
Network Performance Effects of HTTP/l. 1, CSS 1, and PNG 

Henrik Frystyk Nielsen 
World Wide Web Consortium 

frystyk@w3.org 

James Gettys 
Visiting Scientist, World Wide Web Consortium 

Digital Equipment Corporation 
jg@pa.dec.com 

Anselm Baird-Smith, Eric Prud’hommeaux, H&on Wium Lie, Chris Lilley 
World Wide Web Consortium 

abaird, eric, howcome, chrisQw3.org 

Abstract 

We describe our investigation of the effect of persistent 
connections, pipelining and link level document compression on 
our client and server HTTP implementations. A simple test setup 
is used to verify H’ITP/l.l’s design and understand HTTP/l.1 
implementation strategies. We present TCP and real time 
performance data between the libwww robot [27] and both the 
W3C’s Jigsaw [28] and Apache [29] HTI’P servers using 
HTI’P/l.O, HTTP/1.1 with persistent connections, HTIPD.1 
with pipelined requests, and HTTP/1.1 with pipelined requests 
and deflate data compression [22]. We also investigate whether 
the TCP Nagle algorithm has an effect on HllP/I.I 
performance. While somewhat artificial and possibly overstating 
the benefits of H’ITP/l.l, we believe the tests and results 
approximate some common behavior seen in browsers. The 
results confirm that HTTP/I.1 is meeting its major design goals. 
Our experience has been that implementation details are very 
important to achieve all of the benefits of HTI’P/I.l. 

For all our tests, a pipelined HTTP/1.1 implementation 
outperformed HTTP/1.0, even when the HTTP/1.0 
implementation used multiple connections in parallel, under all 
network environments tested. The savings were at least a factor 
of two, and sometimes as much as a factor of ten, in terms of 
packets transmitted, Elapsed time improvement is less dramatic, 
and strongly depends on your network connection. 

Some data is presented showing further savings possible by 
changes in Web content, specifically by the use of CSS style 
sheets [lo], and the more compact PNG [2OJ image 
representation, both recent recommendations of W3C. Time did 
not allow full end to end data collection on these cases. The 
results show that H’ITP/l.l and changes in Web content will 

Permlaslon to moke digital/hard copy of part or all this work for 
peraonol or classroom use is granted without fee provided that 
copies ore not made or distributed for profit or commercial advan- 
toge, the copyright notice, the title of the publication and its date 
appear, and notice is given that copying is by permission of ACM, 
Inc. To oopy otherwise, to republish, to post on servers, or to 
redistribute to lists, requires prior specific permission and/or a fee. 
SIGCOMM ‘97 Cannes, France 
0 1997 ACM 0.89791.905.X/97/0009...$3.50 

have dramatic results in Internet and Web performance as 
HTTP/1.1 and related technologies deploy over the near future. 
Universal use of style sheets, even without deployment of 
I-I’ITP/I.I, would cause a very significant reduction in network 
traffic. 

This paper does not investigate further performance and network 
savings enabled by the improved caching facilities provided by 
the HTTP/I.1 protocol, or by sophisticated use of range 
requests. 

1 Introduction 

Typical web pages today contain a HypefIext Markup 
Language (HTML) document, and many embedded images. 
Twenty or more embedded images are quite common. Each of 
these images is an independent object in the Web, retrieved (or 
validated for change) separately. The common behavior for a 
web client, therefore, is to fetch the base HTML document, and 
then immediately fetch the embedded objects, which are 
typically located on the same server. 

The large number of embedded objects represents a change from 
the environment in which the Web transfer protocol, the 
Hypertext Transfer Protocol (HTTP) was designed. As a result. 
HTTP/l.0 handles multiple requests from the same server 
inefficiently, creating a separate TCP connection for each object. 

The recently released HlTP/l.l standard was designed to 
address this problem by encouraging multiple transfers of 
objects over one connection. Coincidentally, expected changes 
in Web content are expected to decrease the number of 
embedded objects, which will improve network performance. 
The cheapest object is one that is no longer needed. 

