DSSSL Lite Specification Preliminary Draft

$Id: lite.himl,v 1.1 1994/11/24 18:54:01 jjc Exp §

It is intended that this specification will eventnally develop to the point where it is self—contained, but al the
moment some of it will make sensc only when read iy conjunction with the DIS.

IDSSSL Lite describes an application of DSSSL standardized by SGMLU Open. 11 is planned that a conforming
implementation of DSSSL Lite shoutd alse conform to the DSSSL 1S,

DSSSL Lite, like DSSSL, is structured as a required core, pius a number of optional features.

Conceptual model

The desired formatting is described in terms of a tree of {low objects. Each flow object describes a task to be
performed by the formatier. The children of a flow object are flow objects that describe sub-tasks whose
results are used by the formatier to perform the task described by the parent flow object. The flow object tree
is constructed from (he input SGML document using the formatting specilication. This flow object tree
constitutes the input to the formatier.

Flow ohjecls of certain classes cannot have children associaled with them. These'are called atomic [low
objects. Flow objects of other classes are called compound flow objects. These flow objects may have one or
more sequences of children associated with them. Each sequence of children of a flow object is called a
stream. There is no order defined between two flow objects which are children of the same parent flow object
but which occur in different streams. Each stream of flow object is attached 10 a named port of the flow object.
The set of ports that a flow object depends on its class and in some cases also its characteristics. One port of
each flow object is distinguished as the principal port.

Each flow object has a class that specifies the type of task Lo be performed and a number of named
characteristics that [urther specify the task.

The result of a formatting a flow object, that is performing the Formatting task that the [low object describes, is
a sequence of areas. An arca is a rectangular box. An area may in tum contain sub-areas. An area can be
imaged on a presentation medium. lmagiyg an area causes any sub-arcas (o be imaged and may also cause
marks 1o be made on the presentation medium. Formatting a compound flow objects uses the arcas produced
by formatting its children flow objects 10 produce its own areas.

Areas are of two types inline areas and display areas. These arcas differ in how they are placed.

The formatting specification can be thought of as describing a function that has two arguments, a node in the
input tree and a characteristic set which associates values with certain characteristic names (the inherited
characteristics), and rewurns a sequence of flow objects. This funcion is catied the global constructor function.
The flow object tree is constructed by applying the global constructor function to the root node of the input
tree and a character set in which every inherited characteristic has its initial value; this must return a flow
object sequence containing a singie flow object.

The global constructor function is specified with a set of style specification. Each style specification consists
of a patterr: and & constructor function. When applied o a node the global constructor Tunciion finds the style
specificalion with the most specific patern which maiches the node, and then applies the style speeification’s
constructor function to the node. The characteristic set that was passed to the global constructor funiction is
passed on as an implicit argument o the style specification’s constructor function,

The constructor function can construct a flow object by specifying its ctass and characteristics. Each inherited
characteristic gets its value from the implicit characleristic sel argument, Characteristics that are not inherited
can either be specified explicitly or, in most cases, can be defauiled. When constructing a compound flow
ohject, a flow object sequence can be specified as the conent. In many cases the content of the flow object
will be the flow object sequence containing the results of recursively applying Lhe global construcior funciion
1o the content of the node. This is alse the default conswructor function for any nodes in the input document
that do not maich the paitern in any style specilication.

The flow objects in flow object sequences retumed by the constructor funclion can be labelied with the name
of a port. When a flow object oceurs in a ffow object scquence specificd as the contemt of a compound flow
object, then if the flow object is not labelled, it is added 1o the stream atlached to the principal pori of the

compound flow object; otherwise if the label is the same as the name of one of the ports of the compound flow
object, the labelled flow object is added 10 that porl’s streamy; otherwise the labelled flow object will float out of
the content of the compound flow object. Thus a specification of the construction of a single flow object is
ireated as the specification of a flow object sequence: the consiructed flow object is the first member of the
sequence; the remaining members are labetled flow objects that have floated out of the contert of the
construcied flow object.

Style specifications

A style specification of the form

{element gualified-gi
constructor)

specifies a pattern that matches elements that maich the qualified-gi; this is either a generic identifier

P or a list of generic identifiers (UL LI). In the latier case an element maiches i its generic identifier is equal
10 the last generic identifier in the list and the generic identifier of its parent is equal 1o the last but one |
generic identifier in the list and so on. Strings can be used instead of symbols; this is necessary if the generic |
identifier is not a legal identificr in the expression language (this can only happen with variant concrele |
syntaxes).

Note that it is possible for a constructor o give different treatment to elements based on their attributes
Or ancestry.

A longer qualified-gijsreated as more specific that a shorter one. If more than one identical
gqualified-gi gre specified then only the first is used; this allows users to override style specifications for
elements.

