
Number: 9 Technical Report Series February 1995

Review of Visualization Systems

Advisory Group on Computer Graphics
Technical Report

K. W. Brodlie, J. R. Gallop, A. J. Grant, J. Haswell, W. T. Hewitt, S. Larkin,

C. C. Lilley, H. Morphet, A. Townend, J. Wood, H. Wright

2nd Edition

Preface

This technical report arose from the work of a working group of the Advisory Group on Computer
Graphics (AGOCG). The following people took part in the study, attended meetings and compiled
this report:

K W Brodlie School of Computer Studies, University of Leeds
J Gallop (Chairman) Rutherford Appleton Laboratory, DRAL
A J Grant Computer Graphics Unit, Manchester Computing Centre
J Haswell Rutherford Appleton Laboratory, DRAL
W T Hewitt Computer Graphics Unit, Manchester Computing Centre
S Larkin Computer Graphics Unit, Manchester Computing Centre
P Lever Computer Graphics Unit, Manchester Computing Centre
C C Lilley Computer Graphics Unit, Manchester Computing Centre
H Morphet Computer Graphics Unit, Manchester Computing Centre
A Townend Computing Services, Keyworth, NERC
J Wood School of Computer Studies, University of Leeds
H Wright School of Computer Studies, University of Leeds

While every effort has been made to ensure that this document is accurate it is presented for infor-
mation only. It is not guaranteed for any particular purpose and neither the editor nor the contrib-
utors nor their institutions nor the Advisory Group on Computer Graphics (AGOCG) accept any
responsibility.

1995 AGOCG

Published by the Advisory Group on Computer Graphics (AGOCG).

c/o Dr. Anne Mumford, Computer Centre, Loughborough University of Technology, Loughbor-
ough, Leics LE11 3TU, UK

Tel: 01509 222312, Fax: 01509 267477, Email:a.m.mumford@lut.ac.uk
URL: http://www.agocg.ac.uk:8080/agocg/

AGOCG Technical Reports, Proceedings and Training Materials may be copied and used for edu-
cational purposes as defined in the CHEST Code of Conduct. This report, if copied, must be cop-
ied in full.

The use of registered names, trademarks etc. in this technical report does not imply, even in the
absence of a specific statement, that such names are exempt from the relevant protective laws and
regulations and therefore free for general use.

Page iii of viii

2nd Edition AGOCG

Contents
Chapter 1: Overview . 9

Introduction . 9

Systems under review . 10

Chapter 2: Getting Started . 11

Introduction . 11

Application Visualization System (AVS) . 11

Starting up the system . 11
Use a sample network . 11
Build your own network . 12
Carrying on . 13
AVS Training Materials . 13

IBM Data Explorer . 14

Starting up the system . 14
Building a Network . 14
Running Example Programs . 15
Data Input . 15
Finishing off . 15

IRIS Explorer . 16

Starting up the System. 16
Running the Examples . 16
Building your own Map . 17
Data Input . 17
Finishing off . 17

Khoros . 17

Starting up the system . 17
Building a Network . 17
Running Example Programs . 18
Data Input . 19

PV-WAVE . 19

Chapter 3: Functionality . 21

Introduction . 21

Data Models . 21

General introduction . 21
AVS. 22
IBM Data Explorer . 24
IRIS Explorer . 28

Page iv of viii

AGOCG 2nd Edition

Khoros . 31
PV-WAVE . 35

Algorithms . 35

Introduction . 35
Classification. 35
Interpolation . 36
Algorithms for scalar data over 3D. 38
Algorithms for vector field over 3D . 40
Scalar field over 2D. 42
Scalar field over 1D. 43
AVS. 43
IBM Data Explorer . 46
IRIS Explorer . 48
Khoros . 50
PV-WAVE . 51

Presentation . 52

Introduction . 52
Rendering . 53
Manipulation . 54
Hardware support . 54
Application Visualization System (AVS) . 55
IBM Data Explorer . 56
IRIS Explorer . 57
Khoros . 58
PV-WAVE . 60

Chapter 4: Data Import . 61

Introduction . 61

Application Visualization System (AVS) . 61

Supported data readers . 61
Tools for importing data . 65

IBM Data Explorer . 66

Data readers. 66
Tools for importing data . 67

IRIS Explorer . 68

Data Readers . 68
Tools for importing data . 70

Khoros . 72

Data readers. 72
Tools for importing data . 73

Page v of viii

2nd Edition AGOCG

PV-WAVE . 73

Data readers and importing data . 73

Chapter 5: Data Output. 75

Application Visualization System (AVS) . 75

Hardcopy facilities . 75
Files . 75
Animation and Video facilities . 78

IBM Data Explorer . 80

Hardcopy . 80
Files . 81
Animation/Video Creation . 81

IRIS Explorer . 82

Hardcopy . 82
File output . 82
Video/Animation. 84

Khoros . 85

Hardcopy . 85

PV-WAVE . 86

Hardcopy . 86
File output . 86
Video/Animation. 87

Chapter 6: Incorporating Application Code 89

Introduction . 89

Application Visualization System (AVS) . 89

Programming language . 89
General overview and structure. 89
Automatic generation . 89
General topics . 91

IBM Data Explorer . 92

Programming language . 92
Overview of modules . 92
Automatic generation . 92
Further examples. 95

IRIS Explorer . 95

Programming language . 95
General overview and structure. 96
Automatic generation . 97
General topics . 98

Page vi of viii

AGOCG 2nd Edition

Khoros . 100

Programming language . 100
General overview and structure. 100
Software lifecycle . 101
General Topics . 101
Training . 102

PV-WAVE . 102

Chapter 7: Distributed Support . 103

Application Visualization System (AVS) . 103

Remote module execution. 103
Remote access . 103

IBM Data Explorer . 103

Remote module execution. 103
Remote access . 103

IRIS Explorer . 103

Remote module execution. 103
Remote display . 104
Printing . 104

Khoros . 104

Remote module exectution . 104
Remote access . 104

PV-WAVE . 104

Remote execution . 104
Remote Display . 105

Chapter 8: Additional Information . 107

Introduction . 107

AVS . 107

Availability . 107
Support . 109
Information . 109
User groups . 110

IBM Data Explorer . 111

Availability . 111
Support . 112
Information . 112
User groups . 113

Page vii of viii

2nd Edition AGOCG

IRIS Explorer . 113

Availability . 113
Support . 114
Information . 114
User groups . 115

Khoros . 115

Availability . 115
Support . 118
Information . 119
User groups . 120

PV-WAVE . 121

Availability . 121
Support . 122
Information . 122
User groups . 124

Chapter 9: Strengths Weaknesses Opportunities Threats (SWOT) 125

Introduction . 125

What is SWOT Analysis? . 125
Strengths and Weaknesses . 125
Opportunities and Threats . 125
Analysis. 127
SWOT Kit . 128
Mediation . 129

Application Visualization System (AVS) . 130

SWOT analysis . 130
Comments . 130
Summary . 135

IRIS Explorer . 136

SWOT analysis . 136
Comments . 136

Khoros . 142

SWOT analysis . 142
Comments . 142
Summary . 145

PV-WAVE . 145

SWOT analysis . 145
Comments . 146
Summary . 148

Page viii of viii

AGOCG 2nd Edition

IBM Data Explorer . 149

Introduction . 149
Additional Information for IBM Data Explorer 149
Data Manipulation. 150

Chapter 10: Conclusions and Summary . 153

Conclusions . 153

Acknowledgments . 153

Chapter 11: References . 155

Chapter 1: Overview Page 9 of 159

2nd Edition AGOCG

Chapter 1: Overview

1.1 Introduction

One of the responsibilities of the UK Advisory Group on Computer Graphics (AGOCG) is to
stimulate and support the effective use of computer-based visualization.

AGOCG therefore requested DRAL Rutherford Appleton Laboratory and the Universities of
Leeds and Manchester and NERC Computing Services (Keyworth) to conduct a review of visual-
ization software, to help potential and actual users make effective choices.

AGOCG conducted a previous evaluation of visualization software [15] and the Stichting Acade-
misch Rekencentrum Amsterdam have also produced an evaluation report [10]. At that time, AVS
was already becoming available on many workstations, IRIS Explorer and IBM Data Explorer
were quite new, Khoros was available free but was restricted to handling images, and apE was
undergoing a difficult transition.

One consequence of that evaluation was that AVS was made available to universities and other
HEI’s by CHEST on favourable site terms.

Why revisit this work after what is a comparatively short time? There are several reasons:

• Revisiting this work was envisaged at the time as it was realised that IRIS Explorer and IBM
Data Explorer were new in 1991/2 and it was not possible to evaluate them effectively.

• Since that evaluation IRIS Explorer is now developed and supported by a UK company
(NAG Ltd.), moreover a company with strong links with the UK academic community.

• Interest in PV-WAVE has grown in that time. This system is general purpose but at the same
time its command language system provides an interesting contrast to the other systems
which are in general of the data-flow type.

• Since that evaluation, AVS Inc has taken over the UNIRAS company - which means that
CHEST deals with these two distinct companies are now with only one.

The purpose of the work is therefore to review the current market for visualization software as it
exists in the UK and to provide information to the UK Academic community for its visualization
needs. There are many potential systems and the review had to narrow the field.

The review does not include basic plotting systems. These are already understood in the commu-
nity. Thus any system under review had to at least treat 3D data adequately. Therefore there had to
be:

• good, interactive support for viewing 3D geometry, taking advantage of 3D graphics hard-
ware now widely available to accelerate 3D viewing

• good support for visualizing 3D data - (a common pitfall here is the often quoted 3D plot,
which is often a plot of z=f(x,y) a single valued function of 2 variables which we would

Page 10 of 159 Chapter 1: Overview

AGOCG 2nd Edition

therefore regard as 2D data)

• The system under review must be general purpose and extensible

1.2 Systems under review

The following systems which were reviewed are listed below (in alphabetical order):

• AVS: Commercial product from AVS Inc., supported in the UK by AVS/UNIRAS Ltd. AVS
version 5.01 was reviewed and some comments about version 5.02 and the contents of ver-
sion 6 have been made.

• IBM Data Explorer: commercial product from IBM Inc., supported in the UK by IBM(UK)
Ltd. IBM DX version 2.0 was reviewed.

• IRIS Explorer: commercial product initially from Silicon Graphics Inc., bundled with Sili-
con Graphics workstations. It is also available from NAG Ltd. on other workstations and is
supported by them (not bundled). It has been announced that the next version (3) will be
unbundled from Silicon Graphics and available from NAG Ltd. IRIS Explorer version 2.2
was reviewed.

• Khoros: commercial product from Khoral Research Inc., distributed via a Free Access
License. Currently the version 2.0 Developer’s Release is only available via anonymous ftp.
The Khoros Software, including a 7 volume manual set, Khoros 2.0 source code and the
most commonly used binaries on CD-ROMs, will be distributed worldwide by Prentice
Hall, Inc. in the second quarter of 1995. Khoros 2.0 (Beta release) was reviewed.

• PV-WAVE: commercial product from Visual Numerics Inc., supported in the UK by Visual
Numerics Ltd. A related system IDL (http://sslab.colorado.edu:2222/
projects/IDL/idl_ssl_home.html) is also available in the UK from Floating
Point Systems Ltd. IDL was resold by IMSL before IMSL merged with Precision Visuals to
form Visual Numerics. The syntax of PV-WAVE and IDL is similar but the two products
have taken separate development paths for the past seven years. We do not cover IDL in this
review because of the similarities with PV-WAVE. PV-WAVE version 4.2 was reviewed.

Chapter 2: Getting Started Page 11 of 159

2nd Edition AGOCG

Chapter 2: Getting Started

2.1 Introduction

The following sections provide information for the novice user of each system. In some cases the
manuals supplied with the system include suitable tutorial examples and these are subsequently
referenced. Other systems have some simple examples included below. The notes assume that the
particular system has already been installed correctly on the users target platform.

2.2 Application Visualization System (AVS)

2.2.1 Starting up the system

The command to run AVS is

 avs

Typing this command should start up the copyright notice and result in one window down the left
of the screen. If it does not, you might need some extra information in your environment variable
PATH. Consult your System Manager for this.

2.2.2 Use a sample network

Place the mouse cursor (a pointing hand) over the panel “Network Editor” and click the left but-
ton once. This results in a small window on the left, the Network Control Panel, and a larger one
to the right, the Network Editor (see figure 1). In AVS, complete networks do the work of visual-
izing data and are made up of modules connected together, each module carrying out a specific
task. In the Network Editor, the top left hand section is called the main menu, and pressing a but-
ton here brings up suboptions. You should find on starting that the main menu option Network
Tools is active. Next to the menu options is the module pallette, containing all AVS’s individual
modules, accessible by scrolling up and down the top of each column.

To use a sample network, place the mouse cursor over the Read Network suboption and click the
left mouse button once. A file browser appears showing directories into which you can move by
clicking the left mouse button once. Move into the examples directory and click once over
bluntfin1.net . The file browser disappears and the network builds automatically. The net-
work reads 3D data representing the flow of air over an aerofoil and displays the pressure in the
window labelled AVS Display Pixmap. The image can be manipulated by placing the cursor in the
window and pressing the middle mouse button whilst moving the mouse. For more information
on manipulating scenes produced from AVS networks you should consult the AVS Tutorial Guide
Ch 2: Geometry Viewer Tutorial. This tutorial covers the use of the Geometry Viewer module

Page 12 of 159 Chapter 2: Getting Started

AGOCG 2nd Edition

which is similar in functionality to the coupling of Render Geometry and Display Pixmap used in
bluntfin1.net .

2.2.3 Build your own network

• First you need to clear the bluntfin network: select the suboption “Clear Network” and con-
firm.

• Scroll down the data input column until you seeRead Image, place the cursor over the
panel, press the left button and keeping it pressed, drag the module onto the blank work-
space below. Release the mouse button and the module appears on the workspace: this com-
bined operation is called module instantiation.

• In the same way, instantiate the modulesCrop from the Filters column andDisplay Image
from Data Output. You now have three modules in the workspace.

• To connect them together, move the cursor onto the coloured output port ofRead Image,

Figure 1: The AVS Network Editor

Chapter 2: Getting Started Page 13 of 159

2nd Edition AGOCG

press the middle mouse button and while keeping it pressed, move to the input port ofCrop.
Release the button and the connection will appear in blue. Do the same between the output
port ofCrop and the input port ofDisplay Image.

• Move to the Network Control panel and click onRead Image. Read Image’s file browser
appears and you should use the scroll bar and mouse to move into the directoryImage , and
select the filemandrill.x . The moduleRead Image now imports the data in the file
mandrill.x , passes it to theCrop module to reduce the size of the data and thence to
Display Image which shows the results, behind the Network Editor.

• To see the image, press “Close” on the main menu. To see the parameters of theCrop mod-
ule, click on “Crop” in the Network Control Panel. To set a new value on any of the dials
simply press with the left mouse button on the pointer, drag it to the required position and
release the mouse button.

• To return to the Network Editor press the “Display Network Editor” button in the Network
Control Panel. Before exiting AVS you should clear the network as before and then press
“Exit” on the Network Control Panel. Then on the main AVS panel press “Exit AVS” and
confirm.

2.2.4 Carrying on

The data you have used so far was AVS’s own internal data format. You will want to import your
own data into the system and for this you will need to use the AVS Data Interchange Application
(ADIA). More information on ADIA is available in the AVS Applications Guide [1] Ch. 1.

To find out more about individual modules you can run other demos in AVS. These are explained
in the AVS Tutorial Guide [6], Ch. 1

Online help on AVS can be accessed from within the system using the help buttons in both the
Network Editor main window and the Network Control Panel. Paper manuals comprise the AVS
Users Guide [8], Developers Guide [3], Tutorial Guide [6], Module Reference [4], Applications
Guide [1], AVS5 Update manual [7], Chemistry Developers Toolkit Guide [2] and AVS Technical
Overview [5].

2.2.5 AVS Training Materials

What do the materials contain?

The training materials contain slides and notes for two courses, the AVS Introductory [43] and
Advanced course [42]. These were initially developed as part of the Advisory Group on Com-
puter Graphics (AGOCG) Visualization Support Project at the Computer Graphics Unit,
Manchester Computing Centre, University of Manchester.

There are also a number of data files and modules which support the practical exercises described
in the course notes.

Page 14 of 159 Chapter 2: Getting Started

AGOCG 2nd Edition

How do I obtain the materials?

The materials are available in postscript format along with the supporting data files and modules
via anonymous FTP from the University of Manchester (ftp.mcc.ac.uk) or the International
AVS Center (avs.ncsc.org).

For example to obtain the materials from the University of Manchester you would first type the
following:

 ftp ftp.mcc.ac.uk

When you are connected to the server you should login in as anonymous and supply your email
address as the password. To access the training materials you must move to the subdirectory pub/
cgu/avs/avs_course and set the transfer to binary mode before getting the files:

ftp> cd pub/cgu/avs/avs_course
ftp> binary
ftp> mget *

2.3 IBM Data Explorer

A good way to start with Data Explorer (known as dx) is to follow the tutorial described in
Appendix A of the User Guide [26].

The tutorial is in a number of separate parts - each can be followed independently of the others. It
makes use of some files which should have been installed with the system. If these cannot be
found, it is possible that the path names are different on your system - consult your system man-
ager.

2.3.1 Starting up the system

At the UNIX prompt, type

dx

You should see the message below as dx is started:

Starting DX user interface

2.3.2 Building a Network

Appendix A.2 in the User Guide contains a tutorial which shows how to construct a simple net-
work that reads in data, generates an isosurface, and displays it. It also shows how to save the net-
work to file, and deals with the control of parameters (in this case the isolevel).

Chapter 2: Getting Started Page 15 of 159

2nd Edition AGOCG

One thing it does not tell you is how to correct an error in wiring up the network: to remove a con-
nection, click on thedestinationport and drag away the connection before releasing the mouse
button. Figure 2 shows the construction of a simple network.

2.3.3 Running Example Programs

Appendix A.1 reads a previously defined network from disk, and explains how to execute it.

2.3.4 Data Input

There is no tutorial on data input and so the new user must refer to the appropriate manual pages.
Chapter 4 of the User Guide deals with data import - it is well provided with examples in increas-
ing order of complexity.

2.3.5 Finishing off

To leave dx, click on “File” on the menu bar of the VPE (the Visual Programming Environment)
window and select “Quit”.

Figure 2: IBM Data Explorer Network

Page 16 of 159 Chapter 2: Getting Started

AGOCG 2nd Edition

2.4 IRIS Explorer

The manual IRIS Explorer User’s Guide [28] has a very good chapter concerned with “Getting
Started” for the first time user and an overview of the IRIS Explorer system can be found in pages
xx et seq (before Chapter 1 in the User’s Guide). The User’s Guide also contains chapters on how
to use the Map Editor to build IRIS Explorer Maps. The following sections provide suitable refer-
ences into this manual where more detailed information can be found.

2.4.1 Starting up the System

To start IRIS Explorer you simply type:

explorer

If IRIS Explorer does not start up you may need some additional environment variables defined
(see Appendix A of the User’s Guide).

2.4.2 Running the Examples

This information can be found at the start of Chapter 1 in the IRIS Explorer User’s Guide. In a
standard installation the examples can all be found under/usr/explorer/maps and may be
invoked from the Map Editor or directly when starting IRIS Explorer:

explorer -map mapname.map

Figure 3: IRIS Explorer Map Editor

Chapter 2: Getting Started Page 17 of 159

2nd Edition AGOCG

2.4.3 Building your own Map

This is fully described in Chapter 2 and 3 of the IRIS Explorer User’s Guide “Working with the
Map Editor”. An example of the Map Editor is shown in figure 3.

2.4.4 Data Input

Data is imported into IRIS Explorer using the DataScribe tool which is fully described in Chapter
7 of the IRIS Explorer User’s Guide. As well as step-by-step instructions, there are samples in:

/usr/explorer/scribe

and data in:

/usr/explorer/data/scribe

2.4.5 Finishing off

To quit from IRIS Explorer you must select “Quit” from the Admin menu in the IRIS Explorer
Map Editor window.

2.5 Khoros

The manual Khoros Getting Started Manual [33] should be consulted by the first time user. The
following sections provide suitable references into this manual where more detailed information
can be found.

2.5.1 Starting up the system

Before using any of the utilities in Khoros you must first configure your startup environment. This
can be achieved manually or by running the utilitykconfigure . Both of these techniques is
described in Chapter 2 of the Getting Started manual. Once this has been done successfully you
can try one of the Khoros applications e.g.,

kman kman
putimage -i image:ball

2.5.2 Building a Network

All information processing and visualization programs in Khoros are available via the visual pro-
gramming language, cantata. Cantata is a graphically expressed, data flow visual language which
provides a visual programming environment within the Khoros system.

Page 18 of 159 Chapter 2: Getting Started

AGOCG 2nd Edition

There is a complete manual [39] dedicated to the Khoros application cantata and an example is
shown in figure 4.

2.5.3 Running Example Programs

There are a number of different sample Cantata workspaces available in the Sampledata Toolbox.
These may be invoked from the command line by running

Cantata -restore <workspace alias>

with any one of the following aliases:

workspaces:ColorArith1
workspaces:ComplexArith
workspaces:Express
workspaces:FilterEdge
workspaces:FilterMedian
workspaces:Formats
workspaces:Fourier
workspaces:Geometry
workspaces:GeometryElevation
workspaces:Render3dFFT
workspaces:Signal
workspaces:SimpleArith
workspaces:Wavelets

Figure 4: A Khoros Application in Cantata

Chapter 2: Getting Started Page 19 of 159

2nd Edition AGOCG

workspaces:5DHead

2.5.4 Data Input

In general, data access is performed through data services using one of the Khoros data models.
Data services transparently supports a number of file formats. When a file is opened, data services
checks the file to determine if it is one of the supported file formats. If it is, then the data contained
in the file will be made available through the various segments in the data model. Applications
which use data services can simply open up a file, and if the file is one of the supported formats, it
will be able to access it. More information can be found in [36].

2.6 PV-WAVE

PV-WAVE CL is a particularly easy package to get started with, primarily due to having an excel-
lent on-line help and demo system and good introductory documentation. The PV-WAVE Com-
mand Language Applications Guide and Overview have been combined into the PV-WAVE
tutorial.

Once PV-WAVE CL has been started the supplied demo gallery is particularly comprehensive and
useful, and the CL code for these examples is availble to the user. An example from a PV-WAVE
demonstration is shown in figure 5.

Figure 5: An example from PV-WAVE

Page 20 of 159 Chapter 2: Getting Started

AGOCG 2nd Edition

There are three getting started manuals provided, although some are not obviously named. These
are:

• Getting Started with PV-WAVE Point and Click Motif Version [54]

• PV-WAVE CL Applications Guide - Free Code and Sample Applications [52]

• PV-WAVE Command Language Overview [53]

The latter contains a very useful section, “An Interactive Session with PV-WAVE CL”, which
introduces the basic concepts of the command language via a simple tutorial.

Detailed platform-specific installation information is given on the CD-ROM inlay and the elec-
tronic documentation. Script files are generated during the installation to setup the user’s environ-
ment, so the site dependencies in the manuals are reduced.

Chapter 3: Functionality Page 21 of 159

2nd Edition AGOCG

Chapter 3: Functionality

3.1 Introduction

In this chapter we summarise the functionality of the visualization systems.

We consider this under the following major headings:

• Data Models: what are the fundamentals of the data that can be handled by each system?

• Algorithms: what visualization operations can be applied to the data, creating a graphical
abstraction?

• Presentation: how can the graphical abstraction be presented and manipulated?

3.2 Data Models

It is common for publicity about a visualization system to highlight the 3D or 4D plotting capabil-
ities that it provides. This can be misleading to the potential user for a number of reasons:

• The potential user is primarily interested in the characteristics of the data; the plotting capa-
bilities are a means to the end of analysing the data.

• Emphasising 3D or 4D plotting capabilities may mislead the potential user into believing
that the kind of data handled is also 3D or 4D when that is often not the case.

Here we use an approach which starts with the data to be visualized.

3.2.1 General introduction

After importing, the visualization system uses its native form to manipulate a dataset - the exter-
nal form is not used except to access and import the original data again. The capabilities of a visu-
alization system are limited by the data model offered by this native form. A very powerful data
model allows a wide range of visualization possibilities. However it is also possible for this
potential not to be realised either in the supported product or by 3rd party software - we review
the actual coverage in the sections on Algorithms and Presentation.

Fuller descriptions of the principles of data models are given elsewhere ([11],[63],[18],[17]). Here
we confine ourselves to a few practical issues and describe how these are addressed in the visual-
ization systems. We cover type, dimensions and organization of the data.

The scientific investigator who needs visualization is concerned with the values of certain proper-
ties defined on a grid.

In simple cases there is a single property, but in many cases the investigator is interested in sev-
eral properties on the same grid. So the fluid dynamics expert could be concerned with pressure,
temperature and flow. This is the dependent data which may represent measurements or the results
of computations. In some problems there could be many dependent variables.

Page 22 of 159 Chapter 3: Functionality

AGOCG 2nd Edition

Visualization systems normally deal with discrete data. Although it is possible to deal directly
with mathematical expressions, this is a subject not well dealt with in general purpose visualiza-
tion systems. Even if the investigator’s mathematical model involves a continuum, for computa-
tion or measurement reasons the data has usually been sampled. Hence we refer to a grid, which
consists of a set of nodes - the independent data - used to define where the dependent data is sam-
pled.

The coordinate system of the grid often consists of cartesian spatial dimensions and also time. A
collection of flow data is a good example of this, using either 2 or 3 spatial dimensions.

However the coordinate system need be neither cartesian nor spatial. Chemical reaction rates may
depend on the concentration of the constituent substances, the presence or absence of a catalyst
and other quantities such as temperature. For the investigator, these are the independent variables
and the values of those quantities, at which chemical reaction rates have been measured or calcu-
lated, represent a grid. For some problems, there could be many independent variables.

3.2.2 AVS

This section outlines the basic range of data types which are provided for importing the following
classes of data. The information provided is correct for the current version of AVS (AVS5) but an
additional section has been added to provide details on the changes that will be provided by the
next release of AVS (AVS6) in early 1995. AVS5 provides a number of datatypes:

• Scalars;

• Fields;

• Unstructured Cell Data (UCD);

• Geometry;

• Colourmaps;

• Molecule Data Type (MDT);

• User defined data;

Simple data types (character strings, integers, real, boolean)

The simple scalar types (character strings, integers, real, boolean) are all supported as AVS
datatypes.

General 1D/2D/3D arrays of data

The field datatype allows the importing of general arrays of data elements (N dimensional array of
M elements). The datatype allows the dimensions of the arrays to be described with an optional
mapping/transformation being applied to the data elements of the array as they were being
imported. These mapping types were split into three distinct types:

• uniform: the mapping is direct and implicit as no transformation of the data elements is
applied;

Chapter 3: Functionality Page 23 of 159

2nd Edition AGOCG

• rectilinear: a mapping is applied to the dimensions of the arrays so an additional vector of
coordinates is required for each dimension of the array during the mapping stage. This map-
ping could for example cater for logarithmic axis;

• irregular: an explicit mapping is applied to each data element as it is imported into the sys-
tem. The mapping can also raise the dimensions of the data e.g., mapping a 2D array of ele-
ments into 3D space. During the mapping stage an explicit coordinate value is needed for
every data element.

Node and Cell based data

The Unstructured Cell Data (UCD) type is aimed at providing support for associating data with
discrete geometric structures. The data type consists of nodes and cells to form the overall UCD
structure:

• nodes: a number of nodal positions in 2D or 3D space;

• cells: a number of logical connections are defined between nodes to form cells which hence
form the overall model. AVS supports the cell types: point, line, triangle, quadrilateral, pyr-
amid, tetrahedral, hexahedral.

Data can then be optionally associated at node positions, part way along a connection between
two nodes (mid-edge) or with a complete cell or UCD structure.

Geometric data

The AVS Geometry data type is provided to support the display of 2D/3D graphical objects. The
primitive datatypes provided are: disjoint lines, triangle and quadrilateral meshes, polyhedron
definitions and spheres. There is also support for the definition of light sources, texture mapping
and control over the camera parameters to perform clipping, depth cueing and perspective view-
ing of scenes.

Chemistry application data

The Molecule Data Type (MDT) is provided to support chemistry applications and consists of a
number of objects arranged in a hierarchical structure:

• CHEMmolecule: root object, contains name and data;

• CHEMatoms: data for component atom;

• CHEMchemunits: molecular substructures;

• CHEMquantums: quantum chemistry;

• some support for the addition of user-defined data fields.

Colourmaps

The AVS colourmap data type is an arbitrary sized one-dimensional array of 4D vectors. The vec-
tor components are normalised floating point values which represent hue, saturation, brightness
and opacity.

Page 24 of 159 Chapter 3: Functionality

AGOCG 2nd Edition

User defined data

The AVS system provides a variant of defining structures in the C programming language which
encapsulates a number of the scalar data types into a user defined structure. The structure can also
contain arrays of these scalar types.

Errors and undefined values

Currently there is no real support for errors or undefined values but this is provided for in AVS6.

AVS6

This section details the changes to the data types which will appear with the release of AVS6 in
Q2 1995. In AVS5 different data types were required for different classes of data (i.e., 2/3D data,
finite elements, geometric). AVS6 now has one unified data type which can be used to represent
these classes of data within the same data structure. This removes the need for different visualiza-
tion modules to perform the same function on different types of data e.g., there is now only one
isosurface module for both field and unstructured cell data.

Another improvement is the facility to extend this base data structure with user defined fields. For
example you could add patient attribute information to image scans and the modules within AVS
would still recognise and process this extended data type as an image.

Other features include support for cylindrical, polar and spherical coordinate systems and the pro-
vision for users to specify NULL (undefined) data values. These underlying data types will also
be supported by the visualization modules in AVS6.

With AVS6, there will be a number of new features to improve the handling of large data sets.
These features include:

• data reference instead of data flow;

• direct rendering of large data sets;

• data chunking for processing large data sets a section at a time.

3.2.3 IBM Data Explorer

Data Explorer presents a unified data model based on the concept of a field. This concept brings
together the grid positions used to define where the data is sampled, the connectivity and the prop-
erty data. From the point of view of the user, a module may be defined on any kind of data where
it is reasonable to do so - there is no artificial distinction between types of data.

Simple data types (character strings, integers, real, boolean)

DX does not really treat these as data types. Some modules do process all these data types - as
standard C items - but are generally parameters to determine how to process data. A DX object
can be a string, but better support is provided for strings and numbers that are associated
attributes of a more complicated data structure (e.g. to associate the data with a name or number).

Chapter 3: Functionality Page 25 of 159

2nd Edition AGOCG

General 1D/2D/3D arrays of data

The easiest way to import array data into DX is to use the prompter tool. Figure 6 shows the inter-
face to import an ascii file containing data values on a uniform 3D grid. The data file consists of
data values only, and has a float value per line.