To test the effects of some of the new features of HTTP/l .l , we 
simulated two different types of client behavior: visiting a site 
for the first time, where nothing is in the client cache, and 
revalidating cached items when a site is revised. Tests were 
conducted in three different network environments designed to 
span a range of common web uses: a local Ethernet (LAN), 
transcontinental Internet (WAN), and a 28.8 Kbps dialup link 
using the Point-to-Point Protocol (PPP). 

155 



In this paper, we present the final results, and some of the 
thought processes that we went through while testing and 
optimizing our implementations. Our hope is that our experience 
may guide others through their own implementation efforts and 
help them avoid some non-obvious performance pits we fell 
into, Further information, the data itself (and later data 
collection runs) can be found on the Web [25]. 

1.1 Changes to HTTP 

HTTP/l.1 [4] is an upward compatible protocol to HTTP/1.0 
[3], Both HTTP/l.0 and HTTP/1.1 use theTCP protocol [12] for 
data transport. However, the two versions of HTTP use TCP 
differently. 

HTTP/l.0 opens and closes a new TCP connection for each 
operation. Since most Web objects are small, this practice means 
a high fraction of packets are simply TCP control packets used 
to open and close a connection. Furthermore, when a TCP 
connection is first opened, TCP employs an algorithm known as 
slow start [ 111. Slow start uses the first several data packets to 
probe the network to determine the optimal transmission rate. 
Again, because Web objects are small, most objects are 
transferred before their TCP COMCCtiOn completes the slow start 
algorithm. In other words, most HTTP/l.0 operations use TCP 
at its least eflicient. The results have been major problems due 
to resulting congestion and unnecessary overhead [6]. 

HTTP/l.1 leaves the TCP connection open between consecutive 
operations. This technique is called “persistent connections,” 
which both avoids the costs of multiple opens and closes and 
reduces the impact of slow start. Persistent connections are more 
efficient than the current practice of running multiple short TCP 
connections in parallel. 

By leaving the TCP connection open between requests, many 
packets can be avoided, while avoiding multiple RlTs due to 
TCP slow start. The first few packet exchanges of a new TCP 
connection are either too fast, or too slow for that path. If these 
exchanges are too fast for the route (common in today’s 
Internet), they contribute to Internet congestion. 

Conversely, since most connections are in slow start at any 
given time in HTTP/l.0 not using persistent connections, 
keeping a dialup PPP link busy has required running multiple 
TCP connections simultaneously (typical implementations have 
used 4 TCP connections). This can exacerbate the congestion 
problem further. 

The “Keep-Alive” extension to HTTP/1.0 is a form of persistent 
connections. HTTP/1.1’s design differs in minor details from 
Keep-Alive to overcome a problem discovered when Keep- 
Alive is used with more than one proxy between a client and a 
server. 

Persistent connections allow multiple requests to be sent without 
waiting for a response; multiple requests and responses can be 
contained in a single TCP segment. This can be used to avoid 
many round trip delays, improving performance, and reducing 
the number of packets further. This technique is called 
“pipelining in HTTP. 

HTTP/l.1 also enables transport compression of data types so 
those clients can retrieve HTML (or other) uncompressed 

documents using data compression; HTTP/l.0 does not have 
sufficient facilities for transport compression. Further work is 
continuing in this area [26]. 

The major HTTP/l.1 design goals therefore include: 

. lower HTTP’s load on the Internet for the same 
amount of “real work”, while solving the congestion 
caused by HTTP 

. HTTP/1.0’s caching is primitive and error prone; 
HTTP/l.1 enable applications to work reliably with 
caching 

. end user performance must improve, or it is unlikely 
that HTTP/l.1 will be deployed 

HTTP/I.1 provides significant improvements to HTTP/l.0 to 
allow applications to work reliably in the face of caching, and to 
allow applications to mark more content cacheable. Today, 
caching is often deliberately defeated in order to achieve 
reliability. This paper does not explore these effects. 

