client ’ from=”witch@shakespeare.lit” to=”

macbeth@shakespeare.lit”>
<body>Hail to thee</body>

</message >
</forwarded >

</result >
</message >

Listing 4: Server returns the result IQ to signal the end
<iq type=’result ’ id=’juliet1 ’>

<fin xmlns=’urn:xmpp:mam:2 ’>
<set xmlns=’http: // jabber.org/protocol/rsm’>

<first index=’0’>28482 -98726 -73623 </first >
<last>09af3 -cc343 -b409f </last>

</set>
</fin>

</iq>

4XEP-0059: Result Set Management <https://xmpp.org/extensions/xep-0059.html>.
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To ensure that the client knows when the results are complete, the server MUST send the
<iq/> result after last query result has been sent to the client. The client can optionally include
a ’queryid’ attribute in their query, which allows the client to match results to their initiating
query.

Listing 5: A user queries an archive for messages
<iq to=’pubsub.shakespeare.lit’ type=’set’ id=’juliet1 ’>

<query xmlns=’urn:xmpp:mam:2 ’ queryid=’f28’ />
</iq>

4.1 Filtering results
By default all messages match a query, and filters are used to request a subset of the archived
messages. Filters are specified in a Data Forms (XEP-0004) 5 data form includedwith the query.
The hidden FORM_TYPE field MUST be set to this protocol’s namespace, ’urn:xmpp:mam:2’.
Six further fields are defined by this XEP and MUST be supported by servers, though all of
them are optional for the client. These fields are:

• start

• end

• with

• before-id (*)

• after-id (*)

• ids (*)

Servers supporting fields marked with an asterisk (*) MUST advertise the disco feature
’urn:xmpp:mam:2#extended’ and clients that depend on these fields MUST verify that the
server advertises this feature before attempting to use them.
Other fieldsmay be used, but are not defined in this document - the naming of new fieldsMUST
be consistent with the format defined in Field Standardization for Data Forms (XEP-0068) 6.
Servers MUST NOT mark any fields in the form as being required (i.e. with the data forms
<required/> element), regardless of whether they are defined in this document or elsewhere.
Except where explicitly noted below (i.e. ’Limiting results by id’), a query is still considered
successful even if the archive is empty or if nomessagesmatch the filter criteria - such queries
simply return no results.

5XEP-0004: Data Forms <https://xmpp.org/extensions/xep-0004.html>.
6XEP-0068: Field Data Standardization for Data Forms <https://xmpp.org/extensions/xep-0068.html>.
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4.1.1 Filtering by JID

If a ’with’ field is present in the form, it contains a JID against which to match messages.
The server MUST only return messages if they match the supplied JID. A message in a user’s
archive matches if the JID matches either the to or from of the message. An item in a MUC
archive matches if the publisher of the item matches the JID; note that this should only be
available to entities that would already have been allowed to know the publisher of the events
(e.g. this could not be used by a visitor to a semi-anonymous MUC).
To allow querying for messages the user sent to themselves, the client needs to set the ’with’
attribute to the account JID. In that case, the server MUST only return results where both the
’to’ and ’from’ match the bare JID (either as bare or by ignoring the resource), as otherwise
every message in the archive would match.
If ’with’ is omitted, the server MUST match all messages in the selected timespan with the
query, regardless of the to/from addresses on each message.

Listing 6: Querying for all messages to/from a particular JID
<iq type=’set’ id=’juliet1 ’>

<query xmlns=’urn:xmpp:mam:2 ’>
<x xmlns=’jabber:x:data ’ type=’submit ’>

<field var=’FORM_TYPE ’ type=’hidden ’>
<value >urn:xmpp:mam:2 </value >

</field >
<field var=’with’>

<value >juliet@capulet.lit</value >
</field >

</x>
</query >

</iq>

If (and only if) the supplied JID is a bare JID (i.e. no resource is present), then the server
SHOULD return messages if their bare to/from address for a user archive, or from address
otherwise, would match it. For example, if the client supplies a ’with’ of ”juliet@capulet.lit” a
query to their own archive would alsomatchmessages to or from ”juliet@capulet.lit/balcony”
and ”juliet@capulet.lit/chamber”.

4.1.2 Filtering by time received

The ’start’ and ’end’ fields, if provided, MUST contain timestamps formatted according to the
DateTime profile defined in XMPP Date and Time Profiles (XEP-0082) 7
The ’start’ field is used to filter out messages before a certain date/time. If specified, a server
MUST only return messages whose timestamp is equal to or later than the given timestamp.
If omitted, the server SHOULD assume the value of ’start’ to be equal to the date/time of the
earliest message stored in the archive.
7XEP-0082: XMPP Date and Time Profiles <https://xmpp.org/extensions/xep-0082.html>.
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Conversely, the ’end’ field is used to exclude from the results messages after a certain point in
time. If specified, a server MUST only return messages whose timestamp is equal to or earlier
than the timestamp given in the ’end’ field.
If omitted, the server SHOULD assume the value of ’end’ to be equal to the date/time of the
most recent message stored in the archive.