This generated the following general array format header:

file =./hipiph.ascii
grid = 64 x 64 x 64
format = ascii
interleaving = series-vector
majority = row
field = hipip
structure = scalar
type = float
dependency = positions
positions = 0, 1, 0, 1, 0, 1
end

The import module converts the data into DX objects, in this case, a Field with 5 components:

1. data, a generic array containing the data values.

2. positions, as it is a uniform grid this contains the start value for x y and z and the delta
(spacing) between each value in x y and z.

Figure 6: The DX prompter interface for data on a 3D uniform grid.

Page 26 of 159 Chapter 3: Functionality

AGOCG 2nd Edition

3. connections describes the connections and element type for the data.

4. box defines the corners of a bounding box.

5. data statistic contains statistics on the data.

which converts to the following DX format when imported with theimport module and exported
with theexport module (the actual data is now binary and not shown here):

object 1 class array type float rank 0 items 262144 msb ieee data 0
attribute “dep” string “positions”
#
object 2 class gridpositions counts 64 64 64
origin 0 0 0
delta 1 0 0
delta 0 1 0
delta 0 0 1
attribute “dep” string “positions”
#
object 3 class gridconnections counts 64 64 64
attribute “element type” string “cubes”
attribute “ref” string “positions”
#
object “hipip” class field
component “data” value 1
component “positions” value 2
component “connections” value 3
attribute “name” string “hipip”
#
end

Node and Cell based data

Both node and cell based data are supported. To define node data, state the data is dependent
(“dep”) on the positions and for cell based say it is dependent on connections. Current cell types
include: line, triangle, tetrahedron and cube (the latter is a general purpose shape defined by 8 ver-
tices). Currently no mid edge data is supported.

It is possible to define a DX header to import node and or cell-based data into DX. For example
the following lines have been extracted from the standard example dataset in /usr/lpp/dx/
samples/data/irregular.dx data file:

The irregular positions, which are 24 three-dimensional points.
object 1 class array type float rank 1 shape 3 items 24 data follows
0 0 0
0 0 1
0 0 2
0 2 0
0 2 1
0 2 2
1 0.841471 0

Chapter 3: Functionality Page 27 of 159

2nd Edition AGOCG

.............
3 2.14112 2
The irregular connections, which are 30 tetrahedra
object 2 class array type int rank 1 shape 4 items 30 data follows
10 3 4 1
3 10 9 6
10 1 7 6
.........
17 20 23 22
attribute “element type” string “tetrahedra”
attribute “ref” string “positions”
The data, which is a one-to-one correspondence with the positions
object 3 class array type float rank 0 items 24 data follows
1 3.4 5 2 3.4
5.1 0.3 4.5 1 2.3
4.1 2.1 6 8 9.1
2.3 4.5 5 3 4.3
1.2 1.2 3 3.2
attribute “dep” string “positions”
the field, with three components: “positions”, “connections”, and
“data”
object “irregular positions irregular connections” class field
component “positions” value 1
component “connections” value 2
component “data” value 3
end

In this example the data is included with the description but does not have to be.

User defined data

DX has a rich collection of data objects, it is also easy for the user to group a number of objects
into a more complex structure (although the description header may be difficult to read).

Errors and undefined values

It is possible to specify the data is invalid, by including a componentinvalid positions which lists
the locations, orinvalid components to list invalidcells (where cells can be any cell, e.g. an FE
cell or a cell from a uniform grid). This means holes can appear in both regular and irregular
grids, or allows the user to define regions where another grid applies in a particular region (e.g. to
replace parts of a grid with areas of greater detail). The standard example network/usr/lpp/
dx/samples/programs/InvalidData.net shows that invalid data is not rendered - e.g.
holes appear in the shaded object, contour lines do not pass through invalid points and streamlines
stop at invalid points.

When using DX it is also possible to set avalid range of values for use by the autocolour/
autogreyscale and specify colours to be used for out of range data (this could be used to highlight
unsuspected invalid data). Also theInclude module can aid the viewing of invalid data and data

Page 28 of 159 Chapter 3: Functionality

AGOCG 2nd Edition

ranges. This module allows the user to select only those points which lie within or outside a given
range. Non selected points can be marked as invalid (Cull).

Any comments

DX also has good support forseries of data, such as time series. It can also handle the B-rep
model for CSG as it is possible to have faces, loops and edges components in an object (e.g. the
CSG examples in the public domain).

Although facilities for importing data by using a header description are very powerful in Data
Explorer, it is also possible to generate filters (e.g. the FLUENT filter in the public domain) or
import modules (e.g. the PHOENICS import module from the public domain). To develop code to
import data both as filters and modules see Chapter 6, “Modules that Import Data”, and Chapter
10, “The Data Model”, of the Programmers Reference manual.

3.2.4 IRIS Explorer

IRIS Explorer - like AVS - also presents a distinction between major data types. As well as geom-
etry, IRIS Explorer provides lattices, pyramids and parameters.

This section outlines the basic range of data types which are provided for importing the following
classes of data. The Explorer data types covered are:-

• Parameter

• Lattice

• Pyramid - Finite Element and Molecule Pyramids.

• Geometry

• Pick

• User defined types

Simple data types (character strings, integers, real, boolean)

The Parameter data type handles all of these explicitly, with the exception of boolean (although
those values can of course be handled as some other data type).

General multidimensional arrays of data

This form of data is handled by Explorer’s Lattice data type. The Lattice is sub-divided into 3
parts:-

1. nDim and dims where nDim is the number of dimensions and dims is an array holding the
extent of each dimension.

2. cxData which is a structure containing (1), nDataVar which is the number of data variables,
a primitive type definition and an array holding the data. (optional)

3. cxCoord which is a structure containing (1), the coordinate type and an appropriate type of

Chapter 3: Functionality Page 29 of 159

2nd Edition AGOCG

array holding the coordinates. (optional)

The values of nDim and dims must be the same for each section. There are 5 primitive types:-
byte, short, long, float and double.

Lattices have 3 coordinate types:-

• Uniform: these can be multidimensional with nDataVar data variables of any primitive type
at each node, but with no explicit coordinates. The shape is defined by the number of nodes
in each direction with a uniform cell size. Explorer uses a bounding box to set the size and
aspect ratio of Lattice coordinates.

• Perimeter: these can be multidimensional with nDataVar data variables of any primitive type
at each node, and a list of coordinates sufficient to specify an irregularly spaced rectangular
structure. It has a 1, 2 or 3 coordinate dimensions depending whether it is a 1D, 2D or 3D
Lattice.

• Curvilinear: these can be multidimensional with nDataVar data variables of any primitive
type at each node, and with M coordinate variables to describe the position of each data
point. The dimensionality of the Lattice gives an implied connectivity to the data.

Colour maps are just specific instances of a 1D uniform lattice with either 1 data variable (grey
scale), 3 data variables (RGB) or 4 data variables (RGB & opacity).

Node and Cell based data

The Explorer Pyramid data type holds two types of data: irregular or unstructured data and molec-
ular modeling data. A pyramid consists of 3 main parts:

• the several layers of pyramidal data; for example, points, lines and faces. These values are
collected in cxLattice structures.

• the relationship between these lattices, described by cxConnection. The cxLattice and
cxConnection together form a layer.

• optional references to predefined pyramid elements which are stored in a dictionary, cxPyra-
midReference.

Irregular or Unstructured Data: In IRIS Explorer, the Pyramid data type is primarily used for finite
element modelling and creating irregular grids and most Explorer pyramid modules handle only
this kind of data. The basic layers to create a Tetrahedral grid include:

• the base lattice which holds the coordinate and data at each node.

• layer 0 (1D) which lists the connections between nodes to form edges.

• layer 1 (2D) which lists the connections between edges from layer 0 to form faces.

• layer 2 (3D) which lists the connections between the faces from layer 1 to form tetrahedral
elements.

• layer 3 which lists the connections between the tetrahedrons of layer 2 to form complex
structures composed of tetrahedral elements.

Page 30 of 159 Chapter 3: Functionality

AGOCG 2nd Edition

Molecular Modeling

Chemistry pyramids are used to construct objects according to information pertaining to molecule
structures. This pyramid structure is more narrowly defined than that for finite elements and rep-
resents (in the 3D layer, layer 2) not a volume, but a ball-and-stick construction. There are a num-
ber of modules associated with this type such asBallStick which takes a molecule pyramid and
outputs it, in Geometry, as a ball and stick construction, andReadPDB which links in to the
Brookhaven Protein DataBase and can search for named molecules and builds Chemistry Pyra-
mids.

A number of chemistry modules have been written for IRIS Explorer at Imperial College; these
are bundled with version 2.2 in the unsupported modules category. These include modules for
reading data from a variety of chemistry packages (see section 4.4.1), for the creation of geometry
representing molecules as ball and stick and ribbon constructions, and for the animation of molec-
ular vibration modes.

Geometry data type

As noted above in section 3.4.7, geometry in IRIS Explorer is implemented using Inventor, an
object-oriented 3D toolkit. Geometry objects which can be created via the IRIS Explorer geome-
try API include points, lines, polygons, spheres, cones, cylinders, triangle meshes, NURBS
patches, octree volumes, and text; this interface also offers control over colours, lighting and geo-
metric transformations. It is possible to also create and manipulate the geometry via the Inventor
API.

Geometry is read into and written out of IRIS Explorer as an Inventor object, which makes it
available to other Inventor applications such as SGI’s Showcase presentation package. The Open
Inventor file format is being promulgated by SGI as a de-facto standard for 3D scenes, and the
number of Inventor applications, readers and translators is apparently on the increase.

Pick Data

This is a specialised data type that is used only in 2D and 3D modules. It is used to enable the user
to pick, or select, a particular location in an image (2D) or rendering (3D) module display window
and obtain information about it. For example, you may want to query part of a picture of an isos-
urface. You could find out the coordinates of a spot on the surface or the data value at that point. It
is also possible to use the pick data type to create an object or move an existing object to a new
location in a rendering module display window. As the user clicks on the position in the window
the information goes to an upstream module which creates the new geometry and sends it to the
Render module.

User defined data

IRIS Explorer provides a language, called the Explorer Typing Language (ETL) which can be
used to build new user-defined data types that can be passed between modules in the same way as
other IRIS Explorer data types. ETL was used to create the standard Explorer root types such as
Lattice and Pyramid etc., which contain subtypes such as cxData and cxCoord. A user-defined

Chapter 3: Functionality Page 31 of 159

2nd Edition AGOCG

root type can reference these Explorer subtypes in its definition. ETL is syntacticly very similar to
C.

Once the user has defined the data type using the ETL, IRIS Explorer compiles it. This consists of
the automatic translation of the ETL file into C and creates a library of accessor functions for the
different components of the type, together with the appropriate header files. Information about the
new type is automatically picked up by tools such as the Module Builder (used in the creation of
new modules - see below) and the Map Editor (used in the creation of new applications). The user
can then write their own modules to process data using the new type, manipulated via the new
API which has been automatically generated by IRIS Explorer in the compilation of the type.

Errors and undefined values

Having read in an Explorer Lattice there are several ways to deal with erroneous values. Using
ScaleLatNode it is possible to define a min and max for the data and then either Clamp, stretch
or threshold the erroneous values. Clamping fixes the value to either the min or the max value,
stretching rescales the data to fit the parameter min and max and thresholding produces a binary
array where 1.0 is inserted for a correct value and 0.0 for an error. This can be used later to take
different courses of actions for correct and error values.

3.2.5 Khoros

Khoros actually provides two data models, a polymorphic data model and a geometry data model.
These data models are implemented within the Khoros data services libraries. All Khoros data
processing and visualization routines are written to operate on these data models via data services.
The low-level functionality of data services give these operators the ability to operate on data
independent of data type, size, and file format.

Polymorphic Data Model

The polymorphic model is so named because it is capable of storing data from several different
domains. By capitalizing on the commonality of data interpretation across these different
domains, the polymorphic model facilitates interoperability of data manipulation routines. In
other words, processing routines which use the polymorphic data model will be able to process
data objects containing anything from signals to images and from to volumes to animations.

The polymorphic model consists of data which exists in three-dimensional space and one-dimen-
sional time. You can picture the model most easily as a time-series of volumes in space. This
time-series of volumes is represented by five different data segments. Each segment of data has a
specific meaning dictating how it should be interpreted. Specifically, these five segments are
value, location, time, mask, and map. All of these segments are optional; a data object may con-
tain any combination of them and still conform to the polymorphic model.

The value segment is the primary data segment, consisting of data element vectors organized
implicitly into a time-series of volumes. The value data may be given explicit positioning in space
and time with the location and time segments. The remaining two segments are provided for con-
venience. The mask segment is used to mark the validity of each point of value data. The map

Page 32 of 159 Chapter 3: Functionality

AGOCG 2nd Edition

segment is provided as an extension to the value data; the value data can be used to index into the
map data. Figure 7 provides an overview of the Khoros Polymorphic Data Model.

Value Segment

The value data segment is the primary storage segment in the polymorphic data model. Most of
the data manipulation routines are specifically geared toward processing the data stored in this
segment. In an imaging context, the individual pixel RGB values would be stored in here. In a sig-
nal context, regularly sampled signal amplitudes would be stored here.

The value segment consists of a time-series of volumes where each volume is composed of ele-
ment vectors. Each element vector is composed of a number of value points. The size of the value
segment is determined by the width, height, and depth of the volume, by the number of volumes
through time, and by the number of points in the element vector. This makes the value segment,
and the polymorphic data model, inherently five-dimensional.

Figure 7: An overview of the Khoros Polymorphic Data Model

TIME Data

MAP DataMASK Data

VALUE Data

LOCATION Data

places each volume
explicitly in time

volume of vector
data in space

marks
data

validity

volumes through
time

mask element vector

value element vector

1
1

1
0

1

NaN

3
14

21

4

places each vector from single volume
explicitly in space

1
2
3
4

0

value
data
may
index
into a
map

location data vector

Y
Z

T0 T1 T2 TNX

single element
vector

Chapter 3: Functionality Page 33 of 159

2nd Edition AGOCG

Location Segment

The value points in the value segment are stored implicitly in a regularly gridded fashion. Explicit
location information can be added using the location segment. If the value data is irregularly sam-
pled in space, the explicit location of each sample can be stored here. Specifically, the information
stored in this segment serves to position each the value data in explicit space. Note that the loca-
tion data only explicitly positions a single volume; the position then holds for each volume
through time.

The location segment consists of a volume of location vectors. The width, height, and depth of the
volume are identical to the volume size of the value segment. Different location grid types are
also supported. A curvilinear grid allows for explicit locations to be specified for each vector in
the value data. A rectilinear grid allows for explicit locations to be given for the width, height, and
depth axes. A uniform grid allows for explicit location corner markers to be specified.

Time Data

Explicit time information can be added using the time segment. If each volume of value data is
irregularly sampled in time, an explicit timestamp for each volume can be stored here. This is use-
ful in animations where each frame of the animation occurs at a different time.

The time segment consists of a linear array of timestamps. The number of timestamps matches the
time size of the value segment.

Mask Data

The mask segment is available for flagging invalid values in the value segment. If a processing
routine produces values, such as NaN or Infinity, these values can be flagged in the mask data so
that later routines can avoid processing them. A mask point of zero is used to mark invalid value
points, while a mask point of one is used to mark valid value points. The mask segment identi-
cally mirrors the value segment in size; there is one mask point for each value point.

Map Data

In cases where the value data contains redundant vectors that are duplicated in different positions,
the map segment may be used. The value vectors are replaced with values which index into the
map; the map then contains the actual data vectors. In this sense, the map is an extension of the
value segment.

The map segment consists of a number of width-height planes. The values from the value seg-
ment map into the map height indices. The map vector runs along the map width. A simple map
would consist of just a single width-height plane; a more complicated map would have a width-
height plane for every depth, time, and element plane in the value segment. This provides a great
deal of mapping flexibility. For example, every plane in a volume or every image in an animation
could have a separate map.

Page 34 of 159 Chapter 3: Functionality

AGOCG 2nd Edition

Geometry Data Model

The geometry data model supports the storage and retrieval of a number of standard geometric
primitives, such as spheres, triangles, and lines. Other non-geometric primitives such as oct-
meshes and textures are also supported.

The geometry data model is centered around a primitive list. This list is able to store any combi-
nation of geometric primitives such as spheres or polylines. Each geometric primitive consists
one or more different types of data, suchas location data and color data. The types of data required
depend on the primitive; all primitives have location and most have color while only some have
radii or normals. Most data is explicitly provided, although colors may be provided indirectly via
a colourmap. Quadmesh and octmesh primitives, which are not illustrated here, are also available.
These mesh primitives are overlaid on top of the polymorphic data model. Thus, from the point of
view of the polymorphic data model, a quadmesh will appear to be an image, and an octmesh will
appear to be a volume.

General 1D/2D/3D Arrays of Data

The polymorphic data model can be used to represent up to five dimensional arrays of data com-
plete with auxiliary information such as explicit location and time data, validity data, and map
data.

Node and Cell Based Data

Explicit nodes are provided for vertices or cells in the Geometry data model, however the connec-
tivity is implied by the geometry primitive which the data represents. There is no support for arbi-
trary connectivity.

The polymorphic data model allows an explicit location to be assigned to every data vector in the
Value segment, thus sparsely distributed node data can be represented. Connectivity between the
nodes can be specified only through the implicit organization of the Value data. There is no sup-
port for explicit connectivity between arbitrary nodes.

User Defined Data

The data services provides library calls for manipulating a generic abstract data object containing
arbitrary segments of any dimensionality. While new data models could be constructed using this,
it is not recommended as no existing processing operators would be able to operate on the data. In
general, if the data can be expressed in a five-dimensional space, it is best to use the polymorphic
data model.

Errors and undefined values

The Mask data can be used to specify the validity of the data (undefined data). There is no explicit
mention of support for errors within data values but the application could simply allocate a por-
tion of the data vector to support this feature. Even a combination of the mask and value data
could be used for indicating if data has an error component associated with it.

Chapter 3: Functionality Page 35 of 159

2nd Edition AGOCG

3.2.6 PV-WAVE

In principle, PV-WAVE’s data model could be as general as its command language. This includes
arrays and structures, which in combination allows a very flexible data definition. In practice the
data is confined to what can reasonably be handled by the plotting procedures. To give an exam-
ple, although it is possible to defined unstructured data using PV-WAVE’s data types, no proce-
dures to plot such data are available. More detailed information can be found in Chapter 4: Data
Import section 4.6.1. There are also some procedures to create, manipulate and display polygon
and vertex data within PV-WAVE and these are described in the Reference Volumes 1 and 2.

3.3 Algorithms

3.3.1 Introduction

This section deals with the algorithms which can be used to visualize a particular data set. It is
structured according to the following scheme:

• first, we characterise the nature of the data - this effectively gives us classes of problems,
such as scalar fields in 3D etc., (see section 3.3.2);

• next, we review briefly interpolation techniques - this gives us a means of creating a model
from the data that is defined everywhere (see section 3.3.3);

• then, for each of the classes, we describe some of the possible visualization techniques (see
section 3.3.4 to section 3.3.7);

• finally, we look at the availability of the different techniques in each system (see section
3.3.8 to section 3.3.12).

3.3.2 Classification

In visualization, we begin with a set of data. This will come either from observation (as in satellite
recording or medical scanner) or from simulation of some physical process (as in CFD). Either
way, the data is a sample from some underlying field - which we do not know, but which we are
looking to visualization to help us understand. Thus a fundamental step in visualization is the cre-
ation of an empirical model, guided by the scientific investigator’s understanding of the underly-
ing field.

When selecting a visualization algorithm, it is useful to first consider the nature of the underlying
field. What are the dimensions of the independent variables? What are the datatypes of the depen-
dent variables, and so on.

Indeed we shall use the nature of the underlying field as our means of classifying the visualization
algorithms. We use a subset of the classification derived at the AGOCG Visualization Workshop
in 1991 [11].

The letter represents the entity to be visualized, and a subscript denotes the dimension of the
independent variables. Thus represents an entity defined over a 3D region. Time is treated
specially - so in the above example, if the entity varies over time, we write .

E
E3

E3 t;

Page 36 of 159 Chapter 3: Functionality

AGOCG 2nd Edition

The type of dependent variable can be scalar (), vector of dimension k () or tensor (),
and this is written as a superscript.

So a vector field over 3D is written as: .

3.3.3 Interpolation

Interpolation is the process by which the empirical model is created from the data.

There are a variety of methods and a good reference is the book by Lancaster and Salkauskas
[44]. Here we give only a brief summary.

Consider first just . We shall be given a set of points . The interpola-
tion problem is to construct a model F(x) which matches the data at the given points.

The simplest method isnearest neighbour, in which the value of F is taken to be the f-value of the
nearest datapoint to x. Notice two features: it is very quick; but F(x) has a discontinuity midway
between each datapoint.

Continuity can be improved bylinear interpolation, in which F(x) is a linear function (that is, a
straight line) between data points. This requires some computation so is slower, but F(x) is now
continuous. Note however the slope of F(x) is not continuous, so if we know the underlying entity
is smooth, then our recreation of it may be misleading in this sense.

Slope continuity (continuity of the first derivative of F(x)) can be achieved, but at the expense of
more computation. A usual method is to estimate the slopes at the data points (for example, as the
average of the slopes of the lines to adjacent data points) and then to fit a cubic function in each
interval between data points. There are a variety of techniques for doing thispiecewise cubic
interpolation [12].

Second derivative continuity can be achieved, at even more computational expense, usingcubic
splines.

There are analogs of these methods in 2D and 3D. Consider first data on a rectilinear grid. The
nearest neighbour extends in an obvious manner - it is quick, but discontinuous as in 1D.

Linear interpolation extends tobilinear (2D) or trilinear (3D). Bilinear interpolation proceeds
thus: find the grid square of interest; use linear interpolation in x for both extreme values of y; use
these two calculated values in a further linear interpolation step in the y-direction. Trilinear is an
obvious extension to 3D. These give continuity of function value, at extra computation expense.
Hill [21] describes computational aspects of linear, bilinear and trilinear interpolation.

It is important to note that the bilinear interpolant in 2D is deceptively complex to visualize: it is a
curved surface with contour lines which are hyperbolic. Similarly, the trilinear interpolant in 3D is
likewise complex: surfaces of constant value are hyperbolic in nature. For this reason it can be
useful to split the rectangles into triangles, or cuboids into tetrahedra, and fit simpler interpolants
in each triangle or tetrahedron. These have straight line contours, or planar surfaces of constant
value, respectively.

S Vk Tkk

E3
V3

E1
S xi fi(,) i, 1 2 … N, , ,=

Chapter 3: Functionality Page 37 of 159

2nd Edition AGOCG

Piecewise cubic interpolation extends topiecewise bicubic andpiecewise tricubic; these provide
first derivative continuity, but are relatively rare (especially tricubic) on account of the computa-
tion involved.

Suppose now the data does not lie on a rectilinear grid. A variety of techniques have been sug-
gested for scattered data, and a good recent review is by Foley and Nielson [16]. A very simple
and reliable method ismultiquadric (MQ) interpolation. The MQ interpolant is continuous in all
derivatives, and is defined (in 2D) as:

where

with R a constant andd the distance of(x,y) from the ith data point (xi,yi). The coefficients ai are
found by solving theN linear equations:

The extension to 3D (and indeed higher dimensions) is straightforward.

Another good method is thequadratic Shepard’s method. This has the form:

whereLi(x,y) is a quadratic function constructed to be a good approximation to the underlying
function near the corresponding data point(xi,yi), andwi(x,y) is a weighting based on the distance
of the interpolation point(x,y) from the corresponding data point. Again the extension to 3D is
straightforward.

Another approach is to construct, in 2D a triangulation of the data, or in 3D a tetrahedral decom-
position. There are well known algorithms for this: the Delaunay triangulation has optimal prop-
erties in terms of avoiding long, skinny triangles - traditionally thought to be a good thing. (Note
however that views on this are changing - data dependent triangulations that align the triangles
with features of the data, rather than across them, can give superior results in practice - see the
paper by Dyn et al [14])

The triangulation is useful because local interpolants can be fitted within each triangle. Again
these can be linear to give function value continuity, or higher order to give slope continuity.

There are many other techniques for interpolating scattered data, and the reader is referred to [16]
for detail. Renka [60] gives an efficient implementation of the quadratic Shepard method.

F x y,() aiBi x y,()
1

N

∑=

Bi x y,() R
2

d
2

+ 
  0.5

=

fi F xi yi,()=

F x y,() wi x y,() Li x y,()
1

N

∑=

Page 38 of 159 Chapter 3: Functionality

AGOCG 2nd Edition

3.3.4 Algorithms for scalar data over 3D

A large class of applications require the visualization of a scalar field over a 3D region. For exam-
ple, data from medical scanners, temperature or pressure data from CFD.

There are essentially two approaches:

• Surface Extraction:In this approach, a 2D surface of interest is extracted. The surface can be
extracted as a 2D planarslice through the 3D region, with 2D algorithms being used to dis-
play the data. Alternatively, the surface can be extracted as anisosurface, comprising all
points with the same value of the scalar field. The slice therefore extracts in the space of the
independent variable; the isosurface extracts in the space of the dependent variable.

Of course, these techniques display only a 2D subset of the data. However, the third dimen-
sion can be visualized through animation - in the case of slicing, the cross-section can
moved in time through the 3D region; in the case of isosurfacing, the isolevel can be moved
in time from minimum to maximum.

Note that in the case of an isosurface, it is possible to visualize a second scalar field over the
extracted surface, by assigning colour values to the surface corresponding to the second sca-
lar field.

• Volume Rendering: In this approach, the entire 3D volume is visualized. This is achieved by
mapping the scalar value to colour and opacity, to form a coloured jelly-likematerial which
can then be rendered. This allows the interior of the volume data to be inspected, and vary-
ing the classification of data by colour and opacity enables different features of the data to
be extracted. For example, in an extreme case, an isosurface can be extracted by classifying
all values greater than a threshold to be opaque.

We now look at these approaches in greater detail:

Surface Extraction

Slicing

This is relatively elementary: the slice can be positioned anywhere in the volume, a special case
being theorthogonal slice which is perpendicular to one axis. A typical visualization technique
on the slice is the image display, in which each pixel is coloured according to the scalar value at
the corresponding position on the slice; but other 2D techniques are possible (e.g. contour lines).
The 2D algorithms are described in section 3.3.6.

Isosurfacing

The extraction of isosurfaces has been studied in detail by researchers over the last few years. An
excellent review article has recently appeared [49].

E3
S

Chapter 3: Functionality Page 39 of 159

2nd Edition AGOCG

The best known algorithm ismarching cubes [47]. This assumes data defined on a set of cubical
cells, and constructs a polygonal approximation to the isosurface on a cell-by-cell basis. The
extraction uses linear interpolation along edges of the cube cells, and a simple strategy to deter-
mine the surface across faces and in the interior. This strategy needs some care however, as topo-
logical ambiguities can occur, and as a consequence there can be holes in the resulting surface.
Ning and Bloomenthal [49] explain how this can occur, and the remedies which can be taken.
Certainly a good algorithm will contain some robust disambiguation strategy.

One such strategy is to decompose each cell into a number of tetrahedra. If this is done carefully -
again see Ning and Bloomenthal - then linear interpolation along edges is sufficient to uniquely
define a piecewise linear interpolant within each tetrahedron, and hence an unambiguous surface
over the entire volume. This is known asmarching tetrahedra.

Other strategies are possible, and some are more efficient than marching tetrahedra because they
generate fewer triangles.

If the data are not given on a structured mesh, then there are techniques to construct a tetrahedral
mesh from the data

Marching tetrahedra can then be used on this mesh.

A common feature of all algorithms is the generation of a set of triangles which approximate the
isosurface. These are passed to a geometry renderer for display. For lighting and shading, it is
important to calculate surface normals at the triangle vertices, and different strategies are possi-
ble:

• Calculate the gradient of the scalar field (which is in the direction of the surface normal) at
the data points - for cubical cells, central differences can be used. Linear interpolation along
edges will give estimates of the normal at the triangle vertices.

• Calculate the normal at a vertex as the average of the normals to the triangles which share
that vertex.

Either strategy will generate normals which can be used for Gouraud or Phong shading to create a
visually smooth isosurface.

As mentioned earlier, the colour of the isosurface may be assigned by some transfer function of a
second scalar field.

Volume Rendering

In volume rendering, the intent is to display a representation of the entire 3D volume data - rather
than extract a surface. The data is modelled as a coloured jelly substance, of varying opacity or
transparency. It involves the following two initial steps:

• Colour Classification: The range of scalar data values are mapped to a range of colours,
using some transfer function.

• Opacity Classification: The range of scalar values are mapped to a range of opacity values,
using again some transfer function.

Page 40 of 159 Chapter 3: Functionality

AGOCG 2nd Edition

This classification step is under the control of the user, and is the key to successful visualization.
As an example, consider a medical application where the scalar data values represent density of
tissue. Then a certain range of data values will be known to correspond to bone, say, other ranges
to skin, fat etc., and these can be mapped to specific colour and opacity values. Other data values
may befuzzy, for example, maybe skin, maybe fat, with certain probabilities; these are mapped to
colour and opacity values intermediate between those for definite skin and fat. This ability to han-
dle fuzzy classification is an important aspect of volume rendering. There are two major
approaches to rendering the jelly substance: direct ray casting and splatting which are described in
section 3.4.2.

3.3.5 Algorithms for vector field over 3D

This is the type: . The field is defined by position only, that is, it is time-invariant or steady.

There are a variety of techniques for the display of vector field data. For a good review, see [50]
and [22]. We summarise the main techniques here:

• Arrows: A glyph showing the flow speed and direction, usually as an arrow of variable
length, is drawn at a given set of points. One may choose to draw the glyph at some or all
data points, in which case the data provides sufficient information. Alternatively, one may
wish to draw the arrows at user-specified positions, in which case interpolation will be
needed.

There are serious perception problems when this technique is used in 3D. It is more success-
ful when a 2D surface is extracted, and the arrows are shown only for data points on the sur-
face - indeed it is often effective to draw only lines without an arrowhead giving a spiked
appearance (hence the term “hedgehogs”). Some success has been obtained in 3D by using
3D glyphs.

• Particle Advection: This is based on a traditional experimental technique for flow visualiza-
tion. A light-emitting particle is released into the field and its progress is filmed over a spec-
ified time interval. In experimental flow visualization, this is commonly called apathline.

In practice, this visualization technique is implemented as follows. An initial particle posi-
tion is specified: say , at time . Then its progression is governed by the
system of Ordinary Differential Equations (ODEs):

with the initial values:

Because the flow is steady, the velocities vx, vy and vz are dependent only on position, not
on time. The solution of these equations is done numerically, and the quality of the ODE
solver will determine the accuracy of the resulting path. Euler’s method is simple and quick,
but generally inaccurate. Better results will be gained by a Runge-Kutta method. There are a
family of R-K methods, with differing orders of accuracy. Second order R-K is commonly

E3
V3

x0 y0, z0(,) t 0=

dx
dt
------ vx= dy

dt
------ vy= dz

dt
----- vz=

x 0() x0= y 0() y0= z 0() z0=

Chapter 3: Functionality Page 41 of 159

2nd Edition AGOCG

used.