A style specification of the form

{ig identifier
COnStrUCtOr)

specifics a pattern that matches an clement whose unique identifier is equal to identifier. The
identifier ige¢ither a symbol or a siring. This kind of style specification is treated as more specific than
any specified using element.

A siyle specification of the form

(root constructor)

specifies a pattern that matches the SGML document node which contains the document element.

There is an implicit style specification for characters and sdata entities which constructs a character flow
object.

Constructors

A constructor in a style~specification is an expression that resulis an object of type flow—object—sequence.

The function (process-children) retwns the flow—object—sequence that results from appending the
flow—object—sequences that result from applying the global constructor function to all the children of the
current element in order. This is the defauil constructor {or an element to which no style specificalion is
applicable. This function shall not be called more than once for any node.

A flow—object—sequence ¢an be constructed using an expression with the following form:

(flow-cbject-class-name xeyword-argument-1ist)

The flow-object-class-name myst be the name of a pre-~defined flow object class, or must be have
declared as an application—defined flow obicet class,

The keyword-argument-1ist consists of a sequence of pairs of keywords and expressions. The
following keywords are allowed:

A keyword which is the name of an inherited characteristic. In this case the argument is evaluated with
respect to the current characteristic set to yield a value. A new characteristic set is coastructed from

the current characteristic set by replacing the value of the specified characteristic with this new value,
and this characleristic set is used 1o evaluate the remaining keyword arguments. Keyword arguments
corresponding 1o inherited characleristics are evaluated in the order specified beforc any other
argumnents.

A keyword which is the name of a non—inherited characleristic applicable 1o flow objects of the class
being constructed.

content : specifies the content of the constructed flow object. The expression must evaluate to a flow
object sequence. The default is (process-children).

break-befcre: specifying the type of break that is 1o oceur before the constructed flow object. The
argument must cvaluate 1o one of symbols 1line, paragraph, page. This causes a flow object 1o be
inserted before the constructed flow object which will produce a special display area, that will cause a
break of the specified Lype.

A paragraph break can be specified only within a paragraph. It cause the paragraph flow object to start
a new paragraph. This differs from a line break in thal the [irst line afier a paragraph break will be
indented as specified by the first-line-start-indent : characteristic. Furthermore the paragraph
uscs the characteristics associated with the inserted paragraph break flow object in formatting the
portion of the content of the paragraph {low object after the paragraph break and belore any subseguent
paragraph breaks.

break-after:

space-before: specifies the length of a blank display area 1o be inserted before the constructed flow
object. This argument causes a flow object to be inserted before the constructed flow object that will
produce a single blank display area. The argument can be a length or a length~spec or a

display—space.

space-after: specifies the length of a blank display arca to be inscried after the constructed {low
object. This argument causes a flow object o be inserted after the constructed flow object that will
preduce a single blank display area. The argument ¢an be a length or a length—spec or a

display~space.

escapement-space-before: specifies the length of a blank inline area to be inserted before the
constructed flow object. This argument causes a flow object 1o be inserted before the constructed flow
object that will produce a single blank inline area. The argument can be a length or a lenglh~spec or an
inline—space,

escapenent-space-after: specifies Lthe length of a blank inline area o be inserted after the
constructed flow object. This argument causes a flow object 10 be inserted after the constructed flow
object that will produce a single blank inline area. The argument can be a length or a length—spec or an
inline—space.

label: specifies a symbol with which the construcied ow object should be labeled. Flow objects
inseried by the break—before, break—afier, space~belore and space—alter: keywords are also labeled

with this.

A flow object sequence can also be construcled using the fellowing form:

(sequence keyword-argument-list)

This returns the flow object sequence specilied in the content : argument. The
keyword-argument-~1ist hasthe same form as with [low object class names. Since sequence isnol a

flow o

bject no non—inherited characteristics can be specified. The 1abel: argument has the effect of labelling

all unlabelled flow objects in the conlent.

Public identifiers

DSSSL uses ISO 9070 public identificrs. | think we need 10 devise mappings between these and URNs or

URLs.

Characters and SDATA entities

Descri

be modet for handling characters and SDATA entitics.

Characteristics

Inheri

ted characteristics

Character level

font-family-name:

font-weight:

font-posture:

font-proporticonate-width:

font-size:

score:

placement-offset: Verticat offset from baseline. Applies 1o any inlined flow object.
color: Applies also to rules.