Listing 7: Querying the archive for all messages in a certain timespan
<iq type=’set’ id=’juliet1 ’>

<query xmlns=’urn:xmpp:mam:2 ’>
<x xmlns=’jabber:x:data ’ type=’submit ’>

<field var=’FORM_TYPE ’ type=’hidden ’>
<value >urn:xmpp:mam:2 </value >

</field >
<field var=’start ’>

<value >2010 -06 -07 T00:00:00Z </value >
</field >
<field var=’end’>

<value >2010 -07 -07 T13:23:54Z </value >
</field >

</x>
</query >

</iq>

Listing 8: Querying the archive for all messages after a certain time
<iq type=’set’ id=’juliet1 ’>

<query xmlns=’urn:xmpp:mam:2 ’>
<x xmlns=’jabber:x:data ’ type=’submit ’>

<field var=’FORM_TYPE ’ type=’hidden ’>
<value >urn:xmpp:mam:2 </value >

</field >
<field var=’start ’>

<value >2010 -08 -07 T00:00:00Z </value >
</field >

</x>
</query >

</iq>

4.1.3 Limiting results by id

If the client has already seen some messages, it may choose to restrict its query to before
and/or after messages it already knows about. This may be done through the ’before-id’ and
’after-id’ fields. In some cases ’before-id’ and ’after-id’ are the same as using RSM’s ’before’
and ’after’ parameters. Formore information, see the Implementation Considerations section.
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Listing 9: Querying the archive for all messages after a certain message
<iq type=’set’ id=’juliet1 ’>

<query xmlns=’urn:xmpp:mam:2 ’>
<x xmlns=’jabber:x:data ’ type=’submit ’>

<field var=’FORM_TYPE ’ type=’hidden ’>
<value >urn:xmpp:mam:2 </value >

</field >
<field var=’after -id’>

<value >09af3 -cc343 -b409f </value >
</field >

</x>
</query >

</iq>

Listing 10: Querying the archive for all messages between two known messages
<iq type=’set’ id=’juliet1 ’>

<query xmlns=’urn:xmpp:mam:2 ’>
<x xmlns=’jabber:x:data ’ type=’submit ’>

<field var=’FORM_TYPE ’ type=’hidden ’>
<value >urn:xmpp:mam:2 </value >

</field >
<field var=’after -id’>

<value >28482 -98726 -73623 </value >
</field >
<field var=’before -id’>

<value >09af3 -cc343 -b409f </value >
</field >

</x>
</query >

</iq>

If the client already knows the UID of one or more messages it wants to fetch, it can use the
’ids’ field:

Listing 11: Fetching a specific message from the archive
<iq type=’set’ id=’juliet1 ’>

<query xmlns=’urn:xmpp:mam:2 ’>
<x xmlns=’jabber:x:data ’ type=’submit ’>

<field var=’FORM_TYPE ’ type=’hidden ’>
<value >urn:xmpp:mam:2 </value >

</field >
<field var=’ids’>

<value >28482 -98726 -73623 </value >
</field >

</x>
</query >

</iq>
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If any UID requested by the client in any of the ’before-id’, ’after-id’ or ’ids’ form fields is not
present in the archive, the server MUST return an item-not-found error in response to the
query.

4.1.4 Including groupchat results in a user archive

If the server advertises that it includes groupchat messages in a user’s archive (see Determin-
ing support), a client may query a user archive and request for them to be included in the
result with the ’include-groupchat’ field set to ’true’.

Listing 12: Querying the archive and including groupchat messages in results
<iq type=’set’ id=’juliet1 ’>

<query xmlns=’urn:xmpp:mam:2 ’>
<x xmlns=’jabber:x:data ’ type=’submit ’>

<field var=’FORM_TYPE ’ type=’hidden ’>
<value >urn:xmpp:mam:2 </value >

</field >
<field var=’include -groupchat ’>

<value >true</value >
</field >
...

</x>
</query >

</iq>

If the server advertises that it includes groupchat messages in the archive, or it advertises that
it doesn’t, a client may request that they not be included by setting the ’include-groupchat’
field to ’false’.

Listing 13: Querying the archive and excluding groupchat messages from results
<iq type=’set’ id=’juliet1 ’>

<query xmlns=’urn:xmpp:mam:2 ’>
<x xmlns=’jabber:x:data ’ type=’submit ’>

<field var=’FORM_TYPE ’ type=’hidden ’>
<value >urn:xmpp:mam:2 </value >

</field >
<field var=’include -groupchat ’>

<value >false </value >
</field >
...

</x>
</query >

</iq>
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Note that where the client doesn’t specify the ’include-groupchat’ field, it is implementation-
defined whether groupchat messages are included in the results (see Business Rules). Clients
MUST NOT include this field where servers don’t advertise support, as the server would reject
such a form.

4.1.5 Retrieving form fields

In order for the client find out about additional fields the server might support, it can send an
iq stanza of type ’get’ addressed to the archive like this:

Listing 14: Client requests supported query fields
<iq type=’get’ id=’form1 ’>

<query xmlns=’urn:xmpp:mam:2 ’/>
</iq>

The server replies with all the form fields it supports in queries, which MUST include the
mandatory fields specified in this document.