The solution will also need interpolation to calculate the velocity at the points required by
the ODE solver, and the different algorithms described earlier can be used.

The presentation can be as the animated movement of the particle, or the trace of the particle
path can be rendered. In this latter case, the path is identical to a stream line as explained
below.

• Stream lines: These are lines which are everywhere tangential to the velocity field. The
speed of flow is also indicated by the relative closeness of the streamlines. The method is
better in 2D than 3D, some depth cueing being needed to assist perception.

For steady flows, particle paths and stream lines are identical, and so the computation pro-
cess is identical. The user will typically provide a set of starting positions from which the
stream lines are generated.

• Stream ribbons: This is a variation in which a pair of adjacent stream lines are considered to
be the edges of a ribbon, and rendered as such. This is useful to display twist in a flow field
[23].

• Stream surfaces: This is another variation, where a number of adjacent streamlines are con-
nected into a polygonal surface [24].

• Time lines: This is based on the experimental technique of releasing a line of hydrogen bub-
bles into the flow at a given time. The position of this line at a number of successive time
intervals is then displayed - as an advancing front.

In practice, this can be computed by selecting initial positions on a line in the flow. These
are imagined as the start points of particle paths, and the positions of the particles at regular
time intervals are recorded - interpolation through the positions at any time gives the corre-
sponding time line.

• Streak lines: In experimental flow visualization, this is defined as a line composed of those
particles which have passed through a specified location in a specified period of time. In
computational visualization, the term is used somewhat loosely. Sometimes it is used to
refer to the release of aline of particles whose position is tracked through the flow; in a
steady flow, these particle tracers will follow stream lines. On other occasions, it is used to
indicate particle paths through a time-varying field. When we look at different systems, we
shall try to indicate the meaning of the term in the context of the system.

• Topology Methods: This approach identifies the critical points where velocity vector is zero -
and classifies them as sources, sinks, etc. The connection of critical points divides the space
into regions of common flow properties. This is described in [20]. This has been imple-
mented in the FAST [9] visualization environment developed at NASA Ames Research
Center, but to our knowledge is not available in other visualization systems.

It should be noted that it is often useful to calculate scalar quantities from the vector field, for
example:

• magnitude of velocity

Page 42 of 159 Chapter 3: Functionality

AGOCG 2nd Edition

• magnitude of vorticity

 These scalar quantities are of type and can be visualized as such.

3.3.6 Scalar field over 2D

There are three approaches:

• Line extraction: In this approach, a slice is taken in a 1D subspace. The extraction can be in
the space of the independent variables, giving us a cross-section through the 2D region, and
a 1D technique can then be used - for example, a graph. Animation can provide a view of
the entire 2D region, by sweeping the slice through the space. The slice can be orthogonal to
an axis, or at an arbitrary angle.

Alternatively, the line can be extracted in the space of the dependent variable, giving a line
(an isoline or contour line) along which the scalar field has constant value. Several isolines
can be drawn, within a range of values of the scalar function, so as to give a view of the
whole region. A variation is to shade with constant colour between isolines.

• Surface drawing: In this approach, the scalar value is mapped to a third spatial dimension,
giving a surface in 3D space which can then be rendered as a geometric object. Note this
also allows a second scalar field to be displayed, by colouring the surface according to the
corresponding value of the other field.

• Image display: In this approach, the 2D region is mapped to an area on the display, and each
pixel coloured according to the value of the scalar function - using some suitable transfer
function.

These approaches are described in more detail:

Line Extraction

• Slicing

This is elementary: typically values along the slice direction are extracted, and a simple
graph is drawn. The 1D interpolation techniques mentioned earlier can be used tofill in
between the extracted samples.

• Contouring

There is a vast literature on contouring which has been a popular 2D visualization technique
for geographers and other scientists for many years. A good review paper is by Sabin [61].

• If the data is defined on a regular grid, then there is a simple method (the analogue of march-
ing cubes in 3D) in which linear interpolation is used to estimate the intersection of isolines
and grid lines - with some strategy for determining the lines within grid cells. Ambiguities
can again occur, so care is needed (see Sutcliffe [62]).

Methods based on linear interpolation will have slope discontinuities as the isolines move
between grid cells. For smoother lines, one needs a method based on bicubic interpolation -

E3
S

Chapter 3: Functionality Page 43 of 159

2nd Edition AGOCG

see Preusser [51].

For scattered data, one approach is to create a triangulation of the data points. Within any
triangle, the intersection of the isoline with the edges can be found. Joining the intersections
with straight lines gives the isoline of a linear interpolant within the triangle.

An alternative approach for scattered data is to use an interpolant to estimate the underlying
field on a grid, and then use a gridded contouring method. It is often useful to enhance the
appearance by shading the regions between isolines - indeed the isolines may be removed
altogether. As with volume rendering, one needs a colour transfer function to associate
colour values with values of the underlying field.

Surface Drawing

Another traditional graphics technique for 2D data is thecarpet plot which shows 2D scalar data
as a surface in 3D space - the value being mapped to the height axis. In earlier days this was
drawn as a projection of a network of 1D curves parallel to the x and y axes, giving the carpet like
effect. Modern implementations will draw this as a smoothly shaded surface.

It is possible to show a second scalar field by draping a colour shaded contour map over the sur-
face - that is, one scalar variable is represented by height, the other by colour.

Image Display

This is a very simple technique in which the sample region is mapped to a corresponding region
on the device, and the colour of each pixel is determined by the associated value, or interpolated
value, at that point. Again a colour transfer function will achieve this.

3.3.7 Scalar field over 1D

This we mention largely for completeness: the conventional approach is to draw a graph, relying
on one of the interpolation methods described in section 3.3.3 to fill in between data points.

3.3.8 AVS

Scalar field over 3D

Note: AVS has separate modules for different datatypes - ucd data is treated by a separate set of
modules from AVS field data - field data can be uniform, rectilinear or irregular grids.

• Surface Extraction

Slicing: Theorthogonal slicer module takes a slice through a 3D scalar field, perpendicular
to one of the axes.

Thearbitrary slicer module takes a slice at any orientation. Thethresholded slicer module
is similar, but any values outside a range are mapped to zero in the output slice.

Page 44 of 159 Chapter 3: Functionality

AGOCG 2nd Edition

For ucd data, the slicing module isucd rslice.

• Isosurface

The isosurface module generates an isosurface from a 3D scalar field. The particular algo-
rithm used is not described in the manual. Likewise the way that gradients are calculated is
not described.

Theucd iso module does the same for ucd data.

The surface may be coloured by a second scalar field.

• Volume Render

Thetracer module creates a ray cast image from volume data. There are two interpolation
methods:voxel approximation which is similar to nearest neighbour in that the voxels are
deemed to have constant colour and opacity, but the value is taken from the upper left corner
of the cell; andtrilinear interpolation.

Thecube module is a general tool, adapted from SunVision, which has four options: texture
- which shows texture-mapped exterior surfaces of the volume; maximum - which just
projects the maximum voxel along each ray; ray cast and create surfaces - which render sur-
faces at different density levels by ray casting.

Thexray module is a fast volume renderer, giving orthographic views only of the data.

Thevolume render module - the exact technique being used is not clear from manual -
allows the rendering of volume and surface data in combination.

Vector field over 3D

Note: The AVS modules described below apply to static vector fields.

• Arrows

Thehedgehog module shows arrows at locations in the 3D volume - for AVS node data.
These locations may be generated first by thesampler module, and can be: single point;
points on line or circle; points on plane; points in volume; data points themselves.

The arrows can be drawn with or without arrowheads.

Note: A scalar field can be viewed in conjunction with the hedgehog by colouring the
arrows according to the value of the scalar field at that point.

Theucd hog module does the same for data defined in the AVS ucd data structure.

• Particle advection

Chapter 3: Functionality Page 45 of 159

2nd Edition AGOCG

Theparticle advector module releases a grid of particles into the field. As with hedgehog,
the initial sample of points can be generated by thesampler module. The particles can be
displayed as a tracer of specified length, and batches can be released.

The ODEs can be solved either by Euler’s method, or Runge-Kutta (order of R-K method
not specified in manual). Interpolation method is not specified.

There is no standard UCD Particle Advector module but a public domain module
ucd_particle makes use of theucd_streamline module to display particles along each
streamline segment.

• Stream lines

Thestream lines module generates stream lines for a vector field. The user can specify the
initial sample of points from which the stream lines are drawn.

The ODEs can be solved either by Euler’s method, or Runge-Kutta (order of R-K method
not specified in manual). Interpolation method is not specified.

Theucd streamline module is similar for ucd data. The ODE method has choice between
Euler, 2nd order R-K and 3rd order R-K.

• Stream surfaces and ribbons

Thestream lines module can optionally create a surface connecting the stream lines.

Theucd streamline module can optionally create ribbons of specified width.

Scalar field over 2D

• Contouring

Thecontour to geom module constructs isolines from a 2D scalar field for a specified
threshold value. The particular technique used is not described.

The ucd isolines module creates isolines on the exterior boundary of a UCD structure.

• Image Display

Thecolorizer module converts data at each point of a scalar field to a colour.

Scalar field over 1D

AVS provides the moduleAVS/Graph (contained in AVS release 5.02 which is now available)
for producing traditional 2D plots from 1D data. The module has been built using some of the
Toolmaster-agX libraries and is an example of AVS and UNIRAS integration. The module pro-
vides a number of different representations of the data:

• line and curves

Page 46 of 159 Chapter 3: Functionality

AGOCG 2nd Edition

• scatter plots

• bar and area charts

• polar and pie charts

The module provides the usual control over parameters and annotation facilities: title, axes, lim-
its, line/curve/marker styles etc.

3.3.9 IBM Data Explorer

Scalar field over 3D

• Surface Extraction

Slicing: TheSlice module extracts an orthogonal slice through a volume of data, and this
can be passed to a 2D visualization technique.Slice extracts an n-1 dimensional slice from
an n dimensional dataset. The nth dimension is removed, i.e. a Slice from a 2D dataset pro-
duces a 1D line, a Slice through a 3D dataset produces a 2D grid (with no third dimension).

Slab does a similar job toSlice except it maintains the nth dimension of the data and allows
the slab thickness to be controlled.

MapToPlane allows users to define non-orthogonal slices by controlling both the position
of and normal to the plane

Isosurface: The Isosurface module creates an isosurface from ascalar field. The particular
algorithm used is an implementation of marching tetrahedra [41].

The gradient vector (for shading) can be generated internally (again how it does it is not
specified), or it can be supplied explicitly. TheGradient module will calculate the gradient
of the scalar field, and this can feed into the Isosurface for shading.

• Volume Render

TheRender module creates a volume rendering of volume data (alternative modules are
Display andImage. The data is of the “scalar field” datatype. The algorithm used is speci-
fied in [48].

Note that the module can handle a combination of volume data and surfaces.

Vector field over 3D

Static Field

• Particle Advection, Streamlines, Stream Ribbons

TheStreamline module produces streamlines for static vector fields. It traces the flow of a
particle released from a defined point. The tracing is done by proceeding step-by-step, each

Chapter 3: Functionality Page 47 of 159

2nd Edition AGOCG

step being in the direction of the vector field at the current point; this direction is found by
interpolation from the vector data. The user has control over the step length. (This would
appear equivalent to Euler’s method.)

There is a sophisticated set of controls. The starting points can be given as a list of points, or
as a geometric entity - which could be an isosurface for example. The lines themselves can
be drawn as lines, ribbons (by connecting to theRibbon module), or 3D tubes (by connect-
ing to theTube module).

Time Varying Field

• Streaklines

TheStreaklines module produces streaklines for time-varying vector fields. This works as
follows. Successive vector fields advancing in time are passed to the module. The streak-
lines are traced step-by-step as for streamlines, but the direction is calculated now by inter-
polation in space and time.

Scalar field over 2D

• Contouring

TheIsosurface module will create isolines from 2D data. A number of threshold values can
be specified. The technique used is not described.

TheBand module, together with theAutocolor module, will create a visualization with
coloured regions denoting ranges of values.

• Surface View

TheRubber Sheet module can be used to create a surface view.

• Image Display

TheAutocolor module converts data at each point of a scalar field to a colour.

Scalar field over 1D

IBM Data Explorer provides aPlot module to provide traditional 2D graphics plot of 1D data.
The module provides all the facilities to alter parameters and annotation features associated with
the plots. These include: axes labels, title, axes style (linear and logarithmic), tickmarks and
colour legends.

There are also some other related modules that can be used in conjunction with thePlot module to
produce other 2D representations of data.

• Histogram regroups your data into a specified number of bins. The output ofHistogram is
a new field which are the bars on the histogram

• ConnectingHistogram throughAutoColor thenPlot produces a colored plot of the data dis-

Page 48 of 159 Chapter 3: Functionality

AGOCG 2nd Edition

tribution.

3.3.10 IRIS Explorer

Scalar field over 3D

• Surface Extraction

Slicing: TheSlice module slices a uniform 3D lattice by taking regular samples on a cutting
plane, which may be at any orientation. The output is a 2D lattice of the same datatype and
number of channels as the input lattice.

TheSliceLat module takes a slice through a 3D lattice and outputs the coloured plane as
geometry. The lattice cells are intersected with the slice plane, forming polygons. The poly-
gon vertices are coloured by values interpolated from the lattice values.

Other slicing options are provided byOrthoslice, which generates 2D slices which are ori-
ented with the coordinates of the input 3D lattice, andMultiSlice, which gives geometry
output from a number of slice planes.

• Isosurface

TheIsosurfaceLat module generates an isosurface from a scalar 3D lattice. The algorithm
used in earlier releases of IRIS Explorer was based on Marching Cubes, although this has
been updated in version 2.2.

The gradient vector (for shading) can be generated internally from the gradient of the scalar
field (the Smooth parameter “on”). Alternatively the renderer can generate vertex normals
from the geometry of the triangular mesh (the Smooth parameter “off”).

The surface may be optionally coloured according to the value of another lattice. The
colours used can be controlled by means of a colourmap, which may optionally be passed to
the module.

TheContour module generates a set of isosurfaces (i.e. 3D contours) in wireframe. The
user has control over the minimum and maximum isolevels, and the number of contours to
be calculated. They are generated by calculating contour lines in orthogonal 2D slices of the
3D dataset; the user can control the direction of the slices to be used.

• Volume Render

TheVolumeToGeom module The VolumeToGeom module uses a volume rendering algo-
rithm to convert a 3D lattice into a geometry. The method used is the so-called hierarchical
splatting algorithm of Laur and Hanrahan [45], which fills the space within the volume
using screen-oriented planar shapes (or splats). The algorithm uses a small number of large
splats in uniform regions of the volume, and fills more detailed areas with a lot of smaller
splats. The user has control over the error tolerance associated with the subdivision of the

Chapter 3: Functionality Page 49 of 159

2nd Edition AGOCG

volume, and also over the size and type of the splat, which gives interactive control over
rendering time and quality. The geometry produced may be combined with other geometry
in the rendering of the final scene (see section 3.4.7), unlike theVolumeRender module
(below) which performs direct volume rendering on the input lattice.

TheVolumeRender module performs volume rendering on a 3D byte lattice. It offers the
choice between two algorithms offering different speed and quality advantages, so the user
can trade off between interactivity and quality. The “Transform” algorithm gives interactive
rendering speeds for moderately sized datasets, while the “Slicer” algorithm produces high
quality images with longer rendering times. In the latter case, the user has interactive control
over the number of slices (and so, the quality of the final image).

Vector field over 3D

• Arrows

TheVectors module displays a 3D vector field for a 1D, 2D or 3D lattice having 1,2 or 3
channels (i.e. vectors having 1,2 or 3 components). Vectors are located at the lattice coordi-
nate locations and point in the direction of the data vector field. The vectors may be option-
ally coloured using a scalar lattice of the same dimensionality and size. They may be
displayed as lines, tubes (cylinders) or arrows (cylinders plus cones).

TheVectorGen module is a simplified version of the same module - here, each vector is
represented as a bi-coloured line segment.

• Particle Advection, Streamlines, and Streaklines

TheStreakline module calculates a streakline through a velocity field. It stops when either
the new velocity is 0, or when the streak intersects the bounds of the velocity field. The user
has control over how each iteration is calculated and displayed. The full solution can be
shown or each iteration as it is calculated. The current particle path is shown in red with the
old paths in green.

Particle advection is provided by the moduleParticleAdvect which was developed as part
of the NCSA Pathfinder project (http://redrock.ncsa.uiuc.edu/PATHFINDER/
pathrel2/explorer/ParticleAdvect/ParticleAdvect.html)

Scalar field over 2D

• Contouring

Thecontour module generates contour lines for a 2D lattice (or a 3D lattice - see above).
For lattices with several channels, the user can select the channel to be contoured. The lines
are coloured according to an internal colourmap; this can be optionally overridden by pass-
ing another colourmap to the module.

• Surface View

Page 50 of 159 Chapter 3: Functionality

AGOCG 2nd Edition

TheDisplaceLat displaces the coordinates of one input lattice by the data values of the
other. The two input lattices can be the same. This can be used to create a surface view of a
2D lattice. The user can control the amount of displacement interactively.

• Image Display

TheLatToGeom module creates geometry from a 1D or 2D lattice i.e., it produces lines or
sheets, depending on the dimensionality of the input lattice. The user can control whether
the geometry is produced as points, lines or (in the case of sheets) polygons. The geometry
can be optionally coloured via an input colourmap.

TheDisplayImg module displays 2D lattices as images. IRIS Explorer also contains a num-
ber of image processing modules, which may be used to filter or modify the image before
display. See section 3.4.7, below, for more details.

Scalar field over 1D

IRIS Explorer currently has two modules which support traditional 2D representations of 1D sca-
lar data. These are:

• Gnuplot: This is an implementation of gnuplot 3.0. Some additions to standard gnuplot have
been made to allow the plot/splot commands to extract data and coordinate information
from the input lattice.

• Graph: This module plots an X-Y graph of one or more channels of data from a 1-D lattice.
The Draw Mode selector allows the user to select between single channel plotting and draw-
ing of all channels.

There is also aHistogram module which can be used in conjunction with the above.

IRIS Explorer release 3.0 will also haveNAGGraph with more advanced features thanGraph.

3.3.11 Khoros

All the image operators are written tooperate on width-height planes of the polymorphic model. If
the depth, time, or elements dimensions of data object are greater than one, the operation is
repeated for each width-height plane.

Scalar field over 3D

There is an isosurface operator in the Geometry Toolbox which produces an isosurface con-
structed of triangles. An orthogonal slicer operator is also available. Mapping operators are pro-
vided which can map the scalar values contained in the field into RGB-alpha values.

Vector field over 3D

There are currently no operators which directly address the visualization of vector fields, although
it is possible to produce scalar fields from the vector fields using the various arithmetic operators
found in the Datamanip Toolbox.

Chapter 3: Functionality Page 51 of 159

2nd Edition AGOCG

Scalar field over 2D

A two-dimensional field can be produced from scattered location points using the gridding opera-
tor found in the Geometry Toolbox. The orthogonal slicer in the geometry toolbox can be used to
slice 1D lines from the 2D fields. Two dimensional fields are generally visualized as images or 3D
plots, but this is done through various interactive applications.

There are numerous operators in the Image Toolbox which are general image processing opera-
tors and more information is given in section 3.4.8.

Xprism can also produce line, mesh, coloured contour and shaded 3D plots. There are also facili-
ties to alter annotation and parameters associated with these plots within Xprism.

Scalar field over 1D

Xprism can produce a number of traditional 2D plots from 1D data. The Xprism application in the
Envision Toolbox provides fifteen different 2D plot types and these include:

• line and scatter plots

• bar charts

• discrete plots

The Xprism application also provides full control over fonts, colours, axes, marker types, line
types, titles etc.

3.3.12 PV-WAVE

Scalar field over 3D

• Surface Extraction

Isosurface: TheSHADEVOLUME procedure calculates an isosurface from data in cubical
cell arrangement. The algorithm used is that described in [40]. It is said to be variation on
marching cubes. There is also an interactive procedure calledWgIsoSurfTool.

The gradient calculation for shading is not described in the manual.

Slicing:The interactive procedureWgSliceTool allows the user to slice 3D scalar data.

• Volume Render

TheVOLREND function in the Advanced Rendering Library creates a volume rendering
from data in cubical cell arrangement.

Vector field over 3D

There is only an “arrow” capability for this visualization datatype.

• Arrows

Page 52 of 159 Chapter 3: Functionality

AGOCG 2nd Edition

TheVECTORFIELD3 function in the Advanced Rendering Library plots vector glyphs at a
set of points specified by user.

Scalar field over 2D

• Contouring

TheCONTOUR procedure draws a contour plot from a uniform 2D grid, with very sophis-
ticated control over the annotation and presentation. There are two methods: one draws all
lines per cell then moves on to next cell; the other traces a line through all cells, then moves
to next line. No further algorithmic details are given. In addition to the uniform 2D grid used
by CONTOUR there are a range of non-linear gridding functions.

TheIMAGE_CONT procedure overlays a contour plot onto an image display. Bilinear
interpolation is used in image display.

TheSHOW3 procedure overlays image, surface view and contours.

• Surface View

TheSURFACE procedure draws a surface view, with sophisticated control over the annota-
tion and presentation.

• Image Display

See contouring above.

Scalar field over 1D

PV-WAVE has a number of specific view windows for producing 2D plots from 1D data:

• 2D line

• 2D scatter

• 2D histogram

Each view window provides control over numerous annotation and parameters associated with
each view type.

3.4 Presentation

3.4.1 Introduction

Presentation is the computer graphics part of Visualization. It includes the rendering (typically to
a computer screen) of images, geometric models, volumes and hybrids of these. It also encom-
passes direct interaction or manipulation, i.e. selecting and moving objects, probing, and so on.
This section does not address rendering to other media such as PostScript, video, etc. which is
covered elsewhere.

Chapter 3: Functionality Page 53 of 159

2nd Edition AGOCG

3.4.2 Rendering

Genuine 3D display devices do exist which allow you to walk around and see objects from differ-
ent angles. However they are large, expensive, experimental and often have low spatial and colour
resolution. In most cases Abstract Visualization Objects [19] are rendered to a 2D screen or, for
stereoscopic vision, two screens - one for each eye. When mounted into moveable, trackable
object such as a boom box or helmet one can once again appear to walk around the objects. This
virtual reality is currently a more promising direction than true 3D displays and potentially has
great application to visualization e.g., the NASA Virtual Wind Tunnel project [13].

Images

Rendering images typically involves a one-to-one mapping from image pixels to screen pixels.
Panning is readily provided for in a windowing environment, and zoom is often provided by bilin-
ear or bicubic interpolation.

Geometry

Rendering geometric models uses classic computer graphics principles, with hidden surface
removal, local illumination models, shading, and transformation to a 2D image with perspective.
The algorithms for doing this are well established and some may be implemented in hardware.

Volume

To render volume data, it is assumed that classification has already been done. Volume datasets
which have had isosurfaces extracted produce a geometric model which is readily rendered as
described above. A problem with surface extraction methods is that they do not allow views
inside volumes; even if many semi-transparent shells are rendered, detail is lost between the lay-
ers. Rendering the volume data without recourse to intermediate geometric objects avoids these
problems and also permits weak, fuzzy surfaces or gradual gradients to be rendered. There are
two major approaches to rendering volume data: direct ray casting and splatting.

In Direct Ray Casting a ray is cast from the eyepoint through each pixel into the volume. Along
each ray, regular samples of the colour and opacity are taken. As the volume need not be axis
aligned with the viewing plane, this step involves interpolation, and can use any of the techniques
described in the earlier section. The final colour for the pixel is obtained by accumulating the
colour and opacity values at the samples. A classic paper on this approach is that by Levoy [46].
This differs from ray tracing in that rays are not reflected from the surface of objects; all rays are
perpendicular to the image plane.

A variation, optimized for speed rather than accuracy, isMaximum Intensity Projection. This is
where the volume has axes aligned with the view plane and the highest value along a ray is used
as the colour of the pixel - there is no accumulation.

In Splatting,rather than project from the image plane into the volume, the footprint of each voxel
is projected onto the image plane. This footprint is typically a Gaussian distribution but this may
be simplified to a triangle or step function, trading accuracy for rendering speed. The method was
first described by Westover [65].

Page 54 of 159 Chapter 3: Functionality

AGOCG 2nd Edition

Hybrid

Hybrid methods are used to present scenes containing a mixture of image, geometric and volume
elements. For example, a prosthetic hip replacement may be matched up with a CT scan of the
patients hip. Problems arise when mixing the different rendering types together, to ensure correct
occlusion of objects and to allow picking of interpenetrating geometric and volume objects. In
some cases, all the data must be re-rendered if one small part of the model changes. Typical strat-
egies include converting all objects to one type (surface extraction turns volumes into geometric
objects, conversely geometric objects can be voxelised) or merging the intermediate results of
rendering using some depth sorting method.

3.4.3 Manipulation

Viewpoint selection

The simplest form of direct manipulation is selecting a different view of the scene, either by mov-
ing the camera or moving the objects in the scene. On a 2D screen this is typically done with slid-
ers, dials etc. in a dialog box, or (better) by gesturing with the pointing device. A particularly
useful analogy used by some systems is aglass trackball which conceptually encases the dis-
played scene and is moved by dragging the mouse. Spaceballs may be used to achieve a similar
result. In a 3D environment, gesturing with a dataglove is often used.

Picking

A refinement on moving the whole scene is to select a component of it. This may indicate to the
visualization software that a particular object is to be used for the next interactive operation. It
represents information flowing backwards through the visualization process, from rendering to
mapping or to filtering.

Probing

An object is inserted into the scene where it samples the underlying model and reports back the
data values. For example colour may be used to depict pressure on the surface of an object.
Colours could of course be compared by eye with the colour scale, but a probe can be positioned
anywhere and will give a reading directly in kiloPascals or other suitable units. A probe reports its
geometric position in the scene to earlier stages of the visualization process, which then generate
the requested data. This need not be numeric; other Abstract Visualization Objects are often pro-
duced. For example a probe for a flow field might produce a solid arrow whose direction and
length indicated the components of the vector flow field. Other quantities such as the curl or
divergence of the field might be probed and represented as twisting of the arrow shaft, or colour of
its tip.

3.4.4 Hardware support

High performance graphics workstations have dedicated hardware for accelerating various stages
of the geometric rendering pipeline such as hidden line and surface removal, perspective transfor-
mation, texture mapping, and local illumination models. Less commonly, they have support for

Chapter 3: Functionality Page 55 of 159

2nd Edition AGOCG

image rendering, such as bicubic zoom, or for volume rendering, such as fast, hardware assisted
trilinear interpolation. This is particularly important as direct volume rendering is compute inten-
sive and real-time performance is a much sought-after goal. Support for hybrid rendering is cur-
rently rare, particularly if picking is to be supported. General purpose visualization software may
not support all the capabilities of a particular platform.

Some workstations have support for presenting stereo images - using either liquid crystal shutters
to present alternate images or using twin displays in a headset - and for 3D interaction using
devices like spaceballs, datagloves, and the like. These capabilities are currently rather manufac-
turer specific, so again it may be difficult for general visualization systems to take advantage of
them.

3.4.5 Application Visualization System (AVS)

AVS uses three separate components to view different types of object. There is an image viewer, a
geometry viewer, and a tracer for volume data, which produces an image. This means that hybrid
scenes can only be displayed and interacted with by converting all data to geometric form. 24 bit
TrueColor or DirectColor displays are supported. 8 bit displays will use 216 colours from a 6x6x6
RGB cube; while fine for general use, this is severely sub-optimal for greyscale image display
with only six grey levels. Typical medical imaging systems use 250 grey levels with the other six
colours mapped onto bright primary and secondary colours for annotation

Image display

Collections of images can be displayed. Zoom and stacking are supported; images can be labelled
and there is a flipbook animation capability. A variety of dithering techniques can be selected. The
unsupported alpha blend module allows the compositing of stacked images with variable trans-
parency but this requires hardware support. Separate modules provide two probes: one gives the
colour at a point, the other measures the distance between points.

Geometric objects

The geometry viewer supports both a hardware renderer and a software renderer. The latter sup-
ports the full functionality of AVS but may be slow. The hardware renderer will take advantage of
the native graphics system - PHIGS, GL, Starbase - but in this case there is no software fallback
for missing functionality. If a particular hardware system does not support, for example, transpar-
ency or texture mapping, the hardware renderer will display all objects as opaque or plain, respec-
tively. Spaceballs are supported on SGI platforms. Stereo is supported on Silicon Graphics, Evans
& Sutherland and Kubota platforms.

The next release of AVS (AVS6) will extend the graphics library support to include PEXlib and
OpenGL.

Objects may be translated, rotated and scaled using a glass trackball paradigm. They may be
coloured, texture mapped and their other surface properties such as specularity altered. Lights of
various colours may be positioned in the scene.

Page 56 of 159 Chapter 3: Functionality

AGOCG 2nd Edition

Pick information can be sent to other modules and a variety of other modules provide probes. The
probe module reports data values and can use either nearest neighbour or trilinear interpolation.

Volumetric objects and hybrid rendering

These are dealt with in a variety of ways. One option is to use the volume render module, which
have variable colour and opacity and may be sent to the geometry viewer. This is one way to do
hybrid scenes. There is no control over the lighting although the gradient shade module helps with
this, and rendering can be slow. This method really requires hardware support for 3D texture map-
ping and transparency.

Fast views of axis aligned volumetric data are provided by thexray module which provides
options for finding the sum, minimum, mean, median, minimum or maximum value for each
pixel.

A third alternative is the cube module from the SunVision toolkit, intended for classified volumet-
ric data. This does not appear well integrated with the other modules. Four rendering methods are
supported: texture mapped external surfaces, a maximum intensity projection method which need
not be axis aligned, ray casting and surface extraction. The last two methods classify voxels using
values set in the edit substances module. Interpolation is nearest neighbour by default but can be
set to trilinear. Rotation and translation is by specifying 4x4 matrices although other utility mod-
ules can generate these.

Lastly, a pair of modules give direct raycasting. The tracer module does the raycasting and can
accept a colourmap for greyscale volumes. The display tracker provides a direct manipulation
interface on the resulting image using a glass trackball paradigm. Bilinear zoom can be used on
the image without having to repeat the raycasting operation.

Currently there does not appear to be a module to perform splatting.

3.4.6 IBM Data Explorer

DX uses a raft of rendering modules which co-operate to present and interact with objects. There
are often alternative ways of doing similar things, depending on the data and interaction required.
Unlike other systems, all object types are displayed in a simple and natural way in the same win-
dow. This consistency of user interface is a definite benefit.

Three modules are central to the rendering process.Display is the most basic module; it simply
displays an image which may be a 2D regular dataset or the output of theRender module.Dis-
play does no rendering; it is simply a mechanism to put images on the screen.