LR BN B B K N NN

Paragraph level
¢ start-indent: left indent (starl means at the start in the writing-mode direction} Applies 10 Hnes
produced by paragraphs. Also (o tables, extenal graphics, dispiayed rules
e first-line-start-indent: Applics to first line produced by each paragraph.
¢+ end-indent: (end means at the end in the writing-mode direction) Applies to lines produced by
paragraphs. Also 1o tables, external graphics.
e« quadding: Applics to lines produced by paragraphs.
e display-alignment: Similar to guadding, but jusiily not allowed. Applics to tables, external graphics,
displayed rules
e verbatim?:
s pre-line-spacing: Component of line spacing belore baseling
s post-line-spacing: Component of line spacing after baseline
Other
& background-coloxr: Applies to root (specifies window background).
Common non-inherited characteristics

s keep-with-previous?: Applies w displayed flow objects.
* keep-with-next?: Applics o displayed {low objects.

Tlow object classes
Root flow object class
Paragraph flow object class
Represents a logical paragraph, Can contain more than one block of text.
Labeled—item flow object class
Used for lists, where cach list itlern is labelled (marked).
Character flow object class
(literal string .)
Rule flow object class
The rule flow object class is used 10 create horizontal and vertical rules.
Leader flow object class

The leader flow object class is used to create leaders. The content is repeated as many times as 1s necessary
10 {ill the available space on the line.

External graphic flow object class

Flow object classes for tables

table table~part table~row inline~table—cell display—table—cell
Page layout

DDSSSE Lite provides the following very simpie page tayout capabilities:

» single column only; no footnotes; no floats

one line headers and footers

s ability to specify center/lefiright/inside/outside components of headers as combination of iteral text,

source document content and page number

specifiable top/bottom/lefy/right/header/footer margins on a per document basis

ability to specifly that content of element should start a new page

* ability 10 specify that a flow object should be kept with the preceding or following flow object and that
group of flow objects should be kept on same page

L 2

In DSSSL terms there would be a simple variant of the page—sequence flow object with a {ixed page model
that would be parameterized by characteristics of the flow object.

Impiementations that don’t do pages would just ignore ail of this.
Hypertext features

These features would not be standardized in DSSSL, although they would be specilied in a way that is DSSSL
conformant by using application defined flow objects and characieristics defined by the SGML Open
application.

The iconify flow object would appear as an icon, which when clicked would display its content in a separate
window.

Also need flow objects/characierics {or linking.
IExpression language

Lexical structure

Comments start with ; and continue 1o end of line.
White—space can be used freely 1o separale 1okens.
Language 1s case—sensitive.

Syntax

An expression is one of the following:

boolean

number
charactler

string

keyword
glyph—identifier
guotation
variable—reference
function-call
if—expression
cond--gxpression
Case-CXpression
and--expression
or—expression

. % & & & &5 8 ¢ 0 0 & 0 0

General purpose data types

boolean

number/guantity

char

string

symbol

keyword

function (in this subset all lfunctions are primitive or exiemal} Need external-function function.
list (no car, cdr, cons); just list and lst-ref.

® & & & ¢ & 9

i

Special purpose data types

» color
* color—space
¢ display-space
» inline-space
» flow—object—sequence
+ lcngth—spec
s plyph-id
Querying
Counting

{(child~number)

Returns child number of current element, that is, the number of siblings of the current eiement that are before
or equal to the current element and thal have the same g: as the current element.

{ancestor~-child-number €)
Returns child number of nearest ancestor of current element whose gi is €.
(hierarchical-number €1 €2 . . em

Returns a list of numbers; last member is child number of nearest ancestor of current element with gi en; next to
last member is child number of nearest ancestor of that element with gi en—1.

(hierarchical-number-recursive ©)

Returns 4 list of numbers; last member of list is child number of nearest ancestor of current element with gi ¢,
next to last member is child number of nearest ancestor of that element with gi € and so on. Note that the
length of this list is the level of nesting of e.

(element-number)

Returns the number of elements before or equal to the current element with the same gi as the current element.
Note that this includes elements anywhere in the document hierarchy.

{element-number-list &l &2 [| &Ny
Retwrns a list of N numbers, where the ith number is the number of elements that:

* are before or equal to the current element,

& have gi (i),

e and, if i is greater than 1, are afler the last element belore the current elernent with gi e(i-1)
(Informally the counter for each argument is reset by the start of the previous argument.) Note that an element
is considered 10 be after its parent. This could be used to number headings in HTML. It could also be used to
number footnotes sequentially within a chapter (using the last number in the list}. (For efficiency’s sake it might
be necessary to require that all arguments are constants, but I hope not.)

Querying for attributes
The value returned by these functions is either a string, giving the vaiue of the autribute of #f.

(attribute n&ME}

Returns the attribute rame of the current element, or #i if the current clement has no such attribute or the
attribute is implied.

{inherited-attribute naMe)

Returns the altribute rame of the current clement o1 of the nearest ancestor of the current element for which
this attribute is present with a non—implied value, or #1 if there is no such element.

(ancestor-attribute ¢i name)