Listing 15: Server returns supported fields
<iq type=’result ’ id=’form1 ’>

<query xmlns=’urn:xmpp:mam:2 ’>
<x xmlns=’jabber:x:data ’ type=’form’>

<field type=’hidden ’ var=’FORM_TYPE ’>
<value >urn:xmpp:mam:2 </value >

</field >
<field type=’jid -single ’ var=’with’/>
<field type=’text -single ’ var=’start ’/>
<field type=’text -single ’ var=’end’/>
<field type=’text -single ’ var=’before -id’/>
<field type=’text -single ’ var=’after -id’/>
<field type=’list -multi ’ var=’ids’>

<validate xmlns=”http: // jabber.org/protocol/xdata -validate”
datatype=”xs:string”>

<open/>
</validate >

</field >
<field type=’boolean ’ var=’include -groupchat ’/>
<field type=’text -single ’ var=’{http: // example.com/}free -text -

search ’/>
<field type=’text -single ’ var=’{http: // example.com/}stanza -

content ’/>
</x>

</query >
</iq>
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If the client understands any of the additional fields it MAY proceed to include any of them in
subsequent queries. It is not required to include any or all of the supported fields in queries.
A special note about the ’ids’ field: this field is of type ’list-multi’ which typically is used to
allow the client to select from a provided list of options. In this case the list of all possible ids
MUST NOT be provided by the server, as it is likely to be extremely large. Instead the server
MUST include a Data Forms Validation (XEP-0122) 8 <validate/> element that signals the list
is open to arbitrary values provided by the client.
As specified in Field Standardization for Data Forms (XEP-0068) 9, names of custom fields
SHOULD use Clark notation to avoid conflicts with other extensions.

Listing 16: Client uses two discovered query fields in a query
<iq type=’set’ id=’query4 ’>

<query xmlns=’urn:xmpp:mam:2 ’>
<x xmlns=’jabber:x:data ’ type=’submit ’>

<field type=’hidden ’ var=’FORM_TYPE ’>
<value >urn:xmpp:mam:2 </value >

</field >
<field type=’text -single ’ var=’{http: // example.com/}free -text -

search ’>
<value >Where arth thou , my Juliet?</value >

</field >
<field type=’text -single ’ var=’{http: // example.com/}stanza -

content ’>
<value >{http:// jabber.org/protocol/mood}mood/lonely </value >

</field >
</x>

</query >
</iq>

Note that as the ’with’, ’start’ and ’end’ fields MUST be implemented by servers, clients are
able to submit forms using combinations of only these fields without needing to first fetch
the form from the server and the types of these fields MUST be ’jid-single’, ’text-single’ and
’text-single’ respectively. A server MUST NOT rely on a client having first requested the form
before submitting queries.
If a client includes a form field that the server does not recognise, the server MUST respond
with a ’feature-not-implemented’ error.

4.2 Query results
The server responds to the archive query by transmitting to the client all the messages that
match the criteria the client requested, subject to implementation limits. The results are sent
as individual stanzas, with the original message encapsulated in a <forwarded/> element as

8XEP-0122: Data Forms Validation <https://xmpp.org/extensions/xep-0122.html>.
9XEP-0068: Field Data Standardization for Data Forms <https://xmpp.org/extensions/xep-0068.html>.
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described in Stanza Forwarding (XEP-0297) 10.
The result messages MUST contain a <result/> element with an ’id’ attribute that gives the
current message’s archive UID (archived messages MAY also contain a XEP-0359 <stanza-id>
element, but clients MUST NOT depend on it). If the client gave a ’queryid’ attribute in its
initial query, the server MUST also include that in this result element.
The <result/> element contains a <forwarded/> element which SHOULD contain the original
message as it was received, and SHOULD also contain a <delay/> element qualified by the
’urn:xmpp:delay’ namespace specified in Delayed Delivery (XEP-0203) 11. The value of the
’stamp’ attribute MUST be the time the message was originally received by the forwarding
entity.
The archive results MUST be sorted in chronological order, both within the returned results
and within the ordering of RSM such that if a client were to request the first 10 stanzas in
an archive, then use RSM to request the next 10 stanzas (by providing the ’after’ element
with the UID of the 10th stanza in the first results) all 20 result stanzas would be received in
chronological order.

Listing 17: Server returns two matching messages
<message id=’aeb213 ’ to=’juliet@capulet.lit/chamber ’>

<result xmlns=’urn:xmpp:mam:2 ’ queryid=’f27’ id=’28482 -98726 -73623 ’>
<forwarded xmlns=’urn:xmpp:forward:0 ’>

<delay xmlns=’urn:xmpp:delay ’ stamp=’2010 -07 -10 T23:08:25Z ’/>
<message xmlns=’jabber:client ’

to=’juliet@capulet.lit/balcony ’
from=’romeo@montague.lit/orchard ’
type=’chat’>
<body>Call me but love , and I’ll␣be␣new␣baptized;␣Henceforth␣I

␣never␣will␣be␣Romeo.</body >
␣␣␣␣␣␣ </message >
␣␣␣␣</forwarded >
␣␣ </result >
</message >