Image display and Geometric objects

Image is a DX Macro and contains modules such as:AutoAxes, Render, Display, Camera.
The Image tool is the most frequently used method of rendering and display in DX as it supports
direct manipulations of the displayed scene such rotation, translation, zoom, navigate etc. Users
should avoid passing images e.g. a Landsat image, to the Image tool as it will be rendered as if it

Chapter 3: Functionality Page 57 of 159

2nd Edition AGOCG

where a 2D dataset prior to display. To simply display image data theDisplay module should be
used.

Render is the most powerful module as it renders one or more geometric or voxelised objects and
presents them.

Objects and cameras can be translated and rotated. The viewing model is easy to use, being based
on a look-to point rather than a camera position. Object properties such as colour, normals, specu-
larity can be modified. Point lights and ambient light are supported. The renderer appears to use
Gouraud and Phong local illumination models.

Pick data may be sent to other modules, and a variety of probes are available. These send their 3D
position, or a list of positions, to other modules. A measuring probe calculates the area and vol-
ume of objects.

Volumetric objects and hybrid rendering

Rendering hybrid scenes is readily performed subject to a few limitations - interpenetrating vol-
umes are not supported, and volumes are not rendered with perspective. However, volumes need
not conform to a regular rectangular grid. The documentation stated that volumes were rendered
by ‘one of a variety of irregular and regular volume rendering algorithms’ which appeared to
mean direct ray casting using a dense emitter model: opacity gives the absorption per unit thick-
ness and the colour relates to light emission per unit thickness: a self-luminous gel. Volumes are
composited front to back with geometric objects.

3.4.7 IRIS Explorer

Image display

Images in IRIS Explorer are passed through the system as 2D multichannel lattices. Thus, all
modules that accept lattices as input can be used to manipulate images - either by modifying the
coordinates part of the lattice (for image cropping, scaling, rotation, etc.) or the data part of the
lattice (for image filtering, blurring, edge detection, etc.). Much of the image processing function-
ality in IRIS Explorer is provided via the ImageVision library, an object-oriented toolkit for the
manipulation, processing and display of image data. A special feature here is that ImageVision
modules can be chained together to make use of ImageVision’s so-called pull model for passing
only the region of interest of an image along the chain. This leads to greater efficiency, especially
when dealing with large images.

The DisplayImg module displays 2D lattices as images. The module accepts multiple input lat-
tices; each is displayed as a separate image, and each can be separately managed, manipulated and
updated. Lattices of any datatype and any number of channels are allowed - thus, single-channel
input is displayed as monochrome, while 3-channel input is displayed as RGB.

Geometric objects

Geometry in IRIS Explorer is implemented using Inventor, an object-oriented 3D toolkit. Earlier
releases of IRIS Explorer were based on IRIS Inventor 1.0, which used the IRIS GL for rendering

Page 58 of 159 Chapter 3: Functionality

AGOCG 2nd Edition

geometry. The latest release of IRIS Explorer (2.2) is based on Open Inventor 2.0, which uses
OpenGL for rendering.

The geometry type in IRIS Explorer is an Inventor object. This means that geometry can be
shared between IRIS Explorer and other Inventor applications (for example, SGI’s Showcase pre-
sentation package) for display and manipulation outside IRIS Explorer. Similarly, 3D geometries
from other packages can be read into IRIS Explorer once they have been translated into Inventor
file format (see chapter 4, below). It also means that modules can be written (see Chapter 6: Incor-
porating Application Code) which make calls to the Inventor API to create and modify geometry
within IRIS Explorer (a simplified geometry API is also supplied with IRIS Explorer which pro-
vides some of the same functionality). Finally, IRIS Explorer is able to inherit and make use of
much of the functionality of Inventor for 3D geometry creation, manipulation and display, which
is very sophisticated.

The main module for geometry display and interaction is Render. This allows a rich set of con-
trols over the scene, including

• Changing camera parameters via a viewing model. By default, this model allows for examin-
ing the scene through the ‘glass trackball’ analogy mentioned above in section 3.4.3,
although other viewers are available which mimic flying, walking, etc. through the scene.

• Selecting objects in the scene. The user can then edit the object’s appearance (using Inventor
controls over components of the lighting model), colour (using Inventor colour controls),
and its scale, orientation and location (using Inventor 3D manipulators).

• Picking objects. Here, information about the selected object is written to an IRIS Explorer
data type which can be passed to another module for further processing. Open Inventor’s 3D
picking returns useful information such as the point of intersection, normal at the point of
intersection, the nearest vertex, and more.

• Controlling lighting. Besides being able to manipulate the properties of the material of
which objects in the scene are composed, the user is able to create and edit various types of
lights in the scene - again, making use of the sophisticated Inventor interface to do this.

Finally, it should be noted that the Render module can combine multiple geometries into a single
scene, irrespective of their origin. Thus, a user could, for example, display a scene made up of a
wireframe box, an isosurface, a volume rendered lattice, an imported 3D model and a slice
through a vector field. This is another benefit of the flexibility of the Inventor 3D toolkit which
IRIS Explorer uses for its geometry data type

Volumetric objects and hybrid rendering

A volume to geometry module does direct volume rendering by splatting. There is support for
hybrid rendering as the output may be fed into the render module.

3.4.8 Khoros

The interactive data presentation routines in the Khoros system can be found in the Envision and
Geometry Toolboxes. The Envision Toolbox provides a number of applications for interactively

Chapter 3: Functionality Page 59 of 159

2nd Edition AGOCG

exploring multidimensional data. The data can be visualized as images, surfaces, 2D plots, or 3D
plots. The Geometry Toolbox contains an interactive geometry and volume renderer. All data pre-
sentation routines interpret data according to the polymorphic and geometry data models.

Image display

There are a number of image display applications which are all in the Envision toolbox. These
applications are Editimage, Putimage, Animate, and Spectrum. Editimage is an interactive image
display program which provides a zooming capability, colourmap editing, false colouring capabil-
ities, and image value display. Animate is an sequence display tool. Putimage is a non-interactive
image display program. Spectrum is an interactive program for exploring multi-dimensional data.

These applications all use the Khoros image visual object. This visual object is capable of dis-
playing image stored in any data type. Data types other than byte are automatically normalized
between 0 and 255. A standard 256 entry colourmap can then easily be applied to the normalized
image through the image visual object. Complex data types are converted to floating point using
real, imaginary, magnitude, or log magnitude conversion before the normalization occurs. The
image visual object is capable of displaying to either 8 or 24 bit displays. A private colourmap is
used. On an 8 bit display, 24 bit images will be displayed using a fast 332 quantization. Large
images may be displayed using a pan icon. The image data is cached such that the entire large
image is never all in memory at any one time. This is also true of the animation display with large
animations.

An image probing capability is available in Editimage. The data values at and around the pixel
indicated by the mouse are displayed. The explicit world-coordinate position of the pixel is also
displayed if explicit location data is available.

Geometric objects

The RenderMonster application in the Geometry Toolbox provides the geometry visualization
capability to the Khoros system. Implemented as a software renderer, RenderMonster interac-
tively produces either 24 bit true-color rendered images, or 8 bit rendered images. Alpha compos-
iting is used to render solid and semi-transparent objects together.

The Xprism application in the Envision Toolbox provides fifteen different 2D plot types and nine
different 3D plottypes. It supports multiple plots per area and multiple plot areas. All details of the
axis, tic marks, labels, colors, line styles, and annotations are easily modified by the user. The
built-in expression parser allows the user to create complex data arrays interactively.

Geometry Transformations and Viewpoint Selection in RenderMonster can be performed interac-
tively on the rendered image using the mouse. Pressing different mouse buttons on the rendered
image and moving the mouse will perform scalings, rotations, and translations. A bounding box is
used to show the transformation interactively as it is being performed. When the bounding box
has been transformed to the desired position, a new rendering is done.

Khoros runs on any hardware with an X display, regardless of it being 8 bit or 24 bit. No special
hardware capabilities are required, nor are they used if present. There are plans however on doing
a GL port of RenderMonster.

Page 60 of 159 Chapter 3: Functionality

AGOCG 2nd Edition

Volumetric objects and hybrid rendering

In addition to being able to render geometry, the RenderMonster application in the Geometry
Toolbox is also capable of rendering volumetric data directly. A voxel splatting approach is used
for volumetric rendering. A voxel dot approach is also available for faster, more interactive ren-
dering.

The RenderMonster application does not make a strong distinction between geometric data and
volumetric data and is capable of rendering both geometric data and volumetric data together in a
single rendered scene.

3.4.9 PV-WAVE

The presentation capabilities of this package are slanted towards presenting 1D/2D data and
images with some facilities for 3D arrays of data.

Image display

Besides displaying images they may be warped, frequency domain filtered, and similar image
processing tasks applied. It appeared that only indexed colour was supported, in other words
images were required to have a colour table.

Geometric objects

3D data may be plotted as surface and contour plots, with either a network (wire mesh) surface or
shaded surfaces (flat or Gouraud). There is no facility for Phong shading.

There are also some procedures to create, manipulate and display polygon and vertex data within
PV-WAVE and these are described in Reference Volumes 1 and 2 and its use in the PV-WAVE
User’s Guide, Chapter 6: Advanced Rendering Techniques.

Translation and rotation of objects is specified with 4x4 matrices using a command language.
There does not appear to be a direct manipulation interface for this. A form of pick is available
but this gives a 2D position in pixel coordinates rather than a 3D position in world coordinates.

Volumetric objects and hybrid rendering

Volume processing produces a 2D image from a particular view. The package does not support the
mixing of volumetric and geometric objects.

Chapter 4: Data Import Page 61 of 159

2nd Edition AGOCG

Chapter 4: Data Import

4.1 Introduction

The tables which follow are used to list the currently available data readers for each visualization
system. It has not been possible to verify the robustness of each reader or the availability across
the platforms each system supports during the review. The following key is used to indicate the
source of the reader:

• standard(s): is supplied with the visualization system by the vendors;

• public domain(p): is obtained from an anonymous FTP site. The full list of sites and FTP
addresses can be found in Chapter 8: Additional Information;

• commercial(c): can be obtained from a commercial supplier. These readers have a cost asso-
ciated with them and more information can be obtained by contacting the supplier.

4.2 Application Visualization System (AVS)

4.2.1 Supported data readers

This section outlines the data readers for specific formats which are available as part of the visual-
ization system.

Data format Key

AVS UCD s

AVS Field s

AVS Geometry s

NASTRAN (SciViz) c

ANSYS (SciViz) c

Abaqus (SciViz) c

DYNA3D (SciViz) c

FIDAP (SciViz) c

FLUENT (AdamNet) c

PATRAN(Tessella) c

AutoCAD DXF p

FLOW3D Harwell CFDS c

Page 62 of 159 Chapter 4: Data Import

AGOCG 2nd Edition

SDRC Ideas p

PAFEC FE c

TIFF p

GIF p

RLE p

Wavefront OBJ s

Movie BYU s

Protein Data Bank s

Mathematica 3 Script s

Maple V c

Abacus A60 Video p

HDF (SDS and image) p

JPEG Image Compression p

MPEG Video Compression p

Postscript s/p

Gaussian c

CadPak c

Shakall p

Eclipse Intera c

GE CT Scanners p

Siemans CT Scanners p

Vis5d p

Sun Rasterfile p

ICC p

LBL p

Plot3d s

STAR-CD (Tessella) c

Electra Vector Fields c

KIVA II p

Chapter 4: Data Import Page 63 of 159

2nd Edition AGOCG

Speed (Imperial College) c

Semper c

Vbase GEC Marconi c

SunVision IPLIB c

Crystal Image c

Intra Vascular Ultrasound c

MoPAC c

RayShade p

Scitex CT2D (cmyk print) p

Encaps. Color Postscript s/p

Sun Icon & Cursor p

Sun TAAC p

Apple MacPaint p

Portable Bitmap Files (pbm) p

Zsoft IBM-PC Paintbrush p

Portable Gray Bitmap p

PIXAR image files p

Apple QuickDraws/PICT p

QuickTime Apple/SGI p

Alias Research image file p

SGI RGB image file p

Wavefront raster image(.rla) p

Utah Run-length image p

Synu Image p

XBM X11 Bitmap p

XWD X11 Window Dump p

MARC FE c

FITS - Astronomical p

QUAL Field p

Page 64 of 159 Chapter 4: Data Import

AGOCG 2nd Edition

netCDF p

CATIA - IBM c

ARC/INFO MOSS Markers p

ARC/INFO MOSS Polylines p

ARC/INFO MOSS Polygon Covers p

ARC/INFO TIN p

GOCAD p

SET p

NTF (Ord. Survey Maps) c

MADYMO TNO Delft (Tessella) p

CRANK (Tessella) p

SunVideo XIL Movies c

Oracle SQL c

Khoros Library p

Simpa Library (France) c

Stratamodel (Intera) c

HP-Deskjet 550-C (Tessella) c

CGM Binary s

CGM Clear Text s

CGM Character Encoding s

FLAVIA - CFDS/Flow3D c

SEG-Y Seismic Format p

TVAM 3D Velocity Models SPT c

IDL library p

Kingfisher - Leading Techn. c

INVERMOD - Jason Geosystems c

FOCUS - Medical c

Xidak Database Server c

GRASS IP Library c

Chapter 4: Data Import Page 65 of 159

2nd Edition AGOCG

4.2.2 Tools for importing data

There are three main methods of importing data into AVS:

Standard AVS modules: there are a number of modules provided to read data files in one of the
defined AVS datatype formats e.g.,read_ucd, generate_colormap, read_geom;

AVS read_field: this module parses an ASCII header file which describes the organisation and
structure of a binary/ascii datafile. The data is then imported and mapped onto the AVS field
datatype. As the AVS field datatype is used then it is restricted to general N dimensional arrays of
M data elements;

AVS Data Interchange Application (ADIA): this tool provides the ability to import data which
matches the AVS field datatype but has a number of advantages over theread_field module:

• interactive graphical user-interface;

• supports variables and expressions removing the need for absolute values;

• reads information from the datafile itself e.g., dimensions, length;

• searches the file for token keywords which specify format values e.g., length=72;

• the forms created can be saved or loaded for re-use.

Overleaf Figure 8 shows a sample of the ADIA interface.

MPGS - Cray Research c

Page 66 of 159 Chapter 4: Data Import

AGOCG 2nd Edition

4.3 IBM Data Explorer

4.3.1 Data readers

A number of modules and macros are available via anonymous ftp from the DX repository at Cor-
nell (ftp.tc.cornell.edu) under the directorypub/Data.Explorer more details are given after
the table.

Figure 8: Example of the ADIA interface

Data Format Key

NetCDF s

HDF s

DX-format s

General Array Format s

ABAQUS Standard 5 (SciViz) c

Chapter 4: Data Import Page 67 of 159

2nd Edition AGOCG

4.3.2 Tools for importing data

Data Explorer being an object-oriented based systems allows objects to be one of the following
classes: group, series, multigrid, compositefield, field, array, constantarray, gridpositions, regu-
lararray, productarray, gridconnections, patharray, mesharray, xform, string, light, camera,
clipped, screen.

For the majority of data input, DX relies on a general array importer. A simple text header needs
to be created to describe the structure and location of the data then theimport module can read in
the data directly. To use a graphical interface to define this header, type:

dx -prompter

This interface can import many simple arrays, both binary and ascii. For binary data it is possible
to specify whether the data is in most significant byte (MSB) or least significant byte (LSB) first.
The 2 common forms of vector interleaving are also supported:

1. x1,y1,z1,data1, x2,y2,z2,data2,....

2. x1,x2,..., y1,y2,..., z1,z2,...,data1,data2,...

FIDAP 7 (SciViz) c

FLUENT (SciViz) c

MSC/DYTRAN 2 (SciViz) c

STAR_CD 2.1xx (SciViz) c

ANSYS 5 (SciViz) c

PAM-CRASH 12 (SciViz) c

MSC/NASTRAN V67.5 (SciViz) c

RAMPANT c

ARCInfo c

NEKTON c

PLOT3D p

PHOENICS p

PDB p

JPEG p

FLUENT Universal files 4.x p

Data Format Key

Page 68 of 159 Chapter 4: Data Import

AGOCG 2nd Edition

As part of the prompter it is possible to browse through a data file to set marks and determine off-
sets in bytes or lines which can be useful when describing ascii data. Although the prompter can-
not completely describe irregular grids (e.g. FE data) it can be useful to determine some of the
description then complete the header by editing the resulting text.

For a more complete guide to the data model see Chapter 3, “Understanding the Data Model” and
for importing data into DX see Chapter 4, “Importing Data”, from the User’s Guide.

4.4 IRIS Explorer

4.4.1 Data Readers

The following is a list of readers supplied with the package or available in the public or commer-
cial domain:

Data Format Key

AVS Field s

AVS Image s

AVS ucd s

AVS Volume s

SGI audio file (AIFF or AIFF-C) s

HDF s

series of SGI RGB images into a 3D lattice s

SGI format FIT (SGI) s

SGI Movie file and outputs a single frame s

Movie BYU s

PDB s

Plot3D grid and solution data s

CSS crystal file format s

MOPAC electrostatic potential, coordinates
and force files

s

Gaussian 92 log file s

Sybyl mol file s

bmp Microsoft Windows bitmap image p

cur Microsoft Windows cursor image p

Chapter 4: Data Import Page 69 of 159

2nd Edition AGOCG

eps Adobe Encapsulated PostScript file p

gif Compuserve Graphics image file p

hdf Hierarchical Data File p

ico Microsoft Windows icon image p

icon Sun Icon and Cursor file p

iff Sun TAAC Image File Format p

mpnt Apple Macintosh MacPaint file p

pbm PBM Portable Bit Map file p

pcx ZSoft IBM PC Paintbrush file p

pgm PBM Portable Gray Map file p

pic PIXAR picture file p

pict Apple Mac QuickDraw/PICT file p

pix Alias image file p

ppm PBM Portable Pixel Map file p

pnm PBM Portable aNy Map file p

ps Adobe PostScript file p

ras Sun Rasterfile p

rgb SGI RGB image file p

rla Wavefront raster image file p

rle Utah Run length encoded image p

synu SDSC Synu image file p

tga Truevision Targa image file p

tiff Tagged image file p

viff Khoros Visualization image file p

x AVS X image file p

xbm X11 bitmap file p

xwd X11 window dump file p

FERead p

MARC output t16 or t19 p

Page 70 of 159 Chapter 4: Data Import

AGOCG 2nd Edition

In addition, the following CFD-related readers for IRIS Explorer should soon be available com-
mercially from SciViz:

• ABAQUS

• ANSYS

• FIDAP

• FLUENT

• LS-DYNA3D

• MSC/DYTRAN, MSC/NASTRAN

Finally, NAG has developed readers for a number of formats, including PHOENICS, USGS,
NTF, etc. These will be made available as part of the next release (3.0) of IRIS Explorer.

4.4.2 Tools for importing data

Explorer provides a number of tools for importing data.

Standard IRIS Explorer Datatype Readers: There are a set of modules which are capable of read-
ing standard Explorer data types from files, one for Pyramids, Lattices and Geometry. They are
capable of reading data saved in either ascii or binary format.

Basic Ascii Format to Explorer Format:There are several modules which take files in simple
ASCII formats and produce lattices. For example, the module ReadXData creates a 1D lattice
from the data in an ascii file in the following format: n, x1, f(x1), x2, f(x2),... xn, f(xn), where n is
the total number of data pairs. These modules are all written using DataScribe (see below).

DataScribe: This is IRIS Explorer’s visual programming interface for creating modules to read
data in a variety of user-defined formats. It takes ASCII or binary data files and outputs lattices (or
vice versa). An example from DataScribe is shown in figure 9. Some of the features of DataScribe
are:

• It is possible to use pattern matching to skip text headers or actively search for character
strings within a file to find formatting values. The pattern matching includes the use of
UNIX “*” and “?” wildcards.

• DataScribe provides aruler for formatting ASCII data that makes reading and writing for-
matted files easier. It allows the interleaving of text and values at specified columns and
reading values only from specific columns.

• Values describing the size and shape of the data can be read in from the data file or set to a

Multi-blocked Plot3D file p

Nastran xdb file p

SEGY file p

Floating point vectors TCP/IP socket p

Chapter 4: Data Import Page 71 of 159

2nd Edition AGOCG

constant value. Also, it is possible to read to EOF removing the need to know the whole
extent of the data.

• A number of different files can be read by one DataScribe module and combined into one or
more output lattices. DataScribe can also be used to read Explorer formats and transcribe
sections or channels of data.

• Parameter values can be attached to widgets on the control panel of a data input module and
can be used to section the data. The control panel can be edited from DataScribe by altering
the appearance, default values and position of the widgets.

• A number of example DataScribe readers come with the system and the scripts they use are
available as a starting point for making further readers. Having created a data reader the
script and module resource files are saved and can then be inserted as a module in the
Explorer map.

DataScribe only works with Lattices. However, there are examples in the manual (with the source
provided on-line) of readers which produce Pyramids, plus the moduleComposePyr can be used
to build a pyramid from a set of lattices.

Figure 9: Example of DataScribe

Page 72 of 159 Chapter 4: Data Import

AGOCG 2nd Edition

4.5 Khoros

4.5.1 Data readers

The specific formats which are supported within Khoros 2.0:

Data Format Key

Khoros 2.0 VIFF (viff) s

Khoros 1.0 VIFF (xvimage) s

PNM (pnm) s

Sun Raster (rast) s

X Bitmap (xbm) s

X Pixmap (xpm) s

X Window Dump (xwd) s

AVS Image (avs) s

ARF (arf) s

ASCII (ascii) s

RAW (raw) s

Encapsulated Postscript (eps) - output only s

GIF s

Erdas (version 7) lan (lan) - input only p

Erdas (version 7) gis (gis) - input only p

Digital Elevation Model (dem) - input only p

Grass ASCII p

PICT (part of PbmPlus) p

PC Paintbrush.pcx (part of PbmPlus) p

TrueVision Targa file (part of PbmPlus) p

NCSA Interactive Color Raster (PbmPlus) p

TIFF (part of PbmPlus) p

FITS (part of PbmPlus) p

Chapter 4: Data Import Page 73 of 159

2nd Edition AGOCG

A number of public domain utilities are available; for example the PBM Plus utilities could be
used for importing data into a pnm format which can then be read by all Khoros operators.

4.5.2 Tools for importing data

Khoros has a different view on data import. In general, data access is performed through data ser-
vices using one of the Khoros data models. Data services transparently supports a number of file
formats. When a file is opened, data services checks the file to determine if it is one of the sup-
ported file formats. If it is, then the data contained in the file will be made available through the
various segments in the data model. Applications which use data services can simply open up a
file, and if the file is one of the supported formats, it will be able to access it. while most file for-
mats can be automatically understood by Khoros operators, some file formats may need extra
information to be imported correctly. The following routines are available for importing ASCII
and raw data.

• kimportasc: this routine allows you read an ASCII file into the Khoros 2.0 VIFF format,
while specifying the size, data type, and index order of the ASCII data. Support for skipping
points in the ASCII data is also provided. Simplified versions of this routine which read
ASCII data into each of the polymorphic data segments are also available.

• kimportraw: this routine allows you to specify details of the raw data format (such as what
machine the data was created on) and import the data file into a Khoros 2.0 VIFF file.

• kformats: this routine allows you to convert a file stored in any of the supported file formats
to any of the other supported file formats.

4.6 PV-WAVE

4.6.1 Data readers and importing data

PV-WAVE CL provides a number of procedures for data input, which are reasonably comprehen-
sive and easy to use, although readers for standard data formats are not available other than for
TIFF.

The data input procedures and DC functions include:

• READ (formatted/free format read on the standard input stream)

• READF (formatted/free format read from a specified file)

• READU (binary unformatted read from a specified file)

• DC_READ_FIXED (ASCII fixed format)

• DC_READ_FREE (ASCII free format)

• DC_READ_8_BIT (8-bit image data)

• DC_READ_24_BIT (24-bit image data)

• DC_READ_TIFF (Tag Image File Format)

• Also full support for HDF and netCDF

Page 74 of 159 Chapter 4: Data Import

AGOCG 2nd Edition

Equivalent functions broadly exist for data output (please see the data output chapter).

Data import/export error messages and associated options can be specified through the functions:

• DC_ERROR_MSG (returns text string associated with error condition)

• DC_OPTIONS (set error message reporting level)

In general data input is simple and straight forward and the supplied documentation provides use-
ful examples.

Chapter 5: Data Output Page 75 of 159

2nd Edition AGOCG

Chapter 5: Data Output

5.1 Application Visualization System (AVS)

5.1.1 Hardcopy facilities

There are two main methods within AVS to generate postscript files (monochrome and colour)
from scenes and images in the Geometry Viewer and Image Viewer modules are:

Image to Postscript Module

This module takes as its input a standard AVS image and converts the output to Postscript in a file
on the system. The module supports two types of postscript output:

• An 8 bit gray scale image for monochrome printers

• A 24 bit true colour image for colour printers supporting the level 1 Postscript operator col-
orimage or any Postscript Level 2 printer.

The module also allows the user to specify: orientation: landscape or portrait style: encapsulated
(for inclusion into other packages) size: the page x and y size in inches

One of the problems with this module though is that it generates images at a resolution of the
screen (100 dpi) whereas most printers have a higher (300 dpi) resolution. One method of increas-
ing the resolution the module can produce is to enlarge the image using thegeometry_viewer
facilities.

geom_save_postscript CLI command

This is the preferred method of generating output from the geometry_viewer module. This CLI
command will output the contents of thegeometry_viewer window using Postscript lines and
text where possible to improve the quality of output. There is however no conversion of polygons
to the appropriate postscript representations. To use the facility you must run AVS with the com-
mand line interpreter running and when you are happy with the scene in thegeometry_viewer
execute the CLI command.

5.1.2 Files

There are a number of modules which produce output files from various stages in an AVS net-
work. These are listed below with a brief description:

Standard AVS modules

Image to CGM: converts the input image into the Computer Graphics Metafile (CGM) format.
All three encodings, binary, character and clear text are supported and control is provided for the
page height and width and orientation.

Page 76 of 159 Chapter 5: Data Output

AGOCG 2nd Edition

Write field: writes an AVS field data type to disk. The file has two sections: an ASCII header and
the data written in a binary format. The module allows control on the format of the binary portion
and it can be written in the machine’s native format or in Sun’s (external data representation)
XDR format which is useful for transporting files across machine ranges.

Write UCD: writes unstructured cell data to a file in either binary (compact) or ASCII (human
readable) format.

Write image: writes an AVS image data structure to a file. These files can be read by the AVS
module read_image and some public domain image conversion software e.g., customised versions
of xv and it is a supported format for the San Diego Image Toolkit.

Write volume: writes an AVS volume data structure to disk. These files can be read by the AVS
module read_volume.

ip write vff: converts an AVS image data structure into a SunVision binary vff image format file.

Write structure file: convert an AVS Molecule Data Type (MDT) data structure into a structure
file (and associated formal charge file). A structure file is one of the formats supported within the
AVS Chemistry Developers Kit.

Public domain modules

Create_MPEG: creates MPEG movies from a series of AVS images. It makes use of Andy
Hung’s MPEG which is available by anonymous ftp from Stanford. Geom_to_Wavefront: gener-
ates an equivalent Wavefront (.obj) file for each polyhedron and polytriangle in an AVS Geometry
object.

WRITE_ANY_IMAGE: This module writes an image from an AVS Network in a variety of for-
mats which the San Diego Supercomputing Center’s image tools support. Any of the following
image file formats can be written by this module:

Abbreviation Description

eps Encapsulated PostScript file

gif Compuserve Graphics image file

hdf Hierarchical Data File

icon Sun Icon and Cursor file

iff Sun TAAC Image File Format

mpnt Apple Macintosh MacPaint file

pbm Portable Bit Map file

pcx ZSoft IBM PC Paintbrush file

pgm Portable Gray Map file

Chapter 5: Data Output Page 77 of 159

2nd Edition AGOCG

field2_to_Math: allows a two-dimensional scalar field to be imported into Mathematica from
AVS. The session is initialised with a package of Mathematica commands which start a MathLink
communication channel to AVS. Other initialisations are made so that the Mathematica command
AVSReadField will read a two-dimensional scalar field from AVS.

field_to_EXCEL: ASCII Excel spreadsheet format files are produces containing field data in a
table format. These files can be imported into a suitable excel format for analysis and plotting.
Separator characters may be specified for differing output versions, three possible floating point
output formats are selectable, and the maximum number of values per line is adjustable.

Output a60: The output a60 module takes an AVS image data structure as input, converts it into
Abekas YUV format and sends it to an Abekas a60 digital disk recorder.

pic PIXAR picture file

pict Apple Macintosh QuickDraw/PICT file

pix Alias image file

pnm Portable aNy Map file

ppm Portable Pixel Map file

ps PostScript file

ras Sun Rasterfile

rgb SGI RGB image file

rla Wavefront raster image file

rle Utah Run length encoded image file

rpbm Raw Portable Bit Map file

rpgm Raw Portable Gray Map file

rpnm Raw Portable aNy Map file

rppm Raw Portable Pixel Map file

synu Synu image file

tiff Tagged image file

x Stardent AVS X image file

xbm X11 bitmap file

xwd X Window System window dump image file.

Abbreviation Description

Page 78 of 159 Chapter 5: Data Output

AGOCG 2nd Edition

ucd_to_wave: The ucd to wave module writes a ucd structure to disk, in wavefront format,
which is supported by Data Visualizer. Ucd to wave works only with node data, therefore if you
have cell data, you have to transform the cell data to node data using the cell to node module.

write_Dore_i: converts an AVS image data structure into Dore format

write_KSWAD: converts an AVS image data structure into a KSWAD format

write_MooV: Create QuickTime sequences from AVS images. This code currently requires, the
QuickTime Movie Exchange Toolkit, which is available from Apple, Inc, and a C++ compiler
(you also need the C++ compiler to build the QuickTime libraries.

write_jpeg: Compresses an image with the JPEG compression standard and writes it to a file.

5.1.3 Animation and Video facilities

Standard AVS

With standard AVS users can control the behaviour of downstream modules in an AVS network
by using theanimated float and animated integer modules. These modules both output a
stream of numbers which can be used to control the parameters of modules downstream in the
network. The modules allow the user to input the minimum and maximum range of the numbers
along with the number of intervals or steps to proceed with. This allows the control and genera-
tion of flipbook style of animation.

The modulesimage_viewer andgeometry viewer both have facilities for the creation of simple
flipbook animation by recording a sequence of images or geometries and then playing them back
from memory. The playback speed and performance is highly dependent on the platforms render-
ing speed and memory configuration.

Public domain modules

There are a few public domain modules which provide animation facilities extra to the ones in
standard AVS. Thecreate_mpeg module has been mentioned in the previous section on file out-
put.

CICA Keyframe module: this module is connected to the geometry viewer module and controls
the of objects by manipulating their transformation matrixes. The user can define a number of
keyframes and then interpolate between them using linear or spline interpolation.

Fast Animate: this module is designed animate a series of AVS geometries which have been
written to disk. The files are defined with a prefix and then a frame sequencing number with con-
trols to step forward, back and play a sequence.