HTTP/1.1 does not attempt to solve some commonly seen 
problems, such as transient network overloads at popular web 
sites with topical news (e.g. the Schumacher-Levy comet impact 
on Jupiter), but should at least help these problems. 

This paper presents measured results of the consequences of 
HTTP/1.1 transport protocol additions. Many of these additions 
have been available as extensions to HTTP/1.0. but this paper 
shows the possible synergy when the extensions to the HTTP 
protocol are used in concert, and in with changes in content. 

1.2 Range Requests and Validation 

To improve the perceived response time, a browser needs to 
learn basic size information of each object in a page (required 
for page layout) as soon as possible. The first bytes typically 
contain the image size. To achieve better concurrency and 
retrieve the first few bytes of embedded links while still 
receiving the bytes for the master document, HTTP/1.0 browsers 
usually use multiple TCP connections. We believe by using 
range requests HTTP/I.1 clients can achieve similar or better 
results over a single connection. 

HTTP/1.1 defines as part of the standard (and most current 
HTTP/l.0 servers already implement) byte range facilities that 
allow a client to perform partial retrieval of objects. The initial 
intent of range requests was to allow caching proxy to finish 
interrupted transfers by requesting only the bytes of the 
document they currently do not hold in their cache. 

To solve the problem that browsers need the size of embedded 
objects, we believe that the natural revalidation request for 
HTJ.‘P/l.l will combine both cache validation headers and an If- 
Range request header, to prevent large objects from 
monopolizing the connection to the server over its connection. 
The range requested should be large enough to usually return 
any embedded metadata for the object for the common data 
types. This capability of HTl’P/I.I is implicit in its caching and 
range request design. 

When a browser revisits a page, it has a very good idea what the 

156 



type of any embedded object is likely to be, and can therefore 
both make a validation request and also simultaneously request 
the metadata of the embedded object if there has been any 
change, The metadata is much more valuable than the embedded 
image data, Subsequently, the browser might generate requests 
for the rest of the object, or for enough of each object to allow 
for progressive display of image data types (e.g. progressive 
PNG, GIF or IPEG images), or to multiplex between multiple 
large images on the page. We call this style of use of HTTP/1.1 
“poor man’s multiplexing.” 

We believe cache validation combined with range requests will 
likely become a very common idiom of HTTP/1.1. 

1.3 Changes to Web Content 

Roughly simultaneously to the deployment of the HTTP/1.1 
protocol, (but not dependent upon it), the Web will see the 
deployment of Cascading Style Sheets (CSS) [30] and new 
image and animation formats such as Portable Network 
Graphics (PNG) [ZO] and Multiple-image Network Graphics 
(MNG) [311. 

In the scientific environment where the Web was born, people 
were generally more concerned with the content of their 
documents than the presentation, In a research report, the choice 
of fonts matters less than the results being reported, so early 
versions of HypefIext Markup Language (HTML) sufficed for 
most scientists. However, when non-scientific communities 
discovered the Web, the perceived limitations of HTML became 
a source of frustration. Web page designers with a background 
in paper-based desktop publishing wanted more control over the 
presentation of their documents than HTML was meant to 
provide, Cascading Style Sheets (CSS) offer many of the 
capabilities requested by page designers but is only now seeing 
widespread implementation. 

In the absence of style sheets, authors have had to meet design 
challenges by twisting HTML out of shape, for instance, by 
studding their pages with small images that do little more than 
display text. In this section of the study, we estimate how Web 
performance will be affected by the introduction of CSS. We 
will not discuss other benefits to be reaped with style sheets, 
such as greater accessibility, improved printing, and easier site 
management, 

On the web, most images are in GIF format. A new image 
format, PNG, has several advantages over GIF. PNG images 
render more quickly on the screen and - besides producing 
higher quality, cross-platform images - PNG images are usually 
smaller than GIF images. 

MNG is an animation format in the PNG family, which - along 
with other advantages - is more compact than animated GIF. 