<message␣id=’aeb214 ’␣to=’juliet@capulet.lit/chamber ’>
␣␣<result␣xmlns=’urn:xmpp:mam:2 ’␣queryid=’f27’␣id=’5d398 -28273 - f7382 ’>
␣␣␣␣<forwarded␣xmlns=’urn:xmpp:forward:0 ’>
␣␣␣␣␣␣<delay␣xmlns=’urn:xmpp:delay ’␣stamp=’2010 -07 -10 T23:09:32Z ’/>
␣␣␣␣␣␣<message␣xmlns=’jabber:client ’
␣␣␣␣␣␣␣␣␣to=’romeo@montague.lit/orchard ’
␣␣␣␣␣␣␣␣␣from=’juliet@capulet.lit/balcony ’
␣␣␣␣␣␣␣␣␣type=’chat’␣id=’8a54s’>
␣␣␣␣␣␣␣␣<body >What␣man␣art␣thou␣that␣thus␣bescreen ’d in night so

stumblest on my counsel?</body>
</message >

</forwarded >

10XEP-0297: Stanza Forwarding <https://xmpp.org/extensions/xep-0297.html>.
11XEP-0203: Delayed Delivery <https://xmpp.org/extensions/xep-0203.html>.
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</result >
</message >

4.3 Paging through results
4.3.1 Page limits

A client or server will typically want to limit the number of results transmitted at a time,
thereby breaking the result stream into smaller ’pages’. For this purpose a server MUST
support Result Set Management (XEP-0059) 12 and MUST support the paging mechanism
defined therein. A client MAY include a <set/> element in its query.
For the purposes of this protocol, the UIDs used by RSM correspond with the UIDs of the
stanzas stored in the archive.

Listing 18: A query using Result Set Management
<iq type=’set’ id=’q29302 ’>

<query xmlns=’urn:xmpp:mam:2 ’>
<x xmlns=’jabber:x:data ’ type=’submit ’>

<field var=’FORM_TYPE ’ type=’hidden ’>
<value >urn:xmpp:mam:2 </value >

</field >
<field var=’start ’>

<value >2010 -08 -07 T00:00:00Z </value >
</field >

</x>
<set xmlns=’http: // jabber.org/protocol/rsm’>

<max>10</max>
</set>

</query >
</iq>

To conserve resources, a server MAY place a reasonable limit on how many stanzas may be
pushed to a client in one request. Whether or not the client query included a <set/> element,
the server MAY simply return its limited results, modifying the <set/> element it returns
appropriately.

Listing 19: Server responds to client with limited results using RSM
<!-{}- result messages -{}->
<iq type=’result ’ id=’q29302 ’>

<fin xmlns=’urn:xmpp:mam:2 ’>
<set xmlns=’http: // jabber.org/protocol/rsm’>

<first index=’0’>28482 -98726 -73623 </first >
<last>09af3 -cc343 -b409f </last>

12XEP-0059: Result Set Management <https://xmpp.org/extensions/xep-0059.html>.
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<count >20</count >
</set>

</fin>
</iq>

4.3.2 Requesting pages

The <first> and <last> elements specify the UID of the first and last returned results (not
necessarily of all the messages that matched the query, if the results have been limited).
The RSM <count> element and the ’index’ attribute on the RSM <first> element are optional, a
server MAY include them, but a client MUST NOT depend on them being present. Please refer
to the RSM specification for more information surrounding their meaning and use.
Having previously made a query that returned results limited by the server (as described
above), a client can re-send the same request and receive the next ’page’ of results. It does
this by including a <set> element with its request, containing an <after/> with the UID of the
last message it received from the previous query.

Listing 20: A page query using Result Set Management
<iq type=’set’ id=’q29303 ’>

<query xmlns=’urn:xmpp:mam:2 ’>
<x xmlns=’jabber:x:data ’ type=’submit ’>

<field var=’FORM_TYPE ’ type=’hidden ’><value >urn:xmpp:mam:2 </
value ></field >

<field var=’start ’><value >2010 -08 -07 T00:00:00Z </value ></field >
</x>
<set xmlns=’http: // jabber.org/protocol/rsm’>

<max>10</max>
<after >09af3 -cc343 -b409f </after >

</set>
</query >

</iq>

Note: There is no concept of an ”open query”, and servers MUST be prepared to receive
arbitrary page requests at any time.
RSM does not define the behaviour of including both <before> and <after> in the same request.
To retrieve a range of items between two known ids, use before-id and after-id in the query
form instead.
If the UID contained within an <after> or <before> element is not present in the archive, the
server MUST return an item-not-found error in response to the query.

Listing 21: Message id not found in archive
<iq type=’error ’ id=’q29303 ’>

<error type=’cancel ’>
<item -not -found xmlns=’urn:ietf:params:xml:ns:xmpp -stanzas ’/>
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</error >
</iq>

When the results returned by the server are complete (that is: when they have not been
limited by themaximum size of the result page (either as specified or enforced by the server)),
the server MUST include a ’complete’ attribute on the <fin> element, with a value of ’true’;
this informs the client that it doesn’t need to perform further paging to retreive the requested
data. If it is not the last page of the result set, the server MUST either omit the ’complete’
attribute, or give it a value of ’false’.