 AVS Animator

The AVS animator package consists of a number of modules and a separate license to the standard
AVS one is needed to use the AVS animator module.

Chapter 5: Data Output Page 79 of 159

2nd Edition AGOCG

The package consists:

• AVS Animator

• Read Frame Seq

• Write Frame Seq

• Output ImageNode

• Output VideoCreator

• Prepare Video

AVS Animator is the main module within the package and provides a front end to the keyframe
style of animation. The animator module can control the rendering modules:image viewer,
geometry viewer, graph viewer etc. It can also control the parameters associated with modules
in the same AVS network upstream of these rendering modules.

The user generates an animated sequence or script by defining a number of keyframes and then
asking the AVS Animator to in-between or interpolate between these keyframes. The keyframe
definition consists of the objects attribute information within the rendering module and also the
parameter settings in the modules upstream of the renderer. An example scenario could be a rotat-
ing dataset with the isosurface value changing from its minimum to maximum value. Obviously
more complex animations are possible.

When an animation has been generated the user has to hand a more complex user interface to con-
trol the aspects affected at each keyframe (see figure 10). This allows the user to edit the final
sequence.

Figure 10: AVS Animator Interface

Page 80 of 159 Chapter 5: Data Output

AGOCG 2nd Edition

As the animator module generates an animated sequence useful information is sent out of its out-
put ports: frames/second, frame number and current time.

Finally the animator allows the user to save and load scripts that they have generated.

Along with the main animator module come a number of support modules:

Write Frame Sequence: compress a series of images which make up a flipbook style of anima-
tion into a single file. The module can also add and delete frames from an existing frame sequence
file. It is useful for collecting images from a simulation where each time step takes a time to cal-
culate.

Read Frame Sequence: read a series of files written to a frame sequence file by the write frame
sequence module. The module has the animator style control panel and optional controls over the
playback speed and current frame.

Prepare video: pre-process animations before sending them to a video device. The processing
that is supported:

• Low pass filter

• Interlacing

• Gamma correction

Output ImageNode andOutput VideoCreator: two example modules for the DiaQuest Inc. and
Silicon Graphics VideoCreator video boards. These modules serve as examples for users who
wish to interface to other video output hardware.

5.2 IBM Data Explorer

5.2.1 Hardcopy

There are 3 modules in DX that will produce an image from some data:render, display and
image. Render produces the image but doesn’t display it whiledisplay will display it too but
requires a camera module to produce transformations on the viewpoint. The image tool combines
both display and a camera, in addition allows the user to save and print images. If the render tool
is used it would be necessary to output the image from therender module intowrite image or the
image tool. Thewrite image requires the user to open its control panel and type in the name of
the format (new users will need to refer to manual pages to determine what this string is and may
find the control panels a little difficult to understand). Theimage tool uses pull down menus to
select the format. Using print image under the “file” menu of the Image tool, the standard formats
provided to send directly to a printer are: Colour PS, Greyscale PS, Encapsulated Colour PS and
Encapsulated Greyscale PS. In addition it is possible to save images using “save image” under the
“file” menu: as a PS file, in RGB (grouped together), R+G+B (all R, then all G then all B), or
TIFF. Having saved the image this can be converted to other typical hardcopy image formats
using a public domain image tool, e.g. San Diego Supercomputing Centre (SDSC) tools. Example
macros and networks are available at the Cornell anonymous ftp site, underpub/
Data.Explorer/Extensions/Import.and.Export.Macros . The macros automati-

Chapter 5: Data Output Page 81 of 159

2nd Edition AGOCG

cally create a temporary tiff file, convert it to the requested format using the SDSC imconv rou-
tine, and finally delete the temporary tiff file.

5.2.2 Files

Apart from the creation of image formats, as detailed above, the only other standard module for
creating output files from dx is theexport module. This exports data from Data Explorer but only
produces dx formatted or bin files (dx is the default, needs to have the text “dx” or “bin” in the
“format” entry of the control panel). The bin format is only recommended on IBM POWER Visu-
alization Systems. With “dx” format additional modifiers apply:

• MSB or LSB (most or least significant byte order)

• 2 formats of dx are currently supported ieee (or binary) and text (or ascii).

5.2.3 Animation/Video Creation

The primary tool used for the creation of Animation sequences is thesequencer - this can be
found under the category “Special”. Given a min, max and step value (passed from other modules
or set explicitly), this basically creates a sequence of integers. Although like more advanced ani-
mation utilities, the sequence can be played forwards, backwards, set to a particular value,
paused, or set to loop (either to the last then jump back to the first or bounce forwards then back-
wards). The default interface resembles a simple VCR control panel, see Figure 11

To set the values used by the sequencer, an additional control panel needs to be opened. By select-
ing the box containing “...”, the panel shown in Figure 12 becomes visible.

Figure 11: VCR interface of thesequencer

Figure 12: Additional control panel forsequencer

Page 82 of 159 Chapter 5: Data Output

AGOCG 2nd Edition

On its own this module is not particularly useful for general purpose animations, but in combina-
tion with others can become a powerful animation aid. For example, when used with the transfor-
mation tool Compute it can produce a sequence of float values that could modify camera
position, or with the interactorSelector could cycle through time series data. Several networks
exist in the standard example directory,/usr/lpp/dx/samples/programs , to illustrate
this. Only one sequencer is allowed in a network, but more experienced users can build networks
such that this produces side by side animations.

5.3 IRIS Explorer

5.3.1 Hardcopy

Hardcopy output of visual information is provided by colour Encapsulated PostScript through the
Render module. Other modules producing visual output, such asGraph, Histogram, Display-
Image, do not output PostScript, though a new moduleNAGGraph, available soon, will do so.
TheRender module File menu has a Print selection with options to set an output size in inches
and orientation (Landscape or Portrait), sending directly to the printer or to a file. When sending
to a file it is also possible to output RGB.

5.3.2 File output

DataScribe

DataScribe is a visual programming interface for creating user-defined data readers. It takes
ASCII or binary data files and turns them into IRIS Explorer Lattice data types, or vice versa. It
works only to/from the various Lattice types (see Data Import section).

Image Formats

ReadImg andWriteImg module

These IRIS Explorer modules read/write a lattice containing a 2D image to a file. The lattice can
have 1, 3 or 4 data variables denoting greyscale, RGB or RGB Opacity.

ImportImage andExportImage modules

These user-contributed modules convert between an IRIS Explorer Lattice containing a 2D image
and one of the following formats:

Abbreviation Description

bmp Microsoft Windows bitmap image file

cur Microsoft Windows cursor image file

eps Adobe Encapsulated PostScript file

gif Compuserve Graphics image file

Chapter 5: Data Output Page 83 of 159

2nd Edition AGOCG

Render

The File menu ofRender can also be used to output files in IRIS Inventor format. The file can
subsequently be read into a Showcase document on an SGI machine whilst retaining the 3D rela-

hdf Hierarchical Data File

ico Microsoft Windows icon image file

icon Sun Icon and Cursor file

ff Sun TAAC Image File Format

mpnt Apple Macintosh MacPaint file

pbm PBM Portable Bit Map file

pcx ZSoft IBM PC Paintbrush file

pgm PBM Portable Gray Map file

pic PIXAR picture file

pict Apple Macintosh QuickDraw/PICT file

pix Alias image file

ppm PBM Portable Pixel Map file

pnm PBM Portable aNy Map file

ps Adobe PostScript file

ras Sun Rasterfile

rgb SGI RGB image file

rla Wavefront raster image file

rle Utah Run length encoded image file

synu SDSC Synu image file

tga Truevision Targa image file

tiff Tagged image file

viff Khoros Visualization image file

x AVS X image file

xbm X11 bitmap file

xwd X Window System window dump image file

Abbreviation Description

Page 84 of 159 Chapter 5: Data Output

AGOCG 2nd Edition

tionships recorded therein.

ReadXXX and WriteXXX modules

IRIS Explorer’s internal data formats (Lattices, Pyramids, Geometry including camera and light-
ing specifications) have an associated module for writing out to a file, whether in ASCII or binary.
Binary output typically is used where the file is to be read back into Explorer at a later time, using
the correspondingReadXXX module. ASCII format is useful to elucidate the data structures and
for visual inspection during debugging. Storage of a colourmap is as a specific instance of a Lat-
tice. Parameters and Pick data types can be output to the IRIS Explorer log window usingPrint-
XXX

5.3.3 Video/Animation

The AnimateCamera module is provided to animate the viewing position. Typically, camera
positions are output from theRender module and are input toAnimateCamera in Learn mode.
In Run mode,AnimateCamera interpolates at user-specified intervals to produce camera geome-
try which is then input toRender. Camera positions can also be stored in a file and read intoAni-
mateCamera usingFileList.

Loop control modules such asFor, Trigger, While, and Repeat allow the generation of a
sequence of parameters to drive, for example, automatic isosurface calculation using theIsosur-
faceLat module.

WriteAnimation writes incoming 2D lattices into a single 3D image in FIT format, which is
defined and used by the IRIS ImageVision Library. This format is accepted by SGI moviemaker in
which it can be edited and saved inmovie format which is accepted by SGI movieplayer. This
forms flip book animation.

The module pairWriteMovie andReadMovie allow an SGI movie file of concatenated images to
be written out and read back in frame by frame. When used in conjunction with the loop control
constructs this allows flipbook animation of images.

A suite of modules is available to control an external video recorder connected to a hardware
video board. The hardware supported includes theVideoLab Board, Starter Video, VFR andVC
and the options available are frame rate, timing and output format, all of which can all be set from
theVideoDevice module.

TheVideoControl module controls an external video device and has support for V-LAN as well
as VC and VFr. There are 3 modules designed to work with the Starter Video board,VideoStart-
erIn, VideoStarterInWin andVideoStarterOut:

• VideoStarterIn takes input video via the Starter Video board and outputs a series of user
specified frames in Lattice format. Various settings may be altered including Hue and Satu-
ration of the image as well as the scale. Both NTSC and PAL formats are supported.

• VideoStarterIn andVideoStarterInWin do the same job except thatVideoStarterInWin
has a drawing region on which to display single frames before they are grabbed.

Chapter 5: Data Output Page 85 of 159

2nd Edition AGOCG

• VideoStarterOut sends video output via the Starter Video board and has inputs either of a
lattice or a user specified region of the hi-res display. It also supports both NTSC and PAL
formats.

There are similar versions ofVideoStarterInWin andVideoStarterOut for the VideoLab board
calledVideoLabInWin andVideoLabOut with only slightly different options.

5.4 Khoros

By default, all Khoros operators write out in the Khoros 2.0 VIFF file format. This is done by
default because not all formats are capable of storing the full polymorphic data model. For exam-
ple, the PBM format is only able to store map and value data. Thus, if you create a data object
with explicit location data and then save the object using the PBM format, your location data will
be lost. The Khoros 2.0 VIFF format is the only supported format which is capable of generally
supporting all data segments and attributes. Note, however, that since most of the supported for-
mats are designed for storing images, this is typically not a limitation if you are working with
image data.

5.4.1 Hardcopy

The kformats operator can be used to convert any of the supported file formats to any of the other
supported file formats.

The specific formats which are supported within Khoros 2.0:

• Khoros 2.0 VIFF (viff)

• Khoros 1.0 VIFF (xvimage)

• PNM (pnm)

• Sun Raster (rast)

• X Bitmap (xbm)

• X Pixmap (xpm)

• X Window Dump (xwd)

• AVS Image (avs)

• ARF (arf)

• ASCII (ascii)

• RAW (raw)

• Encapsulated Postscript (eps) - output only

• Support for GIF will be in available with the CD release.

Page 86 of 159 Chapter 5: Data Output

AGOCG 2nd Edition

5.5 PV-WAVE

5.5.1 Hardcopy

PV-WAVE CL provides a number of options for producing hardcopy output and includes support
for, Postscript, HPGL, PCL, QMS QUIC, CGM, Tektronix 4510 (rasterizer(*) DEC LJ250,
SIXEL and PICT.

Five steps are required to produce hardcopy output and these are (PV-WAVE CL Commands in
brackets):

1. Select the hardcopy output device (SET_PLOT)

2. Configure the output device (DEVICE)

3. Create your graphics output (PLOT, PLOTS, SURFACE etc.)

4. Close the output file (DEVICE)

5. Send the output file to the plotter (Operating System Dependent e.g lpr <filename> for
Unix)

Specific formats and configurations are specified through the use of keywords to the above com-
mands. Where commands are not specified e.g. no DEVICE following a SET_PLOT, default val-
ues are taken. The command INFO can be used to obtain information about the currently selected
device.

In general hardcopy output is easily created and the supplied documentation provides useful
examples.

5.5.2 File output

File output from PV-WAVE CL is created by the use of the data export procedures and DC func-
tions, which include:

• PRINT (formatted/free format write to standard output)

• PRINTF (formatted/free format write to specified file)

• WRITEU (binary unformatted)

• DC_WRITE_FIXED (ASCII fixed format)

• DC_WRITE_FREE (ASCII free format)

• DC_WRITE_8_BIT (8-bit image data)

• DC_WRITE_24_BIT (24-bit image data)

• DC_WRITE_TIFF (Tag Image File Format)

• HDF and netCDF are fully supported

Equivalent functions broadly exist for data input (please see the data input chapter).

Data import / export error messages and associated options can be specified through the functions:

Chapter 5: Data Output Page 87 of 159

2nd Edition AGOCG

• DC_ERROR_MSG (returns text string associated with error condition)

• DC_OPTIONS (set error message reporting level)

In general file output is easily created and the supplied documentation provides useful examples.

5.5.3 Video/Animation

The programming constructs available provide the mechanism to produce animation sequences,
and a sample animation procedure is provided with the supplied documentation. The constructs
and procedure enable simple flip book animation sequences to be created. There are also the two
interactive procedures:

• WgMovieTool

• WgAnimateTool

Page 88 of 159 Chapter 5: Data Output

AGOCG 2nd Edition

Chapter 6: Incorporating Application Code Page 89 of 159

2nd Edition AGOCG

Chapter 6: Incorporating Application Code

6.1 Introduction

For most of the visualization systems there are public domain repositories of examples and dem-
onstrations to illustrate the inclusion of application code. The location of these sites is given in
Chapter 8: Additional Information.

6.2 Application Visualization System (AVS)

6.2.1 Programming language

AVS provides direct support for the following programming languages:

• C (K & R and ANSI styles);

• Fortran 77;

• C++

6.2.2 General overview and structure

Programmers can include user-written modules into the AVS system. A module consists of source
code files and an associated help page. Within the source code of the module the user specifies
what input/output data ports the module has and what parameters are associated with the module.

There are two types of modules which differ in the way their execution is controlled:

• Subroutine: these modules are controlled by the AVS Kernel (Flow Executive) which will
invoke a module only when its input ports or parameters have received new or changed
data;

• Coroutine: these modules execute independently of AVS and explicitly inquire data on the
input ports and parameter settings whenever they require this information. They also send
data into an AVS network asynchronously; this could cause problems if large amounts of
data are sent so coroutines have synchronisation routines made available to them.

6.2.3 Automatic generation

There are two tools associated with the code generation and user interface aspects of AVS mod-
ules:

Module generator

The user provides a specification of the module (see figure 13) they wish to construct via a num-
ber of menus. This includes information such as programming language (currently C and Fortran
77 options), input/output port definitions, parameters and widgets (slider, dials). When the specifi-

Page 90 of 159 Chapter 6: Incorporating Application Code

AGOCG 2nd Edition

cation is complete the module generator will output a skeleton source code file utilising the infor-
mation specified along with a makefile, manual page and optional programming hints;

Layout editor

The parameters associated with a particular module all appear in a stack fashion towards the left-
hand side of the network editor by default. The layout editor allows a user to interactively change,
group and position these parameters to create a custom layout definition for a particular AVS net-
work. This information is saved with an AVS network thus allowing the interface to a particular
module to be customised differently in other AVS networks.

Figure 13: AVS Module Generator Interface

Chapter 6: Incorporating Application Code Page 91 of 159

2nd Edition AGOCG

6.2.4 General topics

Application control of the module

An AVS coroutine module can execute independently of the AVS Kernel allowing it to provide a
useful method of interfacing an external applications or devices into AVS.

Shared Data

AVS makes use of shared memory and Unix sockets for data communication between modules on
the same local machine.

User interface

As mentioned earlier the Layout editor can be used to interactively change, position and group a
modules parameters within an AVS network. There are also examples of modules which provide
their own user interface through X11 and associated widgets and toolkits.

The current version of AVS (AVS5) was based upon their own graphical user interface, LUI.
AVS6 will now have a Motif user interface on the workstation platforms and AVS6 is being
planned for release onto PC platforms with the first release based on Windows NT and later ver-
sions for Windows 95 and DOS.

Compilation

You can perform cross compilation from within an AVS module and make calls to external sub-
routine libraries.

Debugging support

AVS provides mechanisms a number of mechanisms for debugging:

• An AVS module can be debugged using the native system debugging tools;

• Facilities to track down problems with memory allocation errors;

• Verification of the integrity of geometry data types a user has built;

• Modules exist which output the data representations to ASCII files;

Training

Two AVS courses, introductory and advanced, have been developed as part of the Advisory
Group on Computer Graphics (AGOCG) Visualization Support Project at the Computer Graphics
Unit, Manchester Computing Centre, University of Manchester.

The materials are available in postscript format along with the supporting data files and modules
via anonymous FTP from the University of Manchesterftp.mcc.ac.uk (130.88.203.12)
under the directory pub/cgu/avs/avs_course or the International AVS Center
(avs.ncsc.org).

Page 92 of 159 Chapter 6: Incorporating Application Code

AGOCG 2nd Edition

6.3 IBM Data Explorer

6.3.1 Programming language

C is the main language but using C wrappers both Fortran and C++ code can be incorporated into
modules.

6.3.2 Overview of modules

There are two specific types of modules that can be implemented:

• Inboard: these are linked with the existing DX executive and do not require any socket com-
munication;

• Outboard: these are not linked with the DX executive and can sometimes be easier to man-
age than the Inboard modules. Outboard modules are easier for Application Developers to
ship extensions;

The API that is made available to users of DX is the same one used by the IBM DX development
team.

On SGI & SUN Symmetric Multi Processor (SMP) machines such as Onyx DX modules will run
in parallel within a module. Using data decomposition the DX executive spawns tasks on each of
the available processors to execute the module function against a sub-area of the dataset. The sub-
areas are grown into each other to cater for boundary conditions.

This is an important area for DX as it was originally written to run on a parallel machine.

6.3.3 Automatic generation

DX has a module building tool that will automatically generate most of the C code, along with the
modules description file and makefile. To run this the user needs to type:

dx -builder

This is an easy to use tool, for example Figure 14 shows how the builder was used to outline a
transformation module that takes 1 input and 1 output.

Apart from describing the data types so DX can set up the appropriate data, the user also includes
comments to describe what the module does and what the input and output data are.

Chapter 6: Incorporating Application Code Page 93 of 159

2nd Edition AGOCG

A text version of this description can be saved for future use:

MODULE_NAME = add1
CATEGORY = Transformation
MODULE_DESCRIPTION = To add 1 to each data value
OUTBOARD_EXECUTABLE = add1
OUTBOARD_PERSISTENT = FALSE
ASYNCHRONOUS = FALSE
PINNED = FALSE
SIDE_EFFECT = FALSE

INPUT = in_value
DESCRIPTION = Original data, needs 1 to be added
REQUIRED = TRUE
STRUCTURE = Field/Group
DATA_TYPE = float
DATA_SHAPE = Scalar

Figure 14: IBM Data Explorer module builder interface

Page 94 of 159 Chapter 6: Incorporating Application Code

AGOCG 2nd Edition

POSITIONS = Not required
CONNECTIONS = Not required
ELEMENT_TYPE = Not required
DEPENDENCY = Positions or connections

OUTPUT = out_val
DESCRIPTION = in_value with 1 added
STRUCTURE = Field/Group
DATA_TYPE = float
DATA_SHAPE = Scalar
POSITIONS = Not required
CONNECTIONS = Not required
ELEMENT_TYPE = Not required
DEPENDENCY = Positions or connections

The Module Description file generated is as follows:

MODULE add1
CATEGORY Transformation
DESCRIPTION To add 1 to each data value
OUTBOARD add1;
INPUT in_value; group; (none); Original data, needs 1 to be added
OUTPUT out_val; group; in_value with 1 added

The Makefile:

FILES_add1 = add1.o
BASE = /usr/lpp/dx
CFLAGS = -Dindigo -O -I$(BASE)/include LDFLAGS= -L$(BASE)/lib_indigo
LIBS = -lDX -lsun -lgl_s -ly -ll -lX11 -lm -lmpc
OLIBS = -lDXlite -lm

add1: $(FILES_add1) outboard.o
$(CC) $(LDFLAGS) $(FILES_add1) outboard.o $(OLIBS) -o add1

how to make the outboard main routine

outboard.o: $(BASE)/lib/outboard.c
$(CC) $(CFLAGS) -DUSERMODULE=m_add1 -c $(BASE)/lib/outboard.c

make the user files

useradd1.c: add1.mdf
mdf-c add1.mdf > useradd1.c

The C code generated was over 500 lines and so too long to list here. This may appear to be very
long, but this is well commented code and the user is only required to modify the tail end of the
code:

int add1_worker
(

Chapter 6: Incorporating Application Code Page 95 of 159

2nd Edition AGOCG

int in_value_knt,
float *in_value_data,
int out_val_knt,
float *out_val_data
)

{
/*
* The arguments to this routine are:
*
*
* The following are inputs and therefore are read-only.The default
* values are given and should be used if the knt is 0.
*
* in_value_knt, in_value_data: count and pointer
* for input“in_value”
* no default value given.
*
* The following are outputs and therefore are writable.
*
* out_val_knt, out_val_data: count and pointer
* for output “out_val”
*/

/*
* User’s code goes here
*/

}

When 2 inputs were used the number of lines of code increased to over 650 lines but again the
user is only required to insert code into theworker routine.

6.3.4 Further examples

There are further examples which can be found in the IBM Data Explorer Programmer’s Refer-
ence Manual. There is also an FTP site of public domain modules availableftp.tc.cor-
nell.edu underpub/Data.Explorer.

6.4 IRIS Explorer

6.4.1 Programming language

The programming languages that are supported directly by IRIS Explorer are:

• C

• Fortran77

• C++

• Fortran90: The addition of Fortran 90 to this list is currently under consideration at NAG,
although the timescale would be determined by the degree of user interest.

Page 96 of 159 Chapter 6: Incorporating Application Code

AGOCG 2nd Edition

6.4.2 General overview and structure

Modules are written as a user function and associated subroutines called from the user function.
These are then compiled and automatically embedded within an Explorer wrapper. The input and
output ports of the final module are expressed as mappings from the parameters of the user func-
tion to Explorer data types. It is possible to createhook functions that can be called in specific cir-
cumstances i.e. the initialisation hook function is called when the module is launched into the map
and is used to do initialisation for the module.

Module compilation is done using a graphical interface called Module Builder (mbuilder) which
requires the name of the source code file, the Module name, any flags, any Libraries and any User
Makefile. There are then subsequent visual interfaces for:-

• Input Ports: List the names, types and optionality (required or optional) of input ports. Data
must be present on all required input ports before firing.

• Output Ports: List the names and types of the output ports.

• Function arguments: List the names and types of the arguments to the user function. Also
specify their type, either scalar or array (or pointers to either), the return type (if any) and
the language.

• Connections: This lists the input ports, function arguments and output ports in 3 columns
and allows the user to wire the input ports to the required function argument and then to the
output port. It also allows subtypes and structure members of the root type on the port to be
wired either to a function argument or, if left unaltered by a module, direct to an output port.
I.e. It is possible to wire the data portion of a lattice into a function argument, do some cal-
culation on it, then wire it to the data portion of an output lattice while just wiring the coor-
dinate portion directly to the output.

• Control Panel: See User Interface later in this section.

Once all aspects of the module have been entered into the Module Builder, selecting build will
cause it to begin compiling the module. On building, a set of makefiles are produced and all error
messages are returned to the screen. Once these makefiles are produced the module can be recom-
piled externally to Module Builder by using UNIX make. Building a module not only produces
the executable, but also the C source code for the interface between the user function and the
remainder of Explorer.

Explorer uses three controlling interfaces orwrappers to mediate between the module’s user func-
tion and the rest of the system. These are the Module Control Wrapper (MCW), the Module Data
Wrapper (MDW) and the Generic Wrapper. All three of these are generated automatically on
building, though the MDW can be turned off but the user must then incorporate the MDW func-
tions in their own code. The MCW is the module data manager, contains the firing algorithm and
provides interfaces to input and output functions, including port and widget settings. The MDW
performs conversions between Explorer and user-defined data types on the ports and the data for-
mat required by the user. The user can thus develop modules with customised interfaces without
having to interact with Explorer data types. The Generic Wrapper is not accessible to the module
writer, except indirectly through Hook Functions menu.

Chapter 6: Incorporating Application Code Page 97 of 159

2nd Edition AGOCG

As an alternative to writing C/Fortran code and having to build, link and compile after each alter-
ation, Explorer provides a method of generating user defined modules that act on the Lattice data
type, without having to use Module Builder. TheLatFunction module is an interpreter for a lat-
tice manipulation language called Shape that makes it easy to operate on Lattices. It allows the
user to interactively change the wayLatFunction acts on the data it receives, which provides a
quick way to prototype a new module without having to actually compile it. The user passes the
name of the Shape program file as a parameter to theLatFunction module. Shape is an inter-
preted, array-oriented language with a C-like syntax which makes it easy to create, process and
manipulate lattices. Since the program is interpreted, changing the output lattice can be done by
changing the name of the file passed toLatFunction - i.e. a new module doesn’t have to be
launched every time the lattice needs to be changed. This makesLatFunction useful in prototyp-
ing or testing new modules.

How is control passed to/from a module?

The modules are all free to fire independently of each other, the only constraint being that they
have the data on their input ports that they require. In practice this means that control is passed
from upstream modules to downstream modules as data (or parameters) are generated/altered and
passed on.

How is data passed to/from a module?

Data flow between modules is specified by the user by wiring modules in the Map Editor together.
The connections are made from the output port of one module (always on the right of a module
control panel) to the input port of another module (always on the left). This is done by pointing
and clicking over the relevant port which pops a list of available output ports, selecting one of
these then causes the other modules with compatible input ports to be highlighted. Awire is then
displayed in the map editor linking the two modules together. On workstations supporting shared
memory only the pointers are copied, not the data itself.

6.4.3 Automatic generation

The tool for this with Explorer is Module Builder (see figure 15), used as described above, filling
in details of ports and function arguments to describe the flow of data through the module. How-

Page 98 of 159 Chapter 6: Incorporating Application Code

AGOCG 2nd Edition

ever, instead of using the build option, “Create function prototype” is selected from the Prototypes
menu and a source code template is created with gaps for the user to write their function.

One of the menu options on mbuilder is for creating document prototypes. This option produces a
standard document file with all the input/output data structures listed, also, mbuilder automati-
cally produces the template for the module help files in the standard format with all the port data
types listed as for the doc pages. Gaps are left for the user to fill in specific details of the module
and port descriptions using any standard editor.

6.4.4 General topics

Application control of the module

The firing algorithm in the Module Control Wrapper (MCW) is responsible for determining when
the module is ready to fire. It is based on whether all the required frames of data are present on the
input ports. The user can make a module fire by selecting the fire option from the pop up menu
associated with each module. Explorer provides a means of registering file descriptors with the
Explorer Kernel through the API functioncxInputAdd . This descriptor is thenwatched by
Explorer and when there is data to read a callback function is called. This in turn can then request
that its associated user function be fired by calling the API functionfireASAP() . Through this
method it is possible to connect to external UNIX sockets and hence to other applications/devices.

Remote execution

In IRIS Explorer this is achieved by simply calling up a module Librarian on an alternative
machine. This is done through the host pull down menu which gives a dialogue box into which
the host name is entered. This new Librarian is used in the same way as the local one where mod-

Figure 15: IRIS Explorer Module Builder Interface

Chapter 6: Incorporating Application Code Page 99 of 159

2nd Edition AGOCG

ules are selected from it and placed in the map. Explorer takes care of the rest. These modules are
marked with the name of the machine they are running on.

Shared Data

Explorer uses a shared memory model for storing data. This allows modules to share a single
copy of, say a Lattice, which remains in memory until it is no longer being referenced by any
modules. This is achieved by means of a reference count stored within the data structure.

User interface

In Module Builder there is an option for editing the control panel of a module. Selecting this gives
a visual tool for designing and arranging the widgets associated with a module. It is possible to set
size, default values, positions, visibility, sizeability and widget type. Also it is possible to add text
labels, frames, and separators. The widgets are associated with the user function by expressing
them in the argument list as cxParameter types. The P-func Editor can be used to calculate an
input parameter value from one or more connected parameters on other modules in the map.

 There is an option to build a module with X-MCW which uses the X mechanism for handling
scheduling. Using this option allows Explorer to recognise and manipulate X Window or Motif
widgets in a module. The advantages of this are that you have complete freedom in creating the
user interface.

At a higher level, it is possible to group a set of modules that make up a map and edit a control
panel made up from some (or all) of the widgets available from all the modules in the group. This
includes the graphical output windows of DisplayImg and Render. This is done from within the
map editor and can be saved as a map. This map can then be run in application mode which is
where the map editor and librarian are unused and just the user defined control panel is visible.

Compilation

Module Builder allows the cross compilation of C and Fortran and also the inclusion of object
code. All the required files are listed in the text box “User Func File” as a space separated list.
Mbuilder needs the language type of the actual user function, but the rest are defined by their file
extension. External libraries can be linked by inserting them in the Libraries text slot in the same
way they are listed in the UNIX link command. It uses the form-l<library> for individual
libraries.

Debugging support

Debugging support is provided by compiling the module with an environment variable DEBUG
set to 1 to force the use of the-g flag. A module is then launched into a map and any of a number
of debuggers can be attached through the modules process ID.

Explorer does some runtime checking of data and there are a few options as to the course of action
taken if an error is found. These are selected at run time from the-action <INT> option where

• 0=ignore,

Page 100 of 159 Chapter 6: Incorporating Application Code

AGOCG 2nd Edition

• 1=warning,

• 2=halt,

• 3=abort

and-level <0/1> which sets the level of data checking.

Training

The module writer’s guide contains an initial chapter going through building a module with a
fairly trivial example (the source of which can be found on line) explaining what the basic ele-
ments of Module Builder do. The next chapter runs in parallel with the first and gives a more gen-
eral overview of Module Builder. There are chapters for each of the data types with examples of
code in both C and Fortran. In addition to the Module Writer’s Guide there are UNIX man pages
in 2 sections, the first covering all the standard modules, the second covering all the API routines.

There are also available courses from NAG which include an introductory and advanced course.
For more information you should contact NAG directly.

6.5 Khoros

Khoros 2.0 was designed to be a software development environment, so the support for incorpo-
rating new application code is very strong. Khoros is composed of toolboxes, which are simply
collections of programs and libraries. Additional application code can be easily added to the sys-
tem by creating new programs and libraries within a new toolbox [38] [39]. Since the Khoros sys-
tem comes with complete source code, programming examples are always handy.