2 Prior Work 

Padmanabhan and Mogul [1] show results from a prototype 
implementation which extended HTTP to support both persistent 
connections and pipelining, and study latencies, throughput, and 
system overhead issues involved in persistent connections. This 
analysis formed the basic data and justification behind 
HTTP/1.1’s persistent connection and pipelining design. 
HTTP/l.1 primarily relies on pipelining rather than introducing 

new HTTP methods to achieve the performance benefits 
documented below. As this paper makes clear, both pipelining 
and persistent connections are needed to achieve high 
performance over a single HTTP connection. 

Pipelining, or batching, have been successfully used in a number 
of other systems, notably graphics protocols such as the X 
Window System [15] or Trestle [16], in its original RPC based 
implementation. 

Touch, Heidemann, and Obraczka [5] explore a number of 
possible changes that might help HTTP behavior, including the 
sharing of TCP control blocks [19] and Transaction TCP 
(T/TCP) [17], [ 181. The extended length of deployment of 
changes to TCP argued against any dependency of HTTP/l.1 on 
either of these; however, we believe that both mechanisms may 
improve performance, independently to the improvements made 
by HTTP/1.1. T/TCP might help reduce latency when revisiting 
a Web server after the server has closed its connection. Sharing 
of TCP control blocks would primarily help HTTP/1.0, 
however, since the HTTP/I.1 limits the number of connections 
between a client/server pair. 

In independent work, Heidemann [7] describes the interactions 
of persistent connections with Nagle’s algorithm. His experience 
is confirmed by our experience described in this paper, and by 
the experience of one of the authors with the X Window System, 
which caused the original introduction of the ability to disable 
Nagle’s algorithm into BSD derived TCP implementations. 

Simon Spero analyzed HTTP/l.0 performance [6] and prepared 
a proposal for a replacement for HTTP. HTTP/1.1, however, 
was constrained to maintain upward compatibility with 
HTTP/1.0. Many of his suggestions are worthwhile and should 
be explored further. 

Style sheets have a long history in the Web [30]. We believe 
that the character of our results will likely be similar for other 
style sheet systems. However, we are not aware of any prior 
work investigating the network performance consequences of 
style sheets. 

3 TestSetup 

3.1 Test Web Site 

We synthesized a test web site serving data by combining data 
(HTML and GIF image data) from two very heavily used home 
pages (Netscape and Microsoft) into one; hereafter called 
‘Microscape”. The initial layout of the Microscape web site was 
a single page containing typical HTML totaling 42KB with 42 
inlined GIF images totaling 125KB. The embedded images 
range in size from 70B to 40KB; most are small, with 19 images 
less than lKB, 7 images between 1KB and 2KB, and 6 images 
between 2KB and 3KB. While the resulting HTML page is 
larger, and contains more images than might be typical, such 
pages can be found on the Web. 

3.2 First Time Retrieval Test 

The first time retrieval test is equivalent to a browser visiting a 
site for the first time, e.g. its cache is empty and it has to retrieve 
the top page and all the embedded objects. In HTTP, this is 
equivalent to 43 GETrequests. 

157 



3.3 Revalidate Test 

This test is equivalent to revisiting a home page where the 
contents are already available in a local cache. The initial page 
and all embedded objects are validated, resulting in no actual 
transfer of the HTML or the embedded objects. In HlTP, this is 
equivalent to 43 Condirionaf GET requests. HTTP/l.1 supports 
two mechanisms for cache validation: e&y rugs, which are a 
guaranteed unique tag for a particular version of an object, and 
date stamps. HTTP/l.0 only supports the latter. 

H’I’Wl.0 support was provided by an old version of libwww 
(version 4.1D) which supported plain HTlWl.0 with multiple 
simultaneous connections between two peers and no persistent 
cache, In this case we simulated the cache validation behavior 
by issuing HEAD requests on the images instead of Condirional 
G,!iT requests. The profile of the HTTP/l .O revalidation requests 
therefore was a total of 43 associated with the top page with one 
GllT (HTML) and 42 HEAD requests (images), in the initial 
tests. The