Listing 22: Server completes a result with the last page of messages
<!-{}- result messages -{}->
<iq type=’result ’ id=’u29303 ’>

<fin xmlns=’urn:xmpp:mam:2 ’ complete=’true’>
<set xmlns=’http: // jabber.org/protocol/rsm’>

<first index=’0’>23452 -4534 -1</first >
<last>390 -2342 -22</last>
<count >16</count >

</set>
</fin>

</iq>

Sometimes (e.g. due to network or storage partitioning, or other transient errors) the server
might return results to a client that are unstable (e.g. they might later change in sequence or
content). In such a situation the server MUST stamp the <fin> element with a ’stable’ attribute
with a value of ’false’. If the server knows that the data it’s serving are stable it MUST either
stamp a ’stable’ attribute with a value of ’true’, or no such attribute. An example of when
unstable might legitimately be returned is if the MAM service uses a clustered data store and a
query covers a time period for which the data store has not yet converged; it the server could
return best-guess results and tell the client that they may be unstable. A client SHOULD NOT
cache unstable results long-term without later confirming (by reissuing appropriate queries)
that they have become stable.

4.3.3 Requesting the last page

To request the page at the end of the archive (i.e. the most recent messages), include just an
empty <before/> element in the RSM part of the query. As defined by RSM, this will return
the last page of the archive.

Listing 23: A request for the last page in an archive
<iq type=’set’ id=’q29303 ’>

<query xmlns=’urn:xmpp:mam:2 ’>
<x xmlns=’jabber:x:data ’ type=’submit ’>
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<field var=’FORM_TYPE ’ type=’hidden ’><value >urn:xmpp:mam:2 </
value ></field >

<field var=’start ’><value >2010 -08 -07 T00:00:00Z </value ></field >
</x>
<set xmlns=’http: // jabber.org/protocol/rsm’>

<max>10</max>
<before/>

</set>
</query >

</iq>

Within the returned page, all results are still in chronological order, that is, the first result
you receive will be the oldest item in the page, and the last result you receive will be the last
item in the archive.

4.3.4 Flipped pages

When fetching a page, the client may prefer for the server to send the results within that
page in reverse order. For example, if a client implements a user interface that automatically
fetches older messages as a user scrolls backward, it may want to receive and display the
newest messages first, instead of waiting for the whole page to be received.
A client wishing for a reversed page should include the <flip-page/> element in its query, like
so:

Listing 24: Requesting a page that is flipped
<iq type=’set’ id=’q29309 ’>

<query xmlns=’urn:xmpp:mam:2 ’>
<x xmlns=’jabber:x:data ’ type=’submit ’>

<field var=’FORM_TYPE ’ type=’hidden ’><value >urn:xmpp:mam:2 </
value ></field >

<field var=’start ’><value >2010 -08 -07 T00:00:00Z </value ></field >
</x>
<set xmlns=’http: // jabber.org/protocol/rsm’>

<max>10</max>
<after >09af3 -cc343 -b409f </after >

</set>
<flip -page/>

</query >
</iq>

It is important to note that flipping a page does not affect what results are returned in
response to the query. It only affects the order in which they are transmitted from the server
to the client.
A client that wishes to use flipped pages MUST ensure that the server advertises the
’urn:xmpp:mam:2#extended’ feature.
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5 Archive metadata
When planning a query, a client may wish to learn the current state of the archive. This
includes information about the first/last entries in the archive.
When the archive advertises support for ’urn:xmpp:mam:2#extended’ then the archive
supports queries for this metadata via an iq of type ’get’ to the archive’s address, with a
<metadata/> payload in the ’urn:xmpp:mam:2’ namespace.

Listing 25: Requesting archive metadata
<iq type=’get’ id=’jui8921rr9 ’>

<metadata xmlns=’urn:xmpp:mam:2 ’/>
</iq>

Listing 26: Server returns archive metadata
<iq type=’result ’ id=’jui8921rr9 ’>

<metadata xmlns=’urn:xmpp:mam:2 ’>
<start id=’YWxwaGEg ’ timestamp=’2008 -08 -22 T21:09:04Z ’ />
<end id=’b21lZ2Eg ’ timestamp=’2020 -04 -20 T14:34:21Z ’ />

</metadata >
</iq>

The server response includes a <metadata/> element containing information about the
archive. If the archive is not empty, this element MUST include <start/> and <end/> elements,
which each have an ’id’ and XEP-0082 formatted ’timestamp of the first and last messages in
the archive respectively.
If the archive is empty, the server MUST instead send an empty <metadata/> element.

6 Business Rules
6.1 Storage and Retrieval Rules
Different entities will have different requirements for which data are stored, as might differ-
ent deployments. This section provides general rules within which a server will act. While
there may be local policy restrictions that prevent archiving of some aspects discussed here,
this is a RECOMMENDED baseline. A server MAY implement any subset of possible archives
for JIDs it controls (although it MUST advertise support only for those JIDs that support it).
No requirements are placed on how a server implements its storage beyond that it has to
store data sufficient to be able to comply with this document. When this document describes
storage requirements (e.g. MUST NOT store more than one copy...), it refers to what would
appear to have been stored in order to satisfy the query.
If an entity (user’s server, MUC room, pubsub node, ...) rejects an incoming message (such as
from an occupant not allowed to send messages to the room, a user not authorized to publish
to a pubsub node, a contact blocked by the user etc.) that message should not appear in the
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archive for the entity that rejected it - the archive should represent what logical entities (MUC
occupants, users, pubsub subscribers...) would have received, and so only contain messages
accepted for delivery to such entities.