6.5.1 Programming language

Khoros is based on the C programming language with support for compiling with Fortran and
C++. Support for sh, ksh, csh, and perl scripts as program objects is also available.

6.5.2 General overview and structure

In Khoros, application code is contained within distinct software objects. A software object a
complete encapsulation of a program or library and consists of application source code, documen-
tation, user interface information, and configuration. All software objects except libraries can be
run independently from the command line, or from the visual programming language Cantata.
The following types of software objects can be created.

• kroutine: A kroutine object is a non-interactive data processing routine.

• xvroutine: An xvroutine is an interactive program with its own graphical user interface.

• pane: A pane object is a special type of program object which is simply an alternate user
interface for an existing program. Pane objects may be used as a Khoros wrapper for the
easy integration of existing non-khoros program.

• script: A script object is a utility program which is written in some scripting language. The
user interface of the script must be written and maintained by the shell script programmer.

Chapter 6: Incorporating Application Code Page 101 of 159

2nd Edition AGOCG

• library: A library object is simply a collection of functions which can be called by other
libraries or programs.

• workspace: A workspace object is a Cantata workspace which has been collapsed down into
a software object. Note that a workspace object can also be run from the command line, as
well as within Cantata.

6.5.3 Software lifecycle

The Khoros software development tools provide a complete environment which support the itera-
tive process of developing, maintaining, delivering, and sharing software. These tools act as the
programmer’s assistant by providing automation where possible, enforcing consistency as neces-
sary, and hiding underlying complexity of software configuration, code generators, and documen-
tation formatters. This functionality is provided in the form of three applications which are
described below.

• Craftsman: The Craftsman application is used to manage toolboxes and software objects.
Toolboxes can be created or deleted from here. Software objects within any given toolbox
can be created or deleted from here. Editing of a software object is initiated here by launch-
ing the Composer application.

• Composer: The Composer application is used to edit, manipulate, and compile existing soft-
ware objects. Composer lets you edit the different parts of the software object such as the
source code and the documentation. The user interface of the software object can be interac-
tively edited by launching the Guise application.

• Guise: The Guise application is used to interactively create graphical and command-line user
interfaces. These applications are all used in a dynamic way, allowing a developer to move
easily between the different stages of development.

6.5.4 General Topics

Application control of the module

Each program object is an application unto itself giving full control to the user.

Shared data

Khoros provides data transport between processes via files shared memory, pipes, and streams.

User interface

As mentioned earlier, interactive editing of Khoros user interfaces is done with the Guise applica-
tion. The resulting user interface will be created at run time using widgets from one of the sup-
ported widget sets (Athena, Motif, OLIT).

Page 102 of 159 Chapter 6: Incorporating Application Code

AGOCG 2nd Edition

Compilation

Compilation of Khoros software objects is performed at a button press from the Composer appli-
cation.

Debugging support

Khoros has no actual debugger, but provides compilation rules for linking against Purify from
Puresoft and CodeCenter from Centerline.

6.5.5 Training

Khoral Research Inc. offers a “Khoros 2.0 Software Development Course” which provides a com-
plete tour of the Khoros system, detailed coverage on each of the Programing Services, as well as
the Khoros Software development system and how to write new Khoros routines.

E-mailktraining@khoros.unm.edu for more information.

6.6 PV-WAVE

Application code can be incorporated into PV-WAVE CL at two levels, via user developed com-
mand language procedures or more appropriately user developed C or FORTRAN code. The
description here will concentrate on the incorporation of user developed C or FORTRAN code as
the incorporation of command language procedures is considered an integral part of the PV-
WAVE CL package.

Two supplied PV-WAVE CL procedures, SPAWN and LINKNLOAD enable application code to
be incorporated into PV-WAVE CL and support the following languages:

• SPAWN: C and FORTRAN

• LINKNLOAD: C and FORTRAN

The SPAWN procedure provides a simple and efficient way to augment PV-WAVE CL with user
developed C and FORTRAN code, and moreover provide a general mechanism for accessing the
operating system. The procedure SPAWN spawns a child process to execute the application code,
to which it communicates via a Unix pipe. Various input and output keywords are used to specify
precise requirements. Where possible it is recommended that the required operation is performed
entirely within PV-WAVE CL, as PV-WAVE CL is likely to be more efficient, particularly will
small datasets.

The LINKNLOAD procedure is used to access external functions in an external shared object i.e.
the external code must be linked as a shared object. LINKNLOAD is more efficient than SPAWN
when communicating with application code and is the simplest method for attaching application
code (C and FORTRAN) to PV-WAVE CL. Given that external objects must be linked as shared
objects, LINKNLOAD is only available on systems capable of supporting dynamic linking.

Useful examples are provided in the supplied documentation, although the manual descriptions
do tend to be rather technical.

Chapter 7: Distributed Support Page 103 of 159

2nd Edition AGOCG

Chapter 7: Distributed Support

7.1 Application Visualization System (AVS)

7.1.1 Remote module execution

AVS supports the remote execution of modules on heterogenous platforms. To transfer the data
between machines the external data representation (XDR) is used to represent the data and the
Unix socket mechanism to transport the data. If the machines both use the same data representa-
tion then the XDR translation is bypassed. All this is made transparent to the user and remote
modules are used in the same fashion as local modules in an AVS network.

7.1.2 Remote access

AVS can be executed on a machine as an X client with the display set to point to a remote X
server (display). When the geometry viewer tries to start up on the remote display it will try to ini-
tialize a hardware renderer of the same type on that machine. Currently only PEX/PEX and DGL/
DGL pairings are supported. The software renderer within AVS can be used on remote 8 bit
colour displays and is independent of the hardware capabilities of the remote machine.

7.2 IBM Data Explorer

7.2.1 Remote module execution

Modules are grouped into Execution Groups which can then be directed to run on any machine
accessible to the user. The distribution can then exploit a mix of machine architectures. As with
all distributed processing care must be taken not to require too much data to be passed between
machines.

7.2.2 Remote access

Since IBM Data Explorer is based on the X Windowing System and Motif it can be accessed as a
remote client with its display pointed to a local X server (display).

7.3 IRIS Explorer

7.3.1 Remote module execution

In IRIS Explorer this is achieved by simply calling up a module Librarian on an alternative
machine. This is done through the host pull down menu which gives a dialogue box into which
the host name is entered. This new Librarian is used in the same way as the local one where mod-
ules are selected from it and placed in the map. Explorer takes care of the rest. These modules are
marked with the name of the machine they are running on.

Page 104 of 159 Chapter 7: Distributed Support

AGOCG 2nd Edition

7.3.2 Remote display

Version 2.0 of IRIS Explorer allows remote display via thexhost/setenv DISPLAY mecha-
nism, but this requires the remote machine to be SGI with the proprietary graphics GL. This limi-
tation is fixed at V2.2, which uses the de facto standard OpenGL. IRIS Explorer provides a
module RemoteRender which allows the user to display geometry on another workstation in addi-
tion to their own, provided that the second machine has remote X connections allowed, and sub-
ject to the proviso mentioned above.

7.3.3 Printing

The Print menu of Render automatically offers the names of networked printers on which to pro-
duce output.

7.4 Khoros

The Khoros installation guide provides more detailed information [35]

7.4.1 Remote module exectution

A remote daemon, phantomd, is executed on the remote machine and handles all the requests to
execute a remote task and the transporting of data to/from the remote machine. The transports
supported for the transferring of data to remote machines include sockets and Sys V Transport
Layer Interface (tli). In Khoros 2.0, local processes now communicate through a local phantom
daemon. The local phantom daemon then communicates with remote phantom daemons. This
method has the benefit of enabling more advanced distributed computing features to be added
such as load balancing, security, encryption, process groups. This functionality is not availble in
the current ftp release of Khoros 2.0, but is expected to be on line for the CD release next year.

7.4.2 Remote access

Khoros, since it is based on X, can be accessed as a remote client with its display pointed to a
local X server (display). Khoros supports all visual types of X servers.

7.5 PV-WAVE

7.5.1 Remote execution

PV-WAVE does not provide true distributed support as available within AVS and IRIS-Explorer
(i.e the ability to run specific procedures as part of the system but on different machines). How-
ever, various methods of interapplication communication are provided within the PV-WAVE CL
environment, and these include:

• External program execution from within PV-WAVE CL (see also Module writing)

• Execution of PV-WAVE CL from within a C or FORTRAN program using the functions
CWAVE or CWAVEFOR (without data transfer)

Chapter 7: Distributed Support Page 105 of 159

2nd Edition AGOCG

• External function call from within PV-WAVE CL via dynamic linking of shareable objects
(see also Module Writing)

• Execution of PV-WAVE CL from within a C or FORTRAN program (with data transfer) via
static linking.

• Client Server capability to remote machines via RPC’s

7.5.2 Remote Display

Distributed support in the form of X Windows client server access is supported within PV-WAVE
CL.

Page 106 of 159 Chapter 7: Distributed Support

AGOCG 2nd Edition

Chapter 8: Additional Information Page 107 of 159

2nd Edition AGOCG

Chapter 8: Additional Information

8.1 Introduction

This chapter is intended to provide information on:

• Availability: includes cost, platforms supported and contact address for the products;

• Support

• Information: includes on-line help facilities, manuals, network services;

• User Groups

The information below may have changed since the compilation time of this report and the appro-
priate vendors should be contacted for the most up-to-date information on cost, special deals, etc.
Some of the price information and reference to CHEST deals is only applicable to UK Higher
Education Institutes. Commercial users and academic sites outside the UK should contact the
vendors for price and availability information.

8.2 AVS

8.2.1 Availability

General information on availability can be found on WWW at:

http://www.avs.com/

The International AVS Center, North Carolina Supercomputing Center, US can also be accessed
on:

ftp:avs.ncsc.org
http://www.mcnc.org/HTML/ITD/IAC/IAC.html

Supplier

The UK office of Advanced Visual Systems Inc is:

AVS/UNIRAS Ltd.
Montrose House
Chertsey Boulevard
Hanworth Lane
Chertsey
Surrey KT16 9JX

Tel: 01932 566608
Fax: 01932 568842
Email:support@avs.com

Page 108 of 159 Chapter 8: Additional Information

AGOCG 2nd Edition

Platforms

A brief summary at time of writing is given here, but please see the following URL for current
information. Workstation platforms supported are:

• Data General

• DEC Alpha AXP, MIPS and VAX

• Evans & Sutherland

• Hewlett Packard PA-RISC

• IBM RS/6000

• Kubota Denali

• Silicon Graphics

• Sun Microsystems SPARC and also on supercomputers e.g., CS-6400

• Convex

• Cray Y-MP

• Fujitsu VPX

• Intel

• Meiko

• NEC

• Thinking Machines

The next release of AVS (AVS6) will be released on PC platforms including both Windows NT
and Windows 95.

For more up-to-date information access the URL:

http://www.avs.com/products/avs.html

Costs

The following is an extract from the NISS Bulletin Board; refer to the Bulletin Board for full
details. CHEST and AVS/UNIRAS Ltd. have concluded an Amendment to the CHEST/AVS
Agreement which offers a per-platform licence, as an alternative to the multi-platform licence
originally offered. This deal is applicable only to UK Higher Education Institutes.

The annual charges are as follows:

• Multi-Platform Licence: £4,800 for each year that the Site is licensed; and: AVS Animator
£900 per site licence.

• Per-Platform Licence: £2,150 for first platform ordered: And: £1,150 for each subsequent
platform ordered; and: AVS Animator site licence £400 for first platform ordered. And: AVS
Animator site licence £225 for each subsequent platform.

Chapter 8: Additional Information Page 109 of 159

2nd Edition AGOCG

8.2.2 Support

UK Support Arrangements

The following is an extract from the NISS Bulletin Board; refer to the Bulletin Board for full
details.

1. Telephone Advice and Support

AVS/UNIRAS will provide telephone advice and support to the nominated contact and/or
his/her deputy at licensed sites during normal business hours.

2. Training

Training courses will be provided in accordance with prices in force from time to time. Cur-
rent charges are £195 for a one day course and £350 for the two day course. AVS/UNIRAS
Ltd. will provide courses on site but prices will be subject to negotiation.

3. On site Support

Special consultancy and training, on site, current cost is approximately £590 per day.

International AVS Center

The International AVS Center serves as a catalyst for expanding the AVS user base and for
increasing AVS functionality by fostering discipline-specific module development and new AVS
uses. Located at the North Carolina Supercomputing Center, the worldwide clearinghouse col-
lects, ports, and distributes user-contributed, public-domain modules and acts as liason between
users and vendors. The International AVS Center also publishes a quarterly magazine called AVS
Network News and a yearly module catalog. It also hosts the yearly International AVS User
Group conference and coordinates User Group activities.

The AVS Consortium is made up of seven AVS sponsors and two affiliates who are funding and
providing direction for the International AVS Center. The seven sponsors are Advanced Visual
Systems Inc., Digital Equipment Corporation, IBM, Hewlett Packard Company, Kubota Com-
puter Corporation, Kubota Pacific Incorporated, and Sun Microsystems. The two affiliates are
Mobile Research and Development and Oki Electric, Inc.

International AVS Center North Carolina Supercomputing Center 3021 Cornwallis Road
Research Triangle Park, NC 27709 Phone (US) 919-248-1100

The main email alias for the center isavs@ncsc.org

8.2.3 Information

Manuals

• AVS Applications Guide

• AVS Chemistry Developers Toolkit Guide

Page 110 of 159 Chapter 8: Additional Information

AGOCG 2nd Edition

• AVS Developers Guide

• AVS Module Reference

• AVS Technical Overview

• AVS Tutorial Guide

• AVS5 Update manual

• AVS Users Guide

On-line Information

AVS 5.02 has online reference information for all the modules in the system and a series of pages
for various topics within AVS. The next version of AVS (AVS6) will have online, context-sensi-
tive, hypertext help system based on the Bristol Hyperhelp for Unix and Winhelp for Windows.

Module Repository

The International AVS Center at the North Carolina Supercomputing Center (NCSC) was estab-
lished to provide support for AVS. One of the functions the center provides is a repository of AVS
modules supplied by users which are available via anonymous FTPavs.ncsc.org . Manches-
ter Computing Centre (MCC) provides a shadow of the repository of modules on
ftp.mcc.ac.uk . The repository contains well over 600 public domain modules available in
source code form and a number of sample datasets.

Frequently Asked Questions

This can be accessed by:

http://www.mcnc.org:80/HTML/ITD/IAC/faq.html

There is also the Usenet newsgroupcomp.graphics.avs

8.2.4 User groups

UK AVS User Group

There is a UK AVS User Group which meets approximately twice a year in the UK. The current
charge is £25 per year for individual membership and £125 per year for organizations. The chair-
man is Julian Gallop, Rutherford Appleton Laboratory (email:jrg@inf.rl.ac.uk).

International AVS Center User Group

You can join the International AVS Users Group for a yearly fee of $100.00 which includes sub-
scription to the AVS magazine, the yearly AVS electronic catalog of modules (user donated and
commercial), a $50.00 reduction on attending the yearly International AVS Users Group confer-
ence and have special rates for additional services as they become available. To join, send check
or money order for $100.00 (add $10.00 if out of continental USA) to:

Chapter 8: Additional Information Page 111 of 159

2nd Edition AGOCG

The International AVS Center PO Box 12889 3021 Cornwallis Road RTP, NC 27709

8.3 IBM Data Explorer

8.3.1 Availability

On WWW access to general information on DX can be found at:

http://www-i.almaden.ibm.com/dx/

 This also links to the ftp repository at Cornell, or can be accessed directly as:

http://www.tc.cornell.edu/DX/dx.html/

Supplier

DX is from IBM or any IBM Dealer. In the UK the contact is:

Andy Hey
IBM AIX Scientific & Technical Solutions,
1, New Square,
Bedfont Lakes,
Feltham,
Middlesex, TW14 8HB.

Tel: 0171 202 5266
email:ahey@vnet.ibm.com

Platforms

DX is currently available on the following (colour) platforms:

• IBM RISC System/6000 all models platforms IBM SP1 & SP2

• Multiprocessor systems Silicon Graphics: Indigo, Crimson, Onyx, and Challenge, On Sym-
metric Multiprocessor machines DX supports intra module parallelism i.e. most DX mod-
ules are written to run in parallel

• Sun: SPARC 2 & 10, including SMP (see SGI)

• Digital Alpha models 351

• Hewlett Packard: 9000/700 Series, (all models) 800 Series: 817,827, 837, 847, 857, 867

• Data General AViiON

Costs

• Node locked license (multiple instances on one CPU) List price £4,700.

• Floating license (up to n instances on any of the supported platforms in the user’s network)
List price £5,895

Page 112 of 159 Chapter 8: Additional Information

AGOCG 2nd Edition

• Generally IBM Academic discounts can be as much as 80%

8.3.2 Support

The UK based product specialists in IBM Hursley at no additional cost.

Training

IBM run training courses as required, cost depends on student numbers location, length of and
type of course (overview or detailed). Typically a 3 day course would cost approximately £250
per day.

8.3.3 Information

Manuals

There are 3 manuals: The Users Guide, Users Reference and Programmers Reference [25], [26]
and [27].

The Users Guide includes how to use DX, its data types and the data importer. The tutorial to get
new users started with DX is in Appendix A.

The Users Reference lists and describes the modules available.

The Programmers Guide describes how to write your own DX modules and includes how to use
the module builder to automatically generate the template for new tools.

On-line Information

The on-line help for DX is very good. Help can be accessed on all aspects - including the mod-
ules, on using DX but also to get help on complete networks too. The help system uses hypertext
so the user can navigate by selecting keywords from one item to the next until they find what they
want (it automatically saves a history so the user can reverse the route back step by step). This
was found extremely useful since looking at the entry for one module may require the user to fol-
low links to related modules.

Network Information Services

Apart from the IBM and Cornell Theory Centre WWW pages, location given at the beginning of
this section, Cornell also acts as a repository for news (see the directoryftp:ftp.tc.cor-
nell.edu:/pub/Data.Explorer/news or equivalent from the WWW) where up to date
information can be obtained on various aspects of DX, this includes a Frequently Asked Ques-
tions file.

The Usenet group exists incomp.graphics.data-explorer .

Chapter 8: Additional Information Page 113 of 159

2nd Edition AGOCG

8.3.4 User groups

No formal user group exists but Birds of a Feather sessions occur at appropriate conferences, e.g.
Visualization ‘94, and the usenet group gives a route to contact users in similar areas of work.

8.4 IRIS Explorer

8.4.1 Availability

General information on availability can be found on:

http://www.nag.co.uk:70/1h/Welcome_IEC.html

Supplier

IRIS Explorer was originally developed by Silicon Graphics Inc, but it is now developed, distrib-
uted and supported by NAG Ltd.

The software can be ordered from:

IRIS Explorer Center
PO Box 50
OXFORD OX2 8DR
United Kingdom

Tel: 01865 516377
Fax: 01865 516388
Email:helpdesk@iec.co.uk

Platforms

A list of platforms on which IRIS Explorer is available can be found on:

http://www.nag.co.uk:70/1h/Welcome_IEC.html

A brief summary at time of writing is given here, but please see the above URL for current infor-
mation.

Workstation platforms supported are:

• Hewlett Packard Workstations

• IBM RS6000

• SUN (SunOS and Solaris)

• Silicon Graphics

• Cray Y-MP

The platforms for SUN (Solaris), Hewlett-Packard HP9000/700 and DEC Alpha are under devel-
opment.

Page 114 of 159 Chapter 8: Additional Information

AGOCG 2nd Edition

Costs

Please note that for current pricing structure users should contact their nearest IRIS Explorer Cen-
tre (which are run by NAG Ltd.).

http://www.nag.co.uk:70/0h/visual/IE/iecbb/contact

Prices for educational users is normally a 50% discount on the industrial price.

A preferential rate for is offered to Silicon Graphics users until Release 3.0 of IRIS Explorer is
available. After that, NAG’s standard pricing will apply.

8.4.2 Support

Provision

Support is provided through a IRIS Explorer Center help desk which can be accessed by the tele-
phone, fax or email addresses given earlier.

8.4.3 Information

Manuals

• IRIS Explorer User’s Guide: contains a “Getting Started” chapter;

• IRIS Explorer Module Writer’s Guide: provides information on how to build your own mod-
ules with the Module Builder; introduces the Explorer datatypes; and shows how to use the
shape language to prototype modules;

• IRIS Explorer Module Definitions: lists all the modules available with Explorer;

On-line Information

There is on-line help for each module, and man pages for the API routines.

Network Information Services

Details of all NAG products and services, including IRIS Explorer, are available from the NAG
WWW server. Information is updated regularly and includes Technical Reports, Product Avail-
ability Details and Free Software.

Connection details:

http://www.nag.co.uk:70/

There is an FTP site at Edinburgh Parallel Computing Centre which maintains a repository of
modules and an FAQ list. This can be accessed via the NAG WWW server, at the URL:

 http://www.nag.co.uk:70/1/visual/IE/iecbb/archive

Other IRIS Explorer files are available at other sites, e.g.

Chapter 8: Additional Information Page 115 of 159

2nd Edition AGOCG

 ftp.ncsa.uiuc.edu:/SGI/PATHFINDER/Explorer

 pdb.pdb.bnl.gov

To subscribe to the IRIS Explorer mailing list send mail to

explorer-request@castle.ed.ac.uk

There is an active Usenet group for IRIS Explorer:comp.graphics.explorer

Repositories of examples

In the UK, NAG provide a bulletin board called the IRIS Explorer Center which can be accessed
using mosaic (a WWW interface) or gopher. This homepage provides links, via an Explorer map
looking point and click interface, to FTP sites in the UK (ftp://ftp.epcc.ed.ac.uk/
pub/explorer) and in the US (ftp://swedishchef.lerc.nasa.gov/), User Group
Info and FAQ, Documentation and Announcements.

The FTP sites have a mixture of binaries and source code for a variety of modules that can be
downloaded. There are currently binaries for SGI and SUN systems. Also documents are avail-
able.

8.4.4 User groups

There is an IRIS Explorer User Group. Meetings are held in conjunction with the SIGGRAPH
and Eurographics conferences. Details from the IRIS Explorer Center, address above, or from the
WWW home page for IRIS Explorer.

8.5 Khoros

8.5.1 Availability

General information on availability can be found on WWW at:

http://www.khoros.unm.edu

There are currently two version of Khoros available, Khoros 2.0 Developer Release and Khoros
1.0.5. The Khoros 2.0 Developer Release is available via FTP only. The Khoros 2.0 book and CD-
ROM will be distributed by Prentice Hall, and should be in local book stores by the second quar-
ter of 1995. Khoros 1.0.5 is available via both anonymous FTP and CD-ROM.

Supplier

The supplier is Khoral Research, Inc (KRI).

Page 116 of 159 Chapter 8: Additional Information

AGOCG 2nd Edition

Platforms

KRI is developing on and has ported the Khoros 2.0 Developer Release to the following architec-
tures:

Khoros 1.0.5 runs on these architectures:

Architecture OS Compiler Widget Set

 SPARCStations SunOS 4.1.3 SunC 2.0.1 Motif 1.1.5

 SPARCStations SunOS 5.3 SunC 2.0.1 Athena

 Alpha OSF 1.3 Native ANSI cc Motif 1.1.3

 SPARCStations SunOS 5.3 SunC 2.0.1 Motif 1.2.2

 SGI Irix 4.0.4 Native ANSI cc Motif 1.1

 RS6000 AIX 3.2 xlc 1.3 Motif 1.2.2

 Data General DG/UX 5.4R2.01 Native ANSI cc Motif 1.2.1

 Cray EL92 UNICOS 8.0.2 Native ANSI cc Athena

 486 Linux 1.1 gcc 2.5.8 Athena

 486 BSDI 1.1 gcc 2.5.8 Athena

 SPARCStations SunOS 4.1.3 gcc 2.5.8 Athena

 SPARCStations SunOS 5.3 Centerline clcc Olit

Vendor Name Configuration

 Apollo DN10000 OS 10.3, Fortran 10.8, cc 6.8

 CRAY XMP, YMP UNICOS 6.1

 DEC 5000/3100 Ultrix 4.2, mips cc 2.0, DEC f77 V3.0-2

 DEC Vax 3600 Ultrix 4.1, cc1.37.1

 HP HP9000/7xx HP-UX 7.05/8.05

 IBM RS/6000 AIX v3.1, 3.2

 SGI All OS 3.3.2, OS 4.0, X11 1.2, f77

 SUN SPARCstations, SUN4 SUN OS 4.1.1/4.1.2/4.1.3, f77 1.4.5

 SUN SUN3 SUN OS 4.1.1, f77 1.3.1, gcc 1.39/2.0

 PC 486 BSD386, ISC 3.2, Linux

Chapter 8: Additional Information Page 117 of 159

2nd Edition AGOCG

Costs

Khoros 1.0.5 and Khoros 2.0 are distributed via the Internet as free access software; that is,
Khoros is available throughout the world, free of charge, via Unix File Transfer Protocol (FTP).
In addition, Khoros 1.0.5 is also available for low-cost on CD-ROM. Although there is free access
to Khoros, it is not in the public domain. The software is owned by KRI, and does carry a License
and Copyright. While Khoros may be used by any organization free of charge, it can not be dis-
tributed without a license. Consult the Khoros Free Access License for additional information on
use and distribution. KRI is committed to maintaining the Free Access Distribution of Khoros.

The Khoros 2.0 Developer Release is available from the following anonymous ftp sites:

Pull back the file$KHOROS_FTP/release/install and read it first. Please use the site
closest to you.

Khoros 1.0.5 is available from the following anonymous ftp sites:

Where Address Internet Address Directory

USA ftp.khoros.unm.edu 198.59.155.28 /pub/khoros2.0

USA ftp.sdsc.edu 198.17.47.33 /pub/other/khoros/khoros-2

SWEDEN ftp.luth.se 130.240.18.2 /pub/cscw/khoros2

ITALY ftp.unipi.it 131.114.21.10 /pub/khoros2.0

BRAZIL ftp.unicamp.br 143.106.10.54 /pub/khoros2.0

GERMANY ftp.hrz.uni-kassel.de 141.51.12.12 /pub/khoros/khoros_2.0

GERMANY ftp.e20.physik.tu-muenchen.de 129.187.217.5 /pub/khoros/K2

UK ftp.mcc.ac.uk 130.88.203.12 /pub/cgu/khoros

Where Address
Internet
Address

Directory

USA ftp.khoros.unm.edu 198.59.155.28 /pub/khoros/khoros1.0.5

USA ftp.sdsc.edu 198.17.47.33 /pub/other/khoros/khoros-1

USA ftp.uu.net 192.48.96.9 /pub/window-sys/khoros

BRAZIL ftp.unicamp.br 143.106.10.54 /pub/khoros

CANADA popeye.genie.uottawa.ca 137.122.20.3 /pub/khoros

GERMANY ftp.rrz.Uni-Koeln.DE 134.95.80.5 /graph/khoros

GERMANY ftp.lrz-muenchen.de 129.187.10.35 /local/khoros

Page 118 of 159 Chapter 8: Additional Information

AGOCG 2nd Edition

Pull back the file$KHOROS_FTP/release/install.ftp and read it first. Please use the
site closest to you.

A CD-ROM and manual set of Khoros 1.0.5 may be purchased for $375 USD from KRI. Contact
khoros-request@khoros.unm.edu for more information.

Licensing Costs

There are three standard Khoros distribution licenses; Free Access, System Integrator, and Devel-
oper. Rights in addition to those provided by the standard licenses are negotiated on a case-by-
case basis. The Terms and Conditions of each license are summarized below:

8.5.2 Support

Provision

No cost email support is available over the Khoros mailing list and comp.soft-sys.khoros usenet
group.

ITALY ipifidpt.difi.unipi.it 131.114.8.130 /pub/khoros

JAPAN ftp.waseda.ac.jp 133.9.1.32 /pub/khoros

UK unix.hensa.ac.uk 129.12.21.7 /pub/uunet/window-sys/khoros

Type Annual Fee Distribution Rights
Distribution of

Derivative works
Updates

Free Access $0 USD limited internal use Internet

System
Integrator

$5,000 USD world-wide,
non-exclusive,
royalty-free,
non-transferable,
no sublicensing

distribution of
minor modifica-
tions upon
approval

CD ROM
Internet

Developer $50,000 USD world-wide,
non-exclusive,
royalty-free,
non-transferable,
no sublicensing

yes CD ROM
Internet

Negotiated royalty world-wide,
non-exclusive,
right to sublicense

yes Negotiated

Where Address
Internet
Address

Directory

Chapter 8: Additional Information Page 119 of 159

2nd Edition AGOCG

KRI offers monthly training courses for both developers and users. In addition, KRI can arrange
for on-site training.

KRI also offers specialized consulting arrangements.

Costs

E-mail support is free.

The Developer’s Training Course runs $1600 USD per person and the user training course runs
$1200 USD per person.

The cost of on-site training and consulting agreements are negotiated.

8.5.3 Information

Manuals

Khoros 2.0 manuals are available via anonymous ftp fromftp.khoros.unm.edu in the /
pub/khoros2.0/manual directory.

Note that the khoros_manual/ subdirectory contains the combined manuals for the bootstrap,
design, and dataserv toolboxes, which together comprise the core Khoros system. Thus, in this
directory you will find:

• Installation Guide [34]

• Getting Started Manual [33]

• Toolbox Programmer’s Manual [38]

• Visual Programming Manual [39]

• Introduction to Application Toolboxes [32]

• Programming Services Volume I: Foundation Services [35]

• Programming Services Volume II: Data Services [36]

• Programming Services Volume III: GUI & Visualization Services [37]

Then, there is a different subdirectory for each additional toolbox that is distributed with the
Khoros system. Thus, the datamanip/ directory contains the manual for the datamanip toolbox,
the envision/ directory contains the manual for the envision/ toolbox, and so on.

KRI distributes printed Khoros 2.0 manuals only to Licensees and Khoros Consortium members.
We are currently working on a Book and CD release; KRI has made an agreement with Manning
Publications to produce the Khoros 2.0 manual set which will include a CD ROM of the Khoros
2.0 distribution. The manual set will be distributed by Prentice Hall in the summer of 1995.

Page 120 of 159 Chapter 8: Additional Information

AGOCG 2nd Edition

On-line Information

All Khoros programs have complete man pages available on-line as well as help pages which can
be browsed with an interactive viewer. HTML converters are available for the documentation if
local hypertext versions are desired.

Network Information Services

Khoral Research, Inc. has a home page on the world-wide-web at

http://www.khoros.unm.edu

KRI maintains up to date information on the Web Site. In addition to information on Khoral
Research and Khoros there are pointers to many other home pages that may be of interest.

For additional information on Khoros, training, licensing, and support, users can mail to

khoros-request@khoros.unm.edu

Repositories of examples

The Khoros system comes with complete source code so programming examples are always
available. Contributed toolboxes containing source are also available.