6.1.1 User Archives

A user archive is anticipated to provide the user with the ability to access their prior conver-
sations. To this end, a server SHOULD include in a user archive all of themessages a user sends
or receives of type ’normal’ or ’chat’ that contain a <body> element. A server MAY include
additional non-conversation messages. A server MAY include messages of type ’headline’, but
this is not generally suggested.
Previous versions of this specification stated that a server SHOULD also include messages
of type ’groupchat’ that have a <body> - however many deployments did not follow this
(although some did). This advice has now been dropped, and servers MAY include groupchat
messages in their archives. Whether a server stores groupchat messages or not is now left as
an implementation (or deployment) decision. Whether a client wants to receive groupchat
messages in results can be signalled with the ’include-groupchat’ field (if supported by the
server - see Determining support) - where the server doesn’t support this field, or where a
client doesn’t specify it in the query, whether groupchat messages are included in the result is
implementation-defined; this allows existing deployments to not break with the introduction
of the ’include-groupchat’ query field in a later version of this specification, but it is RECOM-
MENDED that all client implementations of the current version of this specification always
include the field where the server supports it, and RECOMMENDED that servers support it.
At a minimum, the server MUST store the <body> elements of a stanza. It is suggested
that other elements that are used in a given deployment to supplement conversations (e.g.
XHTML-IM payloads) are also stored. Other elements MAY be stored.
If a server supports mechanisms that multiply copies of a stanza (e.g. Carbons, or forking a
stanza to a bare JID), it MUST store such a staza within a given archive only once, irrespective
of multiple connected clients receiving copies.
A server MAY choose not to deliver offline messages to a client that has already queried
their MAM archive and received the archived copies of those messages that would otherwise
be delivered - while not required of an implementation, this is helpful to avoid duplicate
messages for clients, so is suggested.

6.1.2 MUC Archives

A MUC archives allows a user to view the conversation within a room. All messages sent to
the room that contain a <body> element SHOULD be stored, as should subject change stanzas,
apart from those messages that the room rejects.
A MUC archive MUST store each message only once (not, for example, every copy sent out to
an occupant).
A MUC archive MUST NOT include ’private message’ results (those sent directly between
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occupants, not shared in the room) in the results.
A MUC archive MUST check that the user requesting the archive has the right to enter it at
the time of the query and only allow access if so. In a members-only chat room, only owners,
admins or members can query a room archive. In the case of open MUC rooms, the MUC
archives can generally be accessed by any users (including those who have never entered the
room) who do not have an affiliation of ’outcast’, but a MUC archive MAY further limit access
based on other criteria as part of the deployment policy. A MUC archive MAY, if it stores
historical data about previous configuration states, limit the results returned to only those
that the querying user would have been authorised to see at the time (e.g. it MAY limit the
results to not include results while a user was an outcast).
When sending out the archives to a requesting client, the forwarded stanza MUST NOT have a
’to’ attribute, and the ’from’ MUST be the occupant JID of the sender of the archived message.
In the case of non-anonymous rooms or if the recipient of the MUC archive has the right to
access the sender real JID at the time of the query, the archive message will use extendedmes-
sage information in an <x/> element qualified by the ’http://jabber.org/protocol/muc#user’
namespace and containing an <item/> child with a ’jid’ attribute specifying the occupant’s
full JID, as defined for non-anonymous room presence in Multi-User Chat (XEP-0045) 13. The
archiving entity MUST strip any pre-existing <x> element fromMUCmessages (as MUC rooms
are not required to do this).

Listing 27: Server returns MUC messages
<message id=’iasd207 ’ from=’coven@chat.shakespeare.lit’ to=’

hag66@shakespeare.lit/pda’>
<result xmlns=’urn:xmpp:mam:2 ’ queryid=’g27’ id=’34482 -21985 -73620 ’>

<forwarded xmlns=’urn:xmpp:forward:0 ’>
<delay xmlns=’urn:xmpp:delay ’ stamp=’2002 -10 -13 T23:58:37Z ’/>
<message xmlns=”jabber:client”

from=’coven@chat.shakespeare.lit/firstwitch ’
id=’162BEBB1 -F6DB -4D9A -9BD8 -CFDCC801A0B2 ’
type=’groupchat ’>
<body>Thrice the brinded cat hath mew’d.</body >

␣␣␣␣␣␣␣␣<x␣xmlns=’http:// jabber.org/protocol/muc#user’>
␣␣␣␣␣␣␣␣␣␣<item␣affiliation=’none’
␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣jid=’witch1@shakespeare.lit’
␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣role=’participant ’␣/>
␣␣␣␣␣␣␣␣ </x>
␣␣␣␣␣␣ </message >
␣␣␣␣</forwarded >
␣␣ </result >
</message >

<message␣id=’iasd207 ’␣from=’coven@chat.shakespeare.lit’␣to=’
hag66@shakespeare.lit/pda’>

␣␣<result␣xmlns=’urn:xmpp:mam:2 ’␣queryid=’g27’␣id=’34482 -21985 -73620 ’>

13XEP-0045: Multi-User Chat <https://xmpp.org/extensions/xep-0045.html>.
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␣␣␣␣<forwarded␣xmlns=’urn:xmpp:forward:0 ’>
␣␣␣␣␣␣<delay␣xmlns=’urn:xmpp:delay ’␣stamp=’2002 -10 -13 T23:58:43Z ’/>
␣␣␣␣␣␣<message␣xmlns =” jabber:client”
␣␣␣␣␣␣␣␣from=’coven@chat.shakespeare.lit/secondwitch ’
␣␣␣␣␣␣␣␣id=’90057840 -30FD -4141-AA44 -103 EEDF218FC ’
␣␣␣␣␣␣␣␣type=’groupchat ’>
␣␣␣␣␣␣␣␣<body >Thrice␣and␣once␣the␣hedge -pig␣whined.</body >
␣␣␣␣␣␣␣␣<x␣xmlns=’http:// jabber.org/protocol/muc#user’>
␣␣␣␣␣␣␣␣␣␣<item␣affiliation=’none’
␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣jid=’witch2@shakespeare.lit’
␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣role=’participant ’␣/>
␣␣␣␣␣␣␣␣ </x>
␣␣␣␣␣␣ </message >
␣␣␣␣</forwarded >
␣␣ </result >
</message >

6.1.3 Pubsub archives

This specification reserves the ’node’ attribute of the <query> element for use with pubsub
archives. Its use is defined in Pubsub Message Archive Management (XEP-0442) 14.

6.2 IDs
The IDs used within an archive MUST be unique per item stored and MUST NOT be reused,
even if the original item with a given ID has since been removed from the archive. If a server
provides multiple archives (e.g. many user archives, or many MUC archives), the IDs do not
need to be unique across all of these archives unless the server also allows a single query to be
run across multiple archives (e.g. searching of all MUC rooms), discussion of which is beyond
the scope of this document. These IDs are strings that servers may construct in any manner,
and clients must treat as opaque strings (e.g. there is no requirement for them to be numeric,
sequenced or GUIDs).

6.3 Client synchronization
In addition to one-off queries, clients may use this protocol to synchronize a local archive
with the server’s archive. However because this protocol is detached from normal routing
of messages, it is possible that a client will receive messages while trying to synchronize,
which has the potential to cause duplicated messages. Resolving this is beyond the scope of
this specification, but may instead be solved during the initial connection phase by using an
alternative connection protocol such as Bind 2.0 (XEP-0386) 15.

14XEP-0442: Pubsub Message Archive Management <https://xmpp.org/extensions/xep-0442.html>.
15XEP-0386: Bind 2.0 <https://xmpp.org/extensions/xep-0386.html>.
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7 Determining support
If a server or other entity hosts archives and supports MAM queries, it MUST advertise the
’urn:xmpp:mam:2’ and ’urn:xmpp:mam:2#extended’ features in response to Service Discovery
(XEP-0030) 16 requests made to archiving JIDs (i.e. JIDs hosting an archive, such as users’ bare
JIDs):

Listing 28: Client queries for server features
<iq type=’get’ id=’disco1 ’ to=’juliet@capulet.lit’ from=’

juliet@capulet.lit/balcony ’>
<query xmlns=’http: // jabber.org/protocol/disco#info’/>

</iq>

Listing 29: Server responds with features
<iq type=’result ’ id=’disco1 ’ from=’juliet@capulet.lit’ to=’

juliet@capulet.lit/balcony ’>
<query xmlns=’http: // jabber.org/protocol/disco#info’>

...
<feature var=’urn:xmpp:mam:2 ’/>
<feature var=’urn:xmpp:mam:2#extended ’/>
...

</query >
</iq>

Servers advertising the ’urn:xmpp:mam:2#extended’ feature MUST implement the ’before-id’
and ’after-id’ fields, as well as support for flipped pages and single-item retrieval. The
’urn:xmpp:mam:2#extended’ feature MUST NOT be advertised by a server without also
advertising ’urn:xmpp:mam:2’.

Feature urn:xmpp:mam:2 urn:xmpp:mam:2#extended
Queries using ’with’, ’start’ and ’end’ Required Required
Error responses for missing UIDs Required Required
Queries using ’before-id’, ’after-id’ or ’ids’ - Required
Page flipping - Required
Archive metadata query - Required

16XEP-0030: Service Discovery <https://xmpp.org/extensions/xep-0030.html>.
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Servers that understand the ’include-groupchat’ field MUST advertise the
’urn:xmpp:mam:2#groupchat-field’ (even if they cannot return groupchat messages),
and servers that understand the ’include-groupchat’ field and store groupchat messages in
the user’s archive must advertise the ’urn:xmpp:mam:2#groupchat-available’ feature

8 Security Considerations
8.1 Data privacy
An archive generally consists of private conversations, and so a server MUST adequately
protect an archive from unauthorized third-party access. For example authorized parties
for a user’s archive would likely include just the user, and a MUC archive for a private room
might be restricted to room members. An implementation MAY choose to allow access to
any archive by server administrators. If a client requests access to an archive it does not
have permissions for the server MUST return an iq with type error, and the error condition
SHOULD be ’forbidden’.
A server SHOULD provide a mechanism for a user to disable archiving of messages with all
or specific contacts, such as via the configuration protocol described in Message Archive
Management Preferences (XEP-0441) 17. This allows the user to prevent the archiving of
potentially sensitive messages in the first place.
A server MAY automatically prevent certain sensitive messages from being archived. How
such messages are identified is beyond the scope of this specification, but technologies such
as Security Labels in XMPP (XEP-0258) 18 may be used, for example.