8.5.4 User groups

There are two ways to get questions answered and to interact with other Khoros users: The
Khoros mailing list and the Khoros USENET group. The Khoros mailing list and USENET group
are bi-directionally gatewayed to each other (all messages are cross posted). That way you only
need to participate on either the mailing list or the USENET group.

To be added to, or removed from, the Khoros Mailing List, send e-mail tokhoros-
request@khoros.unm.edu with your request. To participate on the Khoros USENET
group, subscribe tocomp.soft-sys.khoros .

Khoral Research also provides a digestifed version of the Khoros mailing list. Once a day you
will receive a single email message with a digest of the previous 24 hours’ worth of articles. This
message includes a list of topics discussed. To be added to, or removed from the digestified list,
send e-mail tokhoros-request@khoros.unm.edu with your request.

When you become a System Integrator or Developer Licensee of Khoros, you automatically
become a member of the Khoros Consortium. The Consortium began in 1991 to facilitate the free
access distribution of Khoros and to further the research and development of software develop-
ment environments. Today the Consortium focuses on the rapid advancement of the Khoros soft-
ware infrastructure.

Chapter 8: Additional Information Page 121 of 159

2nd Edition AGOCG

8.6 PV-WAVE

8.6.1 Availability

General information on availability can be found on WWW at:

http://www.vni.com

Supplier

The UK Academic contact is Nigel Brown:

Visual Numerics International Ltd.
New Tithe Court
23 Datchet Road
Slough SL3 7LL

Tel: 01753 790600
Fax: 01753 790601

Email:nigel.brown@vniuk.co.uk

Platforms

PV-WAVE CL is available as part of the Visual Numerics Ltd. CHEST agreement and is available
for the following platforms:

• Convex Unix

• DEC VMS (VAX, Alpha)

• DEC Ultrix

• DEC OSF

• HP 9000/700 HP UX

• IBM RS/6000 AIX

• SGI Irix

• SUN (SunOS, Solaris)

• Microsoft Windows NT (DEC Alpha, MIPS, Intel)

• Microsoft Windows 3.1 (PV-WAVE Personal Edition)

PV-WAVE “Personal Edition” is available for the PC under Windows 3.1 but is not included in
the CHEST agreement. The full terms and conditions of the PV-WAVE CL CHEST agreement are
detailed below, including costs.

Page 122 of 159 Chapter 8: Additional Information

AGOCG 2nd Edition

Costs

This is a 5 year CHEST Agreement which commenced on the 23rd March 1994 and terminates on
the 22nd March 1999. Institutions may participate at any time during the period; however they
will be bound until the end of the Agreement. The Agreement covers both the PV-WAVE family
of products and the IMSL C and FORTRAN numerical and graphical libraries. New platforms
will be provided within the charges if and when commercially available from Visual Numerics.

The Options for pricing are as follows:

1. £5550 per year for 5 years (Total cost of 5 years £27,750)

2. £7500 in the 1st year and £3500 for the next 4 years (Total cost of 5 years £21,500)

3. For existing customers who have purchased licences prior to 1st January, 1994, Visual
Numerics offers aTransfer Programme to options 1 or 2.

Please note that this information was correct at the time of printing.

8.6.2 Support

Provision

Visual Numerics in the UK offer full-range of technical support. The telephone is the preferred
first point of contact for problems with Email access for transferring code and data etc. Visual
Numerics are a subsidiary of VNI Inc., so they have direct access to engineering and product
development teams.

Costs

8.6.3 Information

Manuals for PV-WAVE Command Language

• PV-WAVE CL Applications Guide - Free Code and Sample Applications: Describes the
online application examples provided with PV-WAVE and provides sample code in the book
for other examples. Also contains a useful worked interactive session example which is a
useful way of getting started.

• PV-WAVE Command Language Guide to Advanced Rendering Library: Provides descrip-
tion and reference guide to the Advanced Rendering Library, which is a group of procedures
and functions that provide additional data visualization capabilities for the PV-WAVE Com-
mand Language, of which it assumes an existing knowledge.

• PV-WAVE Command Language Overview: Describes the basic features of the Command
Language with many examples.

• PV-WAVE Command Language Reference: Consists of a Reference Guide to all the func-
tions, procedures, keywords and system variables in the Command Language. Approx 650
pages.

Chapter 8: Additional Information Page 123 of 159

2nd Edition AGOCG

• PV-WAVE Command Language User’s Guide: Description of all the facilities in the Com-
mand Language. Similar size to the Reference Manual.

• PV-WAVE Command Language Unix Installation Guide: For the person who has to install
the PV-WAVE Command Language product, this describes how to do it on the Unix operat-
ing system.

Manuals on the PV-WAVE Point & Click product

• Getting Started with PV-WAVE Point & Click Motif Version: Introduces the Motif version
of the PV-WAVE Point & Click product.

• Getting Started with PV-WAVE Point & Click OPENLOOK version: Introduces the OPEN-
LOOK version of the PV-WAVE Point & Click product.

• PV-WAVE Point & Click User’s Guide: Provides a detailed description of PV-WAVE Point
& Click.

• Installing PV-WAVE Point & Click: Provides instructions on installing PV-WAVE Point &
Click on Unix workstations.

PV-WAVE Advantage

• PV-WAVE Advantage is an integration of PV-WAVE Command Language and the IMSL C/
Math and C/Stat Libraries.

PV Software Licensing

For the person installing Precision Visuals software, this guide is concerned with unlocking the
software.

Training Courses

A training course is available which covers PV-WAVE basics through to programming in PV-
WAVE Command language and WAVEwidgets.

On-line Information

On-line help is provided within PV-WAVE CL in the form of a procedure called INFO which
starts the FrameViewer on-line help.

The help procedure can be used with a number of command line parameters to return status infor-
mation with regards to the current session and variables in use. The help system can be accessed
to obtain on-line information with regards the functions and procedures available both within PV-
WAVE CL and outside via a help utility.

Network Information Services

There is a WWW site for VNI Inc.,:

http://www.vni.com

Page 124 of 159 Chapter 8: Additional Information

AGOCG 2nd Edition

Information Email:info@vniuk.co.uk

There are two Mailbase lists:

chest-pvwave@mailbase
chest-imsl@mailbase

8.6.4 User groups

There is not a formal PV-WAVE User Group but occasional user meetings are arranged by Visual
Numerics.

Chapter 9: Strengths Weaknesses Opportunities Threats (SWOT) Page 125 of 159

2nd Edition AGOCG

Chapter 9: Strengths Weaknesses Opportu-
nities Threats (SWOT)

9.1 Introduction

This Chapter incorporates SWOT analyses (Strengths, Weaknesses, Opportunities, Threats) for
PV-WAVE, AVS, Khoros and IRIS Explorer. The intention of the analysis is to predict how each
system will fare in view of anticipated changes in usage patterns which have been judged impor-
tant by the evaluation group. The analysis is intended to be forward looking and thus where
appropriate has been extended to cover features of systems which will become available soon. In
the case of Khoros, the analysis refers to Version 2 which at the time of analysis was not generally
released yet and was carried out from the documentation available.

9.1.1 What is SWOT Analysis?

SWOT analysis [31] is a technique commonly used in business circles to assist in identifying stra-
tegic issues for a company or organisation. If the analysis is to be applied to visualization products
some modifications to the technique will be required, however, potentially it will yield useful
information about the future viability of various systems. The predictive capabilities of the tech-
nique come about from the consideration of each system’s strengths and weaknesses in the con-
text of the environment which is seen to present opportunities and threats. The intention is to
determine how each system will fare in the light of changes taking place around it.

9.1.2 Strengths and Weaknesses

In business, SWOT analysis is usually applied to one company in order to determine its own stra-
tegic direction. When applied to many systems it will be necessary to adopt some model of visual-
ization products which captures all important issues regardless of which product is being
analysed. It is then up to the analyst to measure the particular strengths and weaknesses of each
product using this model. For instance, if one model parameter is Documentation, the analyst will
record this as a strength if this is known to be comprehensive and easy to follow for the system
under consideration, and as a weakness if it is poor or non-existent.

For convenience the model has been constructed under a number of sub-headings; Availability,
Input/Output, Basic Usage and Advanced Usage. Figure 16 shows the complete model in broad
terms. The section describing theSWOT kit issued to each analyst goes into more detail about
what is required under each sub-heading.

9.1.3 Opportunities and Threats

The next stage is to analyse the environment and this also is done under sub-headings for conve-
nience. An important difference though from the determination of strengths and weaknesses is
that the environment is fixed for each visualization system. The sub-headings are Economic Vari-

Page 126 of 159 Chapter 9: Strengths Weaknesses Opportunities

AGOCG 2nd Edition

ations, Changing User Population and Changing Hardware and Software Environment, under
each of which there are a number of factors against which to consider each system’s strengths and
weaknesses.

Economic Variations

• Purchasing ability of users and their representatives will remain the same for some years

• Vendors of visualization systems will generally experience growth in the coming years. This
situation is not to be confused with the stability of an individual company which is assessed
as a strength or a weakness

• Competition in the visualization field will narrow but become increasingly fierce

Changing User Population

• Size of the user population will increase, opening up new areas of interest

• Skill range of users will widen, the existing population becoming more competent whilst at
the same time novices join the field

• Useof visualization systems will increase

Figure 16: The Complete Model

functionality

usability

email and phone support

documentation and training

Basic Usage

hardcopy

video capability

range of data readers

data input tools

Input/Output

licence and maintenance costs

supplier company stability

range of available/projected versions

Availability

command language interface

customisability

distributed working support

Advanced Usage

Chapter 9: Strengths Weaknesses Opportunities Threats (SWOT) Page 127 of 159

2nd Edition AGOCG

• Rising expectationsamongst users will be the norm

• Problem sizes will increase

Changing Hardware and Software Environment

• Desktop equipment will become more common

• Network bandwidths will continue to increase

• De facto standards will have widening support

• New algorithms and techniques for visualization will emerge

9.1.4 Analysis

Having classified each feature from the model as a strength or weakness for the particular system
under study, these are written down the left hand side of a table as in Figure 17. Along the top are
put the environmental factors.

The analyst then examines the rows against the columns, putting “+” or “-” as follows:

1. Put a plus if there will be a benefit to the system

Figure 17: An example of a SWOT table

range

costs

data input

Strengths

E
c
o

n
o

m
ic

 V
a

r
ia

ti
o

n
s

s
ta

ti
c
 p

u
r
c
h

a
s
in

g
 p

o
w

e
r

v
e
n

d
o
r
s
’
g
r
o
w

th

in
c
r
e
a
s
in

g
 c

o
m

p
e
ti

ti
o
n

C
h

a
n

g
in

g
 U

s
e

r
s

data readers

+
+

+

++
+

+

p
r
o
b
le

m
 s

iz
e
s
 i

n
c
r
e
a
s
in

g

+

r
is

in
g
 e

x
p

e
c
ta

ti
o
n

s

in
c
r
e
a
s
in

g
 u

s
e

+

+
+

w
id

e
n

in
g
 s

k
il

l
r
a
n

g
e

in
c
r
e
a
s
in

g
 p

o
p

u
la

ti
o
n

 s
iz

e

C
h

a
n

g
in

g
 H

/w
 a

n
d

 S
/w

company stability

video capability +

+

+ +
+

m
o
v
e
 t

o
 d

e
s
k

to
p

+

d
e
 f

a
c
to

 s
ta

n
d

a
r
d

s

+-

in
c
r
e
a
s
in

g
 b

a
n

d
w

id
th

documentation

Weaknesses

+ ++
hardcopy + -

+

n
e
w

 a
lg

o
r
it

h
m

s

-

+
+

-

-
-
-

-
-

+ -

--
+

+-
-

-

support

usability

functionality

distributed support

customisability

command language

Page 128 of 159 Chapter 9: Strengths Weaknesses Opportunities

AGOCG 2nd Edition

either because a strength enables the system to take advantage of or benefit from an environ-
mental change
or because a weakness will be offset by an environmental change

2. Put a minus if there will be an adverse effect on the system

either because a strength will be reduced by the environmental change

or a weakness would prevent the system overcoming a difficulty associated with a change.

 The prevalence of “+” and “-” indicate which qualities will have the most marked effect in the
context of the environment and conversely which aspects of the environment will provide the
greatest opportunities or threats. Note that features originally thought to be major strengths or
weaknesses might register as fairly neutral in the final reckoning.

9.1.5 SWOT Kit

This section describes the SWOT kit issued to each analyst.

Model details

Figure 16 gives a broad view of the features of systems which are of interest. More specifically
the following features were considered for each system:

• range of versions: the supplier and operating system combinations

• company stability: is it stable, viable and in a tenable market position

• costs: the capital and recurrent costs, the availability of deals. Consider the difference if any
between runtime and development licences

• data input tools: any limitations and their ease of use

• data readers: pre-written readers for other packages/systems

• video: facilities for animation and playback

• hardcopy: how easy/difficult is it to produce, what formats are available

• documentation:the costs, availability, quality. Include on-line information sources and train-
ing

• support:include both email and telephone support. Consider the presence of a bulletin board
or email list - are facilities free

• usability:how easy to use or flexible is the system. How does the performance scale with
increasing problem size

• functionality: what types of visualization are supported. Are there limitations on the number
of independent or dependent variables

• distributed working: both remote process execution and via X windows

• customisability:is it easy to add new features, what are the tools provided to assist

Chapter 9: Strengths Weaknesses Opportunities Threats (SWOT) Page 129 of 159

2nd Edition AGOCG

• command language:the facilities for running scripts of commands, batch working, audit.

Preparing the table

Each of the model features were then considered in turn to decide whether it represented a
strength or weakness for the system being analysed. The feature was placed in the appropriate
section of the table, remembering that no feature can appear in both sections.

Filling in the table

Returning to the first feature for the system being analysed, consideration was given to each pre-
dicted environmental change in turn. Any warranting a “+” or “-” were filled in, with comments to
justify the entry. It was not intended to fill in every box on every row, only those features of spe-
cial note. Comments had to be as specific as possible, since any statement which is true in every
context has no value in differentiating between systems. The process was repeated for each fea-
ture of the model in turn and a summary given commenting upon noteworthy features which had
emerged.

9.1.6 Mediation

The SWOT analyses represent the considered views of individuals or small groups working on
each system. The results were discussed by all the authors together at an evaluation meeting held
at the University of Manchester on 19 and 20 July 1994, where changes were agreed to try to
ensure consistency between the analyses. Subsequently each analysis was made available to the
system supplier in order to check for factual correctness. The results are presented in good faith,
however, it must be recognised that the nature of the technique precludes any claim to absolute
certainty in respect of the future of the systems considered. Tables summarising the results for
each system can be found in figures 18, 19, 20 and 21.

Page 130 of 159 Chapter 9: Strengths Weaknesses Opportunities

AGOCG 2nd Edition

9.2 Application Visualization System (AVS)

9.2.1 SWOT analysis

9.2.2 Comments

Range of versions: Strength

AVS appears on a wide range of UNIX workstations (but needs colour), and on Dec VMS, Cray,
and Convex. It has also been ported to the KSR by University of Manchester. A version for pow-
erful PCs (Windows NT and Windows 95) will appear with AVS6 next year.

• Increasing Competition: AVS has the advantage of having been in use on commonly avail-
able platforms for several releases and as such is a mature product

• Increasing Population size: AVS is likely to support hardware platforms available to the new
user

• Moving to the Desktop: AVS is available on a wide range of platforms, including typical
desktop machines, such as colour Suns, SG Indigos, HPs, DECs and PCs (next year) and has
been tailored to take advantage of special hardware features and local graphics libraries

Figure 18: AVS SWOT Table

static purchasing power
vendors growth

increasing competition
increasing population size

widening skill range
increasing use

rising expectations
problem sizes increasing

move to desktop
increasing bandwidth

de facto standards
new algorithms

Strengths
range of versions
company stability

costs
data input tools

data readers
video capability

hardcopy
documentation

support
functionality

distributed support
customisability

command language
Weaknesses

usability

+ + +
+

+ +

+
+ + + +
+

+ +

+

+
+ +
+

+
+ + +

+ + ++
++

++

-

-

-

- -
- - -

-

+

+
+
+

+

+

Chapter 9: Strengths Weaknesses Opportunities Threats (SWOT) Page 131 of 159

2nd Edition AGOCG

Company stability: Strength

• Increasing Competition: Although AVS are reliant on just two products (i.e. AVS and
UNIRAS) they appear to have a strong position in the general visualization market. They
were the first to market such a product and have held on to their early customers. Their
proven track-record continues to attract new customers from a wide range of application
areas. The development team grows every year and is now in the 20s, with the company
apparently committed to vigorous and continuing improvement of their software.

AVS/UNIRAS Ltd., is the UK subsidiary of Advanced Visual Systems Inc. and currently
has eight full time employees with an expected increase in 1995.

Costs: Strength

• Static Purchasing Power: A CHEST deal (2.5 years remaining) is available whereby a single
fixed charge each year allows academic sites unlimited use of the base software on a wide
range of platforms. The current CHEST deal does not include the Chemistry or UCD view-
ers but example networks are provided. It is also possible if there is enough interest in a par-
ticularadd-on that it can be added to the CHEST deal, e.g. the Animator is obtained at an
additional but reasonable cost.

• Increasing Population Size: The CHEST deal makes AVS attractive to a growing population

• Move to the Desktop: With the CHEST deal no further costs are involved in moving to a
desktop system. It is not necessary to buy additional licences or new versions as common
desktop platforms are included in the site-wide deal.

Data input tools: Strength

• Widening Skill Range / Rising Expectations: AVS has an interactive facility, the AVS Data
Interchange Application (ADIA), to import data into AVS fields. To access this use the field
descriptor module from the network editor. Having saved the data format as a template it is
then possible to re-use this for other datafiles with thedata dictionary module. These tools
only allows the user to import field data and not polygonal or UCD (e.g. Finite element)
data, so it may prove limiting in view of users’ rising expectations. It can cause problems to
novice users too that may need to specify offsets in the data file by number of bytes (a
graphical interface where the user can select with the mouse where new data starts would be
easier to use).

• Increasing Competition: Although the data input tool will not handle all data and may cause
problems for novice users, it is considered an asset to have an interactive tool to import data.

Data readers: Strength

• Increasing Competition: AVS have a large number of data readers, both in the public domain
and from commercial sources (e.g. AVS, Tessella)

• Increasing Population size: With the large amount of example code available, developing a
new reader can be a relatively easy task for a new user.

Page 132 of 159 Chapter 9: Strengths Weaknesses Opportunities

AGOCG 2nd Edition

• Increasing Use: As the user uses AVS for more data visualization, there is a good chance
that a data reader will already be available for the new tasks.

Video capability: Strength

• Increasing Competition / Rising Expectations: There are a number of ways to create anima-
tion and video with AVS. For simple animations modules such asanimated integer can
step through a range of values, which can be used to change parameters. For more compli-
cated animations the Animator tool is of great benefit, and can be used to control changes in
parameters, data input, camera positions and even networks. TheAnimator is a key-frame
animator, and has 2 levels of control panels, one for newer users or less complicated anima-
tions, the other for advanced use. The simpler panel shows a small subset of fairly simple
functionality, such as add/delete keyframes and play. The full panel gives greater control
over the time between each keyframe. Although theAnimator is probably beyond absolute
novices, slightly more experienced users will find this of great benefit.

In addition it is possible to generate an MPEG movie from an animation (i.e. sequence of
images) using a public domain module from the International AVS Centre (IAC). This mod-
ule can be found in avs modules/data output/Create MPEG, but note this does not generate
MPEG directly but calls the standard mpeg encoder.

• Problem size increasing: The ability to create quality animations stored to video is an advan-
tage in the case of increasing problem sizes since it is not always possible to view the visu-
alization in real time

• Increasing Bandwidth: Increased bandwidths will make the strong animation facilities even
more attractive

Hardcopy: Strength

• Increasing Competition / Rising Expectations: Support for PostScript for hardcopy output is
good. It is also possible to convert an image to CGM. The expected addition of UNIRAS
functionality in AVS6 will improve hardcopy support to cover many more devices and for-
mats. Advanced facilities are available, for example, views which have a mixture of shaded
rendering and line drawing can be saved as a mixture of lines and image in PostScript so as
to make best use of hardcopy devices.

Documentation: Strength

• Widening Skill Range / Increasing Use: The documentation can prove difficult for novice
users (e.g. no Getting Started guide) and as a reference source can be missing necessary
information. However it is readable and for many users it is possible to find the required
information and so on balance the documentation is considered a strength.

• Move to the Desktop: The user will probably have to purchase a paper copy of all of the doc-
umentation as it seems unlikely they could manage with the small amount of on-line infor-
mation available

The next version of AVS (AVS6) though will have online, context-sensitive, hypertext help

Chapter 9: Strengths Weaknesses Opportunities Threats (SWOT) Page 133 of 159

2nd Edition AGOCG

system based on the Bristol Hyperhelp for Unix and Winhelp for Windows.

Support: Strength

• Static Purchasing Power: The support of AVS is included in the CHEST licence arrange-
ments

• Increasing Competition: AVS currently provides good technical support in the UK and
access to the larger support team in the US when necessary.

• Increasing Population Size and Use / Rising Expectations: Could overstretch the resources
of the support team.

Usability: Weakness

• Widening Skill Range: Novices often find the system difficult to use, for example, where
several modules appear to do the same thing, such asisosurface anducd iso. In the next
release of AVS, 6.0, expected next year, an object oriented approach and improved general
data types means a singleisosurface module will be available.

• Increasing Use: Poor usability becomes less noticeable once the user understands which
modules to choose and why.

• Rising Expectations: Apart from the many example visualizations available in the form of
networks, some of which are packaged into a menu-driven viewer (dataviewer), it is also
possible to purchase customised data viewers (e.g. for UCD, and chemistry). Therefore it
may be possible to visualize new data without the development of new code.

Functionality: Strength

• Static Purchasing Power: With strong functionality the need for alternative systems is
reduced

• Increasing Competition: A large number of modules are available in the Public Domain
(IAC) and within AVS itself.

• Rising Expectations/Increasing population size: As the users’ expectations rise there is a
good chance with the large number of modules available that they can find what they need

Distributed support: Strength

• Static Purchasing Power: AVS has good support for distributing modules across a number of
platforms to share the workload for an application, allowing the user to make better use of
the available resources

• Increasing Competition: The ability to distribute modules is considered an asset.

• Problem size increasing: As the problem size increases it is possible to distribute the task
across a number of platforms, either by taking advantage of larger, more powerful machines
or splitting the task so each part can be processed separately.

• Move to the Desktop: When a user moves to a desktop system they can take advantage of

Page 134 of 159 Chapter 9: Strengths Weaknesses Opportunities

AGOCG 2nd Edition

the distributed support in AVS to farm out difficult and large problems.

• Increasing Bandwidth: With increased bandwidth the transfer of data will improve. Since
distributing applications often involves transferring data from one system to another greater
benefits in speed can be expected from distributing large, complex problems.

Customisability: Strength

• Widening Skill Range: A user with relatively little experience can expect to be able to cust-
omise AVS. With a small amount of experience users can produce an application to process
simple data. The user interface can be modified to some extent without any programming
(e.g. by using the mouse the user can switch between typed in values and dials or sliders).
For more experienced users it becomes possible to add new tools. For advanced users with
access to the developers’ kit it is possible to tailor all AVS modules or produce an applica-
tion that just uses the required parts of AVS (e.g. a scaled-down geometry viewer). This will
become easier with the next developers’ kit (Express) which is the underlying system for
AVS6.

• Increasing Competition/Increasing Use: The ability to customise applications to end-users’
needs is of great benefit. With AVS6 there will be even more control for the expert, includ-
ing the ability to modify Motif-type interfaces too.

• New Algorithms: Since AVS can be customised it is possible for new algorithms to be incor-
porated as modules into AVS. There is also a large amount of example source code in the
public domain (e.g. IAC) which may be tailored to include new algorithms.

Command language: Strength

• Widening Skill Range: Although not considered suitable for novices the command language,
CLI, is extremely useful for scripting applications and demonstrations. Less experienced
users can rely on AVS itself to record scripts, which can then be tailored. CLI scripts can be
used to build and change networks as well as to change parameters. It is possible to journal
a sequence of events by starting AVS with the-cli option and opening a script for saving
events withscript -open file - this does not record all events (e.g. geometry anima-
tions) but they can be added in afterwards by hand. It is also possible to develop modules
that call CLI commands so networks can change to handle different events/data.

V, the replacement for CLI in AVS6, will have even more powerful commands and should
be easy to master for those already familiar with Unix shell scripts.

• Rising expectations: For the reasons above (in Widening Skill Range) CLI can be a power-
ful facility. In AVS6 the command language will be even more powerful with programming
type control and expression evaluation.

• Problem size increasing: With increasing problem sizes it is often useful to be able to pro-
duce a batch of commands which can be left unattended to produce a visualization (although
this does require the use of a graphics screen for display).

Chapter 9: Strengths Weaknesses Opportunities Threats (SWOT) Page 135 of 159

2nd Edition AGOCG

9.2.3 Summary

The AVS product is a system which allows users to visualise their data by constructing applica-
tions from a series of software components called modules. Each module performs a specific task
and some of these include:

• importing data

• processing and filtering data

• mapping data onto geometric primitives or an image representation.

• rendering the geometry or images

Some of the features of the software allow the system to be extended by users integrating applica-
tion and visualization code into AVS by writing new modules. The system also allows the user to
change and edit the user interface and layout to customise the application. This makes it a very
powerful tool for prototyping.

The maturity of the AVS product is one of its strengths. The first version of AVS (AVS1) was
released in April 1989 and it is now currently in its fifth version (AVS5). The new development
environment AVS/Express was released during 1994 and the summer of 1995 will see AVS6
which will be based upon the new architecture of AVS/Express bringing many new improve-
ments.

There is also a very good infrastructure in place for the AVS system in the public domain with the
International AVS Center’s activities in the US collecting and porting user contributed modules.

One of the disadvantages, as with most of the application builders, is the complexity of the system
for the first time user. This leads to an initial steep learning curve which can be an obstacle for
novices. Improvements in on-line help and tutorial facilities would alleviate this and the releases
of AVS6 may address these.

Page 136 of 159 Chapter 9: Strengths Weaknesses Opportunities

AGOCG 2nd Edition

9.3 IRIS Explorer

9.3.1 SWOT analysis

9.3.2 Comments

Version

The version of Explorer used for this analysis was 2.0 running on Silicon Graphics equipment. All
comments are based on this version unless otherwise stated.

Range of versions: Weakness

This is only a temporary weakness - SGI, SUN (SunOS) and IBM RS/6000 are available now, HP
9000/700 and SUN (Solaris) are promised by the end of the summer and DEC Alpha sometime
after that. There is also a Cray version, and other supercomputer versions are being discussed.

• Increasing Competition/Increasing Population Size: A weakness since the range of machines
currently supported is less than the competition.

• Move to Desk Top: Some notable workstation vendors missing, and no PC version.

Figure 19: IRIS Explorer SWOT Table

static purchasing power
vendors growth

increasing competition
increasing population size

widening skill range
increasing use

rising expectations
problem sizes increasing

move to desktop
increasing bandwidth

de facto standards
new algorithms

Strengths

range of versions

company stability
costs

data input tools
data readers

video capability

hardcopy

documentation
support

functionality
distributed support

customisability

command language
Weaknesses

usability

+ +
+ + +

+ - -

+ + +
+ - +
+ + + +
+ + + +
+ + + + + -

+ + + +

- +
- -
- -

- + -

-

Chapter 9: Strengths Weaknesses Opportunities Threats (SWOT) Page 137 of 159

2nd Edition AGOCG

Company stability: Strength

NAG have been in existence for over 20 years; their turnover is steadily increasing; their staff
complement has been stable over the recent difficult period in the economy. It is not-for-profit so
surpluses are fed back to the benefit of the company.

• Increasing Competition: Should do well since NAG has a high professional reputation built
over many years to trade on.

• Increasing Population Size: The company are well experienced in the support of a large user
community and thus we can expect them to be able to scale their activities to match an
increasing user base.

Costs: Strength

It is currently bundled with SGI workstations. This will change, but NAG Ltd. have publicly com-
mitted to a non-expensive pricing strategy. Educational sites will receive a 50% discount on both
the one-time fee & the support service. Support costs will be approximately 15% of the one-time
fee. Current SGI users, who up to now have received it free, will be offered support and mainte-
nance for an unlimited number of users for the price of the 4-user support service up to Release
3.0. For the period of probably a year after Release 3.0, these sites will be offered the opportunity
to increase the scope of their licence to include more users for the difference in support charge
only. Those who do not take up the offer before Release 3.0, and new sites wishing to receive
IRIS Explorer, will have to pay the one-time payment which ranges from £1000 for a single user
licence to £20,000 for an unlimited user licence. These costs refer only to 1 implementation; an
additional fee of £500 (licence) and £75 per annum (support) is charged per extra implementation.

• Static Purchasing Power: Once the one time fee is paid for one version, there is only a very
small additional fee for additional implementations. Also, it is possible to pay a one time
unlimited user fee.

• Increasing Population Size/Increasing Competition: Relatively low price product will attract
new customers.

Data input tools: Strength

DataScribe is a flexible, visual programming tool. It allows the user to easily create a data reader
that will convert from any data file format to an Explorer data type. This does require, however,
knowledge of the data file format and some knowledge of Explorer data types and their uses.
DataScribe can also be used inreverse to output data from IRIS Explorer according to any desired
format. Indeed, it can be used as a general data conversion tool between two external formats.

• Increasing Competition: Having good input tools and the ability to create data readers is a
plus, but at present, as with other similar systems, the tools provided are less than ideal. This
is due mainly to the fact that they only support Lattice datatypes, not Pyramids, and can be
difficult for novice users.

• Widening Skill Range: Data input is rarely easy, and DataScribe would be difficult for nov-
ice users.

Page 138 of 159 Chapter 9: Strengths Weaknesses Opportunities

AGOCG 2nd Edition

• Rising Expectations: Users expect tools that cover everything, but DataScribe does not han-
dle some of Explorer’s data types.

Data readers: Strength

A range of readers are provided (e.g. AVS types, HDF, PDB, Plot3D). Others (e.g.ReadMarc,
ReadMesh1, ReadMultiPlot3D, ReadNastran, ReadSEGY) are available as either unsup-
ported (they come on the installation disk, but are user donated modules) in version 2.2 or avail-
able through Explorer ftp sites (e.g. netCDF).

Video capability: Strength

Facilities to animate the viewing position are provided; and there are loop controls in the visual
programming language. There are modules to control a video recorder; and a module to interface
to MovieMaker on SGI.

• Increasing Competition / Rising Expectations: This is increasingly important in scientific
visualization. Linking them into existing software is a plus.

• Increasing Bandwidth: Distributed multimedia become technically feasible, and IRIS
Explorer has tools to exploit them.

Hardcopy: Weakness

At present, it does not seem possible to generate CGM. Postscript is only available through the
Render module: it will generate colour Postscript with options to set an output size in inches and
setting the DPI; it can be sent direct to a printer or into a file. It is also possible to output GIF.

• Increasing Competition / Rising Expectations: to be able to produce output which can be
sent directly to a hardcopy device should be standard. The only method of doing this is from
theRender module. Others such asGraph, DisplayImg andHistogram do not support
this.

• A new module, available soon from NAG,NAGGraph will be able to output postscript.

Documentation: Strength

Detailed manuals (in the form of a User’s Guide, Module Reference Manual and a Module
Writer’s Guide), plus on-line help (UNIX man pages) for Explorer subroutines and on-line help
pages with each module.

• Static Purchasing Power: The documentation is to be found on line, hence no need to buy
large quantities of manuals.

• Widening Skill Range: It should have a “Getting Started” guide as this is increasingly impor-
tant.

• Move To Desk Top: On-line documentation becomes more important as we move to large
numbers of desk-top users and the cost of hardcopy documentation becomes prohibitive.

Chapter 9: Strengths Weaknesses Opportunities Threats (SWOT) Page 139 of 159

2nd Edition AGOCG

Support: Strength

IRIS Explorer Centres have been established in the UK and Japan, and there is support in the US.
These act as one-stop shops for the product. The support service licence also includes phone/fax/
E-mail support, Users Newsletter and regular CDs containing tested and implemented modules.
Also NAG Bulletin Board is a source of up-to-date information with an IRIS Explorer section;
this is available on WWW with mosaic at: http://www.nag.co.uk:70/1/visual/IE/iecbb

• Static Purchasing: Support comes in the package at present, but after Release 3.0 comes at
15% of the one-time fee.

• Increasing Competition / Rising Expectations: Support is well organised and is an important
selling point.

• Widening Skill: Naive users and expert users can use same query mechanism.

Usability: Weakness

IRIS Explorer (for the naive user) needs some time to learn, and is not suitable for the occasional
user (who would be better with a menu driven system). Conversely its flexibility makes it highly
usable by the expert. It needs a workstation of reasonable processor power and memory for
worthwhile use.

• Rising Expectations: This is an obvious weakness as users expect to be able to “turn it on
and go”.

• Widening Skill Range: Naive users will be exposed to the steep learning curve.

• Increasing Use: Familiarity makes the system easier to use. Its flexibility means that experts
cannot easily outgrow the system.

Functionality: Strength

• Static Purchasing Power: With strong functionality the need for alternative systems is
reduced.

• Increasing Competition: Explorer provides a large range of modules and more may be found
on public ftp sites.

• Increasing Population: Rich functionality should enable it to be used throughout the commu-
nity.

• Rising Expectations: As user expectations rise there is a good chance that with the large
numbers of modules around they will find what they need.

Distributed support: Strength

The design of IRIS Explorer is focussed on a distributed execution model. It is easy to place com-
putationally intensive modules on separate compute engines. TheRender Remote module
explicitly provides for rendering to be carried out on a separate workstation. At present, on SGI, it
uses GL rather than X so remote execution with local viewing can be a problem. Version 2.2 and
above uses OpenGL so remote viewing is no longer a problem (with IRIX5 and above).

Page 140 of 159 Chapter 9: Strengths Weaknesses Opportunities

AGOCG 2nd Edition

• Static Purchasing Power: As the range of versions increases it will be possible to run mod-
ules on a variety of platforms so distributing the load.

• Increasing Competition: To be able to distribute the load is what future users will expect so
is an obvious strength.

• Problem Size Increasing / Move To Desk Top / Increased Bandwidth: Can use remote high
performance computer tonumber crunch but display locally.

• De Facto Standard: Does not as yet adhere to X standard.

Customisability: Strength

IRIS Explorer has two important customisation features:- (1) Module Builder is a visual program-
ming tool that allows the user to write their own code and then compile it into a new module. (2)
Modules can be grouped to provide simpler interfaces for novice users (cf turnkey).

• Increasing Competition / Increasing Use: It is an obvious strength to be able to produce your
own modules to do tasks related to your specific area of interest.

• Widening Skill Range: At one extreme it can be customized for the naive user by grouping
modules and providing a simplified interface; at other extreme, the advanced user can write
their own modules

• New Algorithms: Can add new algorithms as modules as they become available.

Command language: Weakness

IRIS Explorer provides a command language called SKm (scheme) which can be run interactively
or from a script file. The language allows the functionality of the map editor with the launching/
destroying of modules, connection/disconnection of ports, the setting of parameter values and
loading/saving maps etc. It is also possible to define procedures involving modules and values.
The system allows a limited form of batch working.

• Increasing Competition: There is no facility present to script an interactive session so that it
can be played back.

• Problem Size Increasing: The production of scripts for limited batch working allows large
problems to be worked on without interaction, viewing only the end result.

Summary

A state of the art visualization system from a UK company with a long history of supplying the
higher education community with high quality software. IRIS Explorer is an application builder
which makes it highly flexible as a visualization tool. It uses a visual programming interface to
build networks of modules to form visualization maps, it allows the incorporation of new/user
written modules to extend the functionality if the need arises and it supplies tools to aid the gener-
ation of these new modules.

There are options to extensively customise the appearance of maps by grouping the modules
together and allowing the user to define their own control panel by selecting and re-arranging

Chapter 9: Strengths Weaknesses Opportunities Threats (SWOT) Page 141 of 159

2nd Edition AGOCG

widgets. This customisability is extended by allowing these groups to be saved and used by other,
more novice, users as turnkey applications.

One of the strengths of the IRIS Explorer software is that the system architecture was explicitly
designed to ensure its application across hardware platforms in heterogeneous network environ-
ments. This, combined with NAG’s expertise in porting software, will ensure that the user is able
to fully exploit the easy to use remote module execution system of Explorer for distributed work-
ing.

Explorer provides a good graphical user interface, DataScribe, for writing data import modules.
Although it is difficult for novice users and applies only to Lattices it is still a powerful tool with
many useful features. These features should allow Explorer to do well with respect to the increase
in competition.

The down side, as with most other flexible systems, is the rather steep learning curve. Also a lack
of good hardcopy output, this being a screen dump only available from the render module in
encapsulated postscript format, and a poor command language do not do it justice.

Page 142 of 159 Chapter 9: Strengths Weaknesses Opportunities

AGOCG 2nd Edition

9.4 Khoros

The analysis for the SWOT was performed from Beta release versions of the manuals. At the time
of compilation of the results there was no access to information on the Data Input Tools and Data
Readers.

9.4.1 SWOT analysis

9.4.2 Comments

Range of versions: Strength

• Increasing Competition: Khoros is available on a wide range of machines which increases its
appeal in the face of competition. All versions are directly supported by Khoral Research,
Inc.

• Increasing Population Size: likely to be supported on hardware platforms available to the
new user

• Move to Desktop: some desktop machines are supported

Company stability: Weakness

• Vendors’ Growth / Increasing Competition: revenue for Khoral Research, Inc. comes from

Figure 20: Khoros SWOT Table

static purchasing power
vendors growth

increasing competition
increasing population size

widening skill range
increasing use

rising expectations
problem sizes increasing

move to desktop
increasing bandwidth

de facto standards
new algorithms

Strengths
range of versions

company stability

costs
data input tools

data readers
video capability

hardcopy

documentation
support

functionality
distributed support

customisability
command language

Weaknesses

usability

+ + +
+ + +

+ + + +
+ +
+
+ + + + +

+ + + +
+

+

+

- -
- - - -

-

- -
- -

- -

Chapter 9: Strengths Weaknesses Opportunities Threats (SWOT) Page 143 of 159

2nd Edition AGOCG

government contracts, training, product sales, support, and licensing. KRI is a startup com-
pany, and does not yet have all the resources that other, more-established vendors have.

Costs: Strength

• Static Purchasing Power: users will always be able to afford the software because it is free,
distributed via the Internet as source code and binaries

• Increasing Population Size: being freely available it is attractive to a growing population

• Move to Desktop: no further costs are involved in moving to a desktop system

Video capability: Strength

• Increasing Competition / Rising Expectations: the Animate program is an interactive image
sequence display tool which allows the user to either input a sequence of images or supply a
basename that describes a set of images contained within a number of files. The user is pre-
sented with a video recorder style interface with which to move through the image
sequence. Using this program together with the tools to annotate images and control within
the visual programming language such as do-loops and if-then-else constructs provides
strong support for video

• Problem Size Increasing: strong video capabilities are an advantage in the case of increasing
problem sizes since it is not always possible to view the visualization in real time

• Increasing Bandwidth: increased bandwidths make the strong video capabilities even more
attractive

Hardcopy: Weakness

• Increasing Competition / Rising Expectations: weak provision for hardcopy will detract
from the system’s attractiveness in the face of competition and users’ rising expectations

Documentation: Strength

• Static Purchasing Power: documentation is freely available in PostScript by FTP for printing
locally in desired amounts. The Khoros 2.0 manual set will be available for at low-cost from
bookstores world-wide in the second quarter of 1995.

• Move to Desktop: it is also available on-line

• Widening Skill Range / Increasing population size: there is a lack of documentation at the
novice and expert ends of the spectrum

Support: Strength

• Static Purchasing Power: support is via email, from users and the Khoral Research, Inc. who
also maintain extensive FAQ (Frequently Asked Questions) files. This service is free and
response is normally very good.

• Increasing Population Size / Use: could overload newsgroups and email lists

Page 144 of 159 Chapter 9: Strengths Weaknesses Opportunities

AGOCG 2nd Edition

• Rising Expectations / Widening Skill Range: users will expect more than just email and
newsgroup support; technical queries will be increasingly difficult to handle in this way

Khoral Research, Inc. offers monthly training courses and various consulting contracts.

Usability: Weakness

The Khoros 2.0 version of Cantata contains something called a Finder, which allows for module
searches based on keywords.

• Widening Skill Range / Increasing Use: the systems comprising Khoros all support the data
flow model, but it can be difficult to find the appropriate module for a certain task or data.
This will be more marked for novices, but poor usability becomes less noticeable once the
user understands which modules to choose and why

• Rising expectations: users would not expect to learn about specific data types onto which
they must map their data; they would rather have the system import the data

Functionality: Strength

• Increasing Competition: Khoros has strong functionality but there are gaps in respect of
Finite Element analysis. There is however a contributed toolbox from LBL is available
which contains basic FEA functionality.

Distributed support: Strength

• Static Purchasing Power: distributed support exists in the form of a daemon which handles
remote task execution and data transfer. Users can make best use of existing hardware, e.g.
to share the workload of an application

• Increasing competition: these facilities will prove to be an advantage when comparing to
other systems

• Problem Size Increasing: jobs can be distributed across a number of platforms

• Move to Desktop: local processing can be carried out on the desktop with compute-intensive
parts carried out remotely

• Increasing Bandwidth: benefits in speed can be expected when distributing processing

Customisability: Strength

• Increasing Use / New Algorithms: Khoros is customisable at a number of levels. New func-
tionality can be added or existing functions can be altered to suit users needs

• Widening skill range: can customise the system for novice users

Command language: Strength

• Problem Size Increasing: all programs in Khoros can be activated and controlled from the
command line using the command line user interface (CLUI). This providestrue batch facil-
ities to produce a visualization unattended Furthermore, the encapsulated workspace func-

Chapter 9: Strengths Weaknesses Opportunities Threats (SWOT) Page 145 of 159

2nd Edition AGOCG

tionality of Cantata makes the creation of a batch process automatic. Users can collapse a
workspace down into a command line program.

• Widening Skill Range: The journalling capabilities in the Khoros 2.0 Developers Release
were not robust across the different widget sets and have been disabled. This functionality
may be re-enabled in the future.

9.4.3 Summary

Khoros is an integrated software development environment that allows users to compose and per-
form a variety of tasks related to image and signal processing, medical imaging, remote sensing,
ecological research, data exploration, scientific visualization, X-window application development
and other application specific domains.

Khoros includes a visual programming language, a suite of software development tools that
extend the visual language and help you create new applications, an interactive user interface edi-
tor, an interactive image display package, 2D/3D plotting, and an extensive suite of image pro-
cessing, data manipulation, scientific visualization, geometry and matrix operators.

9.5 PV-WAVE

9.5.1 SWOT analysis

Figure 21: PV-WAVE SWOT Table

static purchasing power
vendors growth

increasing competition
increasing population size

widening skill range
increasing use

rising expectations
problem sizes increasing

move to desktop
increasing bandwidth

de facto standards
new algorithms

Strengths
range of versions
company stability

costs
data input tools

data readers

video capability

hardcopy

documentation
support

functionality

distributed support

customisability
command language

Weaknesses

usability

+ + +
+

+ +

+ + + +
- -

+ + + +

+ + - - -
+ + +
++ ++
+
+ + +

- -
-

-
-

-

Page 146 of 159 Chapter 9: Strengths Weaknesses Opportunities

AGOCG 2nd Edition

9.5.2 Comments

Range of versions: Strength

• increasing competition: the software is available on a wide range of platforms, from PC to
Super Computer, more readily than some of the competition

• increasing population: readily available and usable on commonly available H/W in the com-
munity

• move to desktop: MS Windows 3.1 version available. Development taking place under Win-
dows NT

Company stability: Strength

• increasing competition: Visual Numerics Inc formed in 1993 through merger of Precision
Visuals and IMSL means the new company should have greater stability and increased prod-
uct range

Costs: Strength

• increasing population / static purchasing power: due to be announced as a CHEST deal in the
very near future, ensure pricing is competitive.

Data input tools: Strength

• changing users (all factors): data input facility is flexible and easy to use, suiting all user
environment factors.

Distributed support: Weakness

• increasing bandwidth: Graphics based on X11 only, no true distributed support as with AVS,
Explorer etc.

Data readers: Weakness

• increasing competition: data readers for data from other applications not readily available,
leaves package susceptible to competition

• increasing population: lack of data readers may mean the package is less attractive given an
environment change.

• rising expectations: data readers might not meet rising expectations

Video capability: Strength

• increasing competition / rising expectation: animation sequences can be built facilitating flip
book animation.

Chapter 9: Strengths Weaknesses Opportunities Threats (SWOT) Page 147 of 159

2nd Edition AGOCG

Hardcopy: Weakness

• increasing competition / rising expectations: limited H/C facilities likely to mean package is
susceptible to competition, unlikely to attract increasing use and not meet expectations

Documentation: Strength

• increasing competition: existing documentation is very good with compact easy to follow
manuals

• increasing use / widening skill range: manuals are structured, from overview, getting started,
users guide to comprehensive reference guide

• increasing population: overview and getting started documentation is very good

Support: Strength

• static purchasing power / increasing competition: technical support in the UK is very good;
responses are prompt and support staff are very knowledgeable - problems can be referred to
US if required although the UK office does appear self sufficient in many ways

• increasing population / use / rising expectations: limited number of support staff in the UK
could mean problems with these factors e.g. softkeys are currently generated in the US only

Usability: Strength

• widening skill range: Command Language is both easy to use and is extensible for the com-
petent / computer literate user

• increasing use: Command Language is easy to use, particularly for anyone with program-
ming skills

• rising expectations: extensibility of the Command Language environment should fulfill ris-
ing expectations

Functionality: Strength

In addition to the standard functionality the Advantage product has the full IMSL C library rou-
tines integrated into it.

• increasing competition: functionality is comprehensive. Should enable PV-WAVE to remain
at the forefront

• widening skill range: functionality suited to technical and non-technical users

• increasing population: rich functionality should enable PV-WAVE to be useful throughout
the community

• rising expectations: rich functionality should match rising expectations

Customisability: Strength

• widening skill range: extensibility is attractive to competent technical users

Page 148 of 159 Chapter 9: Strengths Weaknesses Opportunities

AGOCG 2nd Edition

Command language: Strength

• widening skill range: command language is usable across a wide skill range, readily suited to
the novice and specialist alike.

• rising expectations: command language likely to meet rising expectations, given the avail-
able programming constructs.

• problem size increasing: ability to use in batch mode

• New functions and procedures are added to most releases of PV-WAVE reflecting new func-
tionality.

9.5.3 Summary

A very good general purpose package, providing rich functionality suited to a wide skill range of
users, although more particularly those with programming experience. PV-WAVE is complemen-
tary to Uniras and AVS in the community, and not in competition with them.

Strengths which will carry the system forward are its data input tools and functionality. Some
aspects of support will require attention by the suppliers in view of anticipated environmental
changes. Ready-made data readers, and hardcopy facilities, represent the most significant weak-
nesses. The expected widening skill range of users is the chief environmental factor showing
advantage for this system.

Chapter 9: Strengths Weaknesses Opportunities Threats (SWOT) Page 149 of 159

2nd Edition AGOCG

Annex to Chapter 9:
Strengths Weaknesses Opportunities Threats

9.6 IBM Data Explorer

9.6.1 Introduction

During the review of the visualization systems an in-depth SWOT analysis was not performed for
IBM Data Explorer. This omission shouldnot be taken as a reflection on the features provided by
the IBM Data Explorer system. This annex will provide similar information for IBM Data
Explorer that can be found in chapter 9 for other visualization systems. This annex will either pro-
vide that information under the equivalent section headings or references to other areas in this
report where that information can be found.

The final section of this annex contains some information on the powerful data manipulation
facilities available in IBM Data Explorer.

9.6.2 Additional Information for IBM Data Explorer

Range of versions

IBM Data Explorer is available on a range of Unix workstations and the complete range of ver-
sions can be found in section 8.3.1 on page 111.

Company stability

International Business Machines Corporation (IBM) has a long history in the computing industry
and is involved in almost every area of computing hardware and software. For more specific
information on the company and products you can access the IBM WWW home page:

http://www.ibm.com

Costs

Price information can be found in section 8.3.1 on page 111.

Data input tools

Information concerning importing data into IBM Data Explorer can be found in section 3.2.3 on
page 24 and section 4.3 on page 66.

Data readers

Information on data readers and their location can be found in section 4.3 on page 66

Page 150 of 159 Chapter 9: Strengths Weaknesses Opportunities

AGOCG 2nd Edition

Hardcopy and Animation Facilities

These features are detailed in section 5.2 on page 80.

Documentation

The full range of manuals are listed in section 8.3.3 on page 112.

Support

Contact addresses and arrangements for support are in section 8.3.2 on page 112.

Functionality

A review of the functionality in IBM Data Explorer can be found in section 3.2.3 on page 24 and
some information on data manipulation is contained in section 9.6.3.

Distributed working

Details of these facilities can be found in section 7.2 on page 103.

Customisability

Information on incorporating application code into the IBM Data Explorer system can be found in
section 6.3 on page 92.

Command language

IBM Data Explorer has an extensive scripting language. To execute IBM DX in script mode you
simply type:

dx -script

More details on the scripting language can be found in the IBM Data Explorer User Guide [26].

9.6.3 Data Manipulation

Sometimes the scientist using the visualization system wishes to select a subset of the data to pro-
cess or wants to apply an expression to the dataset to produce a resultant data component e.g.,
vector magnitude from a vector field. Most of the visualization systems provide support in the
form of modules to slice and crop the data and other modules to apply simple mathematical
expressions to data components.

If the scientist however wants to select specific data components from a dataset based on some
conditional expression then there is only minor support through modules in the various systems.
The user must resort to coding the task in the form of an additional module if any extensive
manipulation is required for example see [64].

Chapter 9: Strengths Weaknesses Opportunities Threats (SWOT) Page 151 of 159

2nd Edition AGOCG

IBM Data Explorer provides extensive support for both of the above cases through theCompute
module. This module applies an expression point-by-point to the input data producing an output
dataset. The module also allows multiple input fields to be combined via the expression supplied
and individual data components within a dataset can be referenced in the expression. Some of the
operations available in theCompute module are:

• Trigonometric, Hyperbolic and Logarithmic functions

• Unary, Binary and Vector functions

• Type conversion

• Logical and Conditional expressions

• Bitwise operations

The user can construct complex expressions for example,Field1 is a vector field,Field2 and
Field3 are scalar fields. The expression evaluates on a point-by-point basis an output field
which is the magnitude ofField1 added to the quantityField2 divided by 4.5 timesField3 :

output_field=Compute(“mag($0) + $1/($2*4.5)”, Field1, Field2, Field3);

More information on theCompute module can be found in [27].

Page 152 of 159 Chapter 9: Strengths Weaknesses Opportunities

AGOCG 2nd Edition

Chapter 10: Conclusions and Summary Page 153 of 159

2nd Edition AGOCG

Chapter 10: Conclusions and Summary

10.1 Conclusions

We set out to review a number of visualization software packages that are available for use in the
UK higher education community. We also required that the software we reviewed met certain
minimal requirements - which we described in Chapter 1: Overview.

Conventionally, the conclusions would be our summing up of the comparative performance of the
systems. In this report, we have taken a different approach. Following the basic factual informa-
tion in chapters 2 to 8, we have made a detailed SWOT study, in Chapter 9, which in effect stand
as our conclusions.

One could make an overall general comment, that, since AGOCG published the previous visual-
ization software evaluation, the visualization software on the market has been comparatively sta-
ble - the changes have taken place in the companies, but not the products.

We offer this report in the hope that it may be useful to potential users deciding what to buy and to
new users trying to put their chosen system in context.

10.2 Acknowledgments

The review members would like to thank the Advisory Group on Computer Graphics (AGOCG)
for funding during the production of this report.

We would also like to thank the vendors of the various visualization systems for their comments
on early draft versions of this document.

The people involved with the review would also like to thank Ms Mary McDerby at the Computer
Graphics Unit, MCC for all her help with local meeting arrangements and mailings to members of
the group and Paul Lever for his assistance and input to the review. Also thanks to all the staff in
the Reprographics Department in Manchester Computing Centre for their help with the produc-
tion of the many draft versions of this document.

Page 154 of 159 Chapter 10: Conclusions and Summary

AGOCG 2nd Edition

Chapter 11: References Page 155 of 159

2nd Edition AGOCG

Chapter 11: References

[1] “AVS Applications Guide”, Advanced Visual Systems Inc.

[2] “AVS Chemistry Developers Toolkit Guide”, Advanced Visual Systems Inc.

[3] “AVS Developers Guide”, Advanced Visual Systems Inc.

[4] “AVS Module Reference”, Advanced Visual Systems Inc.

[5] “AVS Technical Overview”, Advanced Visual Systems Inc.

[6] “AVS Tutorial Guide”, Advanced Visual Systems Inc.

[7] “AVS5 Update manual”, Advanced Visual Systems Inc.

[8] “AVS Users Guide”, Advanced Visual Systems Inc.

[9] G. Bancroft and F. Merrit and T. Plessel and P. Kelaita and R. McCabe and A. Globus,
“FAST: A Multi-Processing Environment for Visualization of CFD”, Proceedings of Visu-
alization 90, IEEE Press, 1990.

[10] A J C Belien, “Comparison of Visualization Techniques and Packages”, Stichting
Academisch Rekencentrum Amsterdam, ISBN 90-72490-08-8 (1993)

[11] K W Brodlie et al, “Scientific Visualization: Techniques and Applications”, Springer
Verlag 1992

[12] K W Brodlie, “Methods for drawing curves”, Fundamental Algorithms for Computer
Graphics, Ed. R.A. Earnshaw, pages 303-324, Springer-Verlag 1985.

[13] S. Bryson, C. Levit, “The Virtual Windtunnel: An Environment for the Exploration of
Three Dimensional Unsteady Flows”, NASA Ames Research Center RNR Technical
Report RNR-92-013,April,1992.

[14] N.Dyn and D.Levin and S.Rippa, “Data dependent triangulations for piecewise linear
interpolation”, IMA Journal of Numerical Analysis, 1990.

[15] “Evaluation of Visualization Software”, AGOCG Technical Report 9, January 1992.

[16] T.A.Foley and G.M. Nielson, “Modelling of Scattered Multivariate Data”, Euro-
graphics 94 State of the Art Reports, Eds C. Giertsen and P.A. Fevang, pages 38--59,
Eurographics Association 1994.

Page 156 of 159 Chapter 11: References

AGOCG 2nd Edition

[17] J R Gallop, “Underlying Data Models and Structures for Visualization”, from Scien-
tific Visualization: Advances and Challenges, edited by L Rosenblum et al, Academic
Press, 1994

[18] R. B. Haber, B. Lucas and N. Collins, “A Data Model for Scientific Visualization
with Provisions for Regular and Irregular Grids”, Proceedings of IEEE Visualization ‘91,
IEEE Computer Society Press 1991.

[19] R. B. Haber and D.A. McNabb, “Visualization Idioms: A Conceptual Model for Sci-
entific Visualization Systems”, Proceedings of IEEE Visualization ‘90, IEEE Computer
Society Press 1990.

[20] J. L. Helman and L. Hesselink, “Representation and Display of Vector Field Topol-
ogy in Fluid Flow Data Sets”, IEEE Computer, pages 27--36, 1989.

[21] S Hill, “Tri-linear interpolation”, Graphics Gems IV, Ed P. S. Heckbert. pages 521-
525 AP Professional 1994.

[22] A.J.S. Hin, “Visualization of Turbulent Flow”, 1994.

[23] J.P.M. Hultquist, “Interactive Numeric Flow Visualization Using Stream Surfaces”,
Computing Systems in Engineering, pages 349--353, Vol. 1(2-4), 1990

[24] J.P.M. Hultquist, “Constructing Stream Surfaces in Steady 3D Vector Fields”, Visual-
ization ‘92 Proceedings, pages 171---177 IEEE, Computer Society Press 1992.

[25] “IBM Data Explorer Programmer’s Reference Manual”, International Business
Machines Corporation 1993.

[26] “IBM Data Explorer User’s Guide”, International Business Machines Corporation
1993.

[27] “IBM Data Explorer User’s Reference Manual”, International Business Machines
Corporation 1993.

[28] “IRIS Explorer User’s Guide”, Silicon Graphics Computer Systems.

[29] “IRIS Explorer Module Writer’s Guide”, Silicon Graphics Computer Systems.

[30] “IRIS Explorer Module Definitions”, Silicon Graphics Computer Systems.

[31] G Johnson and K Scholes, “Exploring Corporate Strategy: Text and Cases”, Prentice
Hall, 1989.

[32] Khoros Manual: “Application Toolboxes”, Khoral Research, Inc. 1994-95.

Chapter 11: References Page 157 of 159

2nd Edition AGOCG

[33] Khoros Manual: “Getting Started”, Khoral Research, Inc. 1994-95.

[34] Khoros Manual: “Installation Guide”, Khoral Research, Inc. 1994-95.

[35] Khoros Manual: “Programming Services Volume I - Foundation Services”, Khoral
Research, Inc. 1994-95.

[36] Khoros Manual: “Programming Services Volume II - Data Services”, Khoral
Research, Inc. 1994-95.

[37] Khoros Manual: “Programming Services Volume III - GUI and Visualization Ser-
vices”, Khoral Research, Inc. 1994-95.

[38] Khoros Manual: “Toolbox Programming”, Khoral Research, Inc. 1994-95.

[39] Khoros Manual: “Visual Programming”, Khoral Research, Inc. 1994-95.

[40] Klemp, McIrvin and Boyd, “Polypaint - a three-dimensional rendering package”,
American Meteorological Society Proceedings, 6th International Conference on Interac-
tive Animation and Processing Systems, 1990.

[41] A. Koide, A. Doi, K Kajioka, “Polyhedral approximation approach to molecular
orbital graphics”, Journal of Molecular Graphics, Volume 4, Number 3, pages 149-155,
September 1986

[42] S. Larkin, A. J. Grant, F. Lin, N. Hill, “Advanced AVS Course Training Materials”,
Manchester and the North High Performance Computing Training and Education Centre,
December 1994.

[43] S. Larkin, A. J. Grant, F. Lin, N. Hill, “Introductory AVS Course Training Materials”,
Manchester and the North High Performance Computing Training and Education Centre,
December 1994.

[44] Lancaster, P. and Salkauskas, K. “Curve and Surface Fitting: An Introduction”, Aca-
demic Press, London 1986.

[45] Laur, D. and Hanrahan, P., SIGGRAPH ‘91 proceedings, in Computer Graphics,
1991, 25, page 285.

[46] M. Levoy, “Display of Surfaces from Volume Data”, IEEE Computer Graphics and
Applications, pages 29--37, Volume 8, Number 3, 1988.

[47] W.E. Lorensen and H.E. Cline, “Marching Cubes: A High Resolution 3D Surface
Reconstruction Algorithm”, pages 163--169, Vol 21, Number 4, Computer Graphics 1987.

[48] Lucas, B, “A Scientific Visualization Renderer”, Proceedings of Visualization ‘92,

Page 158 of 159 Chapter 11: References

AGOCG 2nd Edition

pages 227-234, IEEE Computer Society Press, 1992.

[49] Paul Ning and Jules Bloomenthal, “An Evaluation of Implicit Surface Tilers”, IEEE
Computer Graphics and Applications, pages 33--41, Vol 13, Number 6, 1993

[50] F.H. Post and T. van Walsum, “Fluid Flow Visualization”, Focus on Scientific Visual-
ization, Eds. H. Hagen and H. Muller and G.M. Nielson, pages 1--40, Springer-Verlag
1993.

[51] A. Preusser, “Algorithm 671 - FARB-E-2D: Fill Area with Bicubics on Rectangles -
A Contour Plot Program”, ACM Transactions on Mathematical Software, Vol 15, no. 1,
1989.

[52] “PV-WAVE CL Applications Guide - Free Code and Sample Applications”, Precision
Visuals

[53] “PV-WAVE Command Language Overview”, Precision Visuals

[54] “PV-WAVE: Getting Started with PV-WAVE Point and Click Motif Version”, Preci-
sion Visuals

[55] “PV-WAVE Command Language Guide to Advanced Rendering Library”, Precision
Visuals

[56] “PV-WAVE Command Language Overview”, Precision Visuals

[57] “PV-WAVE Command Language Reference”, Precision Visuals

[58] “PV-WAVE Command Language User’s Guide”, Precision Visuals

[59] “PV-WAVE Point & Click User’s Guide”, Precision Visuals

[60] R.L.Renka, “Algorithm 660: QSHEP2D: Quadratic Shepard method for bivariate
interpolation to scattered data”, ACM Trans Math Soft, Vol 14, pages 149--150, 1988

[61] M.A. Sabin, “A Survey of Contouring Methods”, Computer Graphics Forum, Vol 5,
pages 325-339, 1986.

[62] D.C. Sutcliffe, “Contouring over rectangular and skewed rectangular grids - an intro-
duction”, Mathematical Methods in Computer Graphics and Design, Ed. K.W. Brodlie,
pages 39--62, Academic Press, New York and London, 1980.

[63] L A Treinish, “Unifying principles of data management for scientific visualization”,
in Animation and Scientific Visualization: Tools and Applications, R A Earnshaw and D
Watson, Academic Press 1993

Chapter 11: References Page 159 of 159

2nd Edition AGOCG

[64] T. van Walsum, F. H. Post, “Selective Visualization of Vector Fields”, Proceedings
from Eurographics ‘94, Computer Graphics Forum, Volume 13, Number 3, September
1994.

[65] L A Westover, “Footprint Evaluation for Volume Rendering”, Computer Graphics
Vol. 24, no.4 August 1990.