8.2 Sender Impersonation
A client MUST verify the source of MAM query results against an open query (i.e. checking
the stanza ’from’ matches the entity that was queried) and MUST either ignore or otherwise
disregard (maybe with a warning to the user) unsolicited results - whether because the ’from’
doesn’t match an open query, or because there is no open query. This is to avoid the situation
where a malicious entity sends MAM results while the client is querying a different entity
and the client processes the malicious results as if they were part of the legitimate results.
Additionally, if the client has multiple queries in flight at once, it MUST also check that the
query ID for a result matches that of an open query for that entity.

8.3 Stanza IDs
Entities that implement this specification must also adhere to the security requirements of
XEP-0359.
17XEP-0441: Message Archive Management Preferences <https://xmpp.org/extensions/xep-0441.html>.
18XEP-0258: Security Labels in XMPP <https://xmpp.org/extensions/xep-0258.html>.
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8.4 MUC message spoofing
This specification re-uses the <x> element from the ’http://jabber.org/protocol/muc#user’
namespace to convey information about the sender of a message in a MUC room. However
this element is not sanitized by MUC services, so the archiving entity MUST strip any existing
<x> element in the ’http://jabber.org/protocol/muc#user’ namespace from messages before
archiving them (regardless of whether it adds in its own <x> element).

9 Implementation Considerations
Queries in the ’urn:xmpp:mam:2’ namespace can be limited using the RSM ’before’ and ’after’
parameters. Normally these are opaque identifiers that are not known until the results of the
first query are returned at which point they can be used to fetch subsequent pages. However,
MAM specifically defines them as being equal to the archive ID, meaning that an acceptable
value can be known and used in the initial query. This makes them equivalent to ’before-id’
and ’after-id’ defined in the ’urn:xmpp:mam:2#extended’ namespace except for the following
differences:

1. The behavior of using RSM’s ’before’ and ’after’ together is undefined,

2. And using ’before’ implies paging backwards through the result set while using ’before-
id’ does not.

10 XMPP Registrar Considerations
10.1 Protocol Namespaces
This specification defines the following XML namespace:

• urn:xmpp:mam:2

Upon advancement of this specification from a status of Experimental to a status of
Draft, the XMPP Registrar 19 shall add the foregoing namespace to the registry located at
<https://xmpp.org/registrar/disco-features.html> as described in Section 4 of XMPP
Registrar Function (XEP-0053) 20.

19The XMPP Registrar maintains a list of reserved protocol namespaces as well as registries of parameters used in
the context of XMPP extension protocols approved by the XMPP Standards Foundation. For further informa-
tion, see <https://xmpp.org/registrar/>.

20XEP-0053: XMPP Registrar Function <https://xmpp.org/extensions/xep-0053.html>.
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<var>
<name>urn:xmpp:mam:2 </name>
<desc>Support for Message Archive Management.</desc>
<doc>&xep0313;</doc>

</var>

The XMPP Registrar 21 shall also add the foregoing namespace to the Jabber/XMPP Protocol
Namespaces Registry located at <https://xmpp.org/registrar/namespaces.html>.

<ns>
<name>urn:xmpp:mam:2 </name>
<doc>&xep0313;</doc>

</ns>

10.2 Form Types
This specification defines the following form types:

• urn:xmpp:mam:2

Upon advancement of this specification from a status of Experimental to a status of
Draft, the XMPP Registrar 22 shall add the foregoing namespace to the registry located at
<https://xmpp.org/registrar/formtypes.html> as described in Field Standardization for
Data Forms (XEP-0068) 23.

<form_type >
<name>urn:xmpp:mam:2 </name>
<doc>&xep0313;</doc>
<desc>Query for items in a message archive.</desc>
<field

var=’with’
type=’jid -single ’
label=’A␣JID␣that␣should␣appear␣in␣query␣results␣to␣or␣from␣

attributes.’/>
<field

var=’start ’
type=’text -single ’

21The XMPP Registrar maintains a list of reserved protocol namespaces as well as registries of parameters used in
the context of XMPP extension protocols approved by the XMPP Standards Foundation. For further informa-
tion, see <https://xmpp.org/registrar/>.

22The XMPP Registrar maintains a list of reserved protocol namespaces as well as registries of parameters used in
the context of XMPP extension protocols approved by the XMPP Standards Foundation. For further informa-
tion, see <https://xmpp.org/registrar/>.

23XEP-0068: Field Data Standardization for Data Forms <https://xmpp.org/extensions/xep-0068.html>.
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label=’A␣timestamp␣indicating␣the␣earliest␣message␣in␣the␣query␣
results.’/>

<field
var=’end’
type=’text -single ’
label=’A␣timestamp␣indicating␣the␣latest␣message␣in␣the␣query␣

results.’/>
<field

var=’before -id’
type=’text -single ’
label=’A␣stanza␣ID␣indicating␣the␣last␣message␣in␣the␣query␣

results.’/>
<field

var=’after -id’
type=’text -single ’
label=’A␣stanza␣ID␣indicating␣the␣first␣message␣in␣the␣query␣

results.’/>
<field

var=’ids’
type=’text -multi ’
label=’A␣list␣of␣stanza␣IDs␣corresponding␣to␣messages␣that␣

should␣be␣included␣in␣query␣results.’/>
</form_type >
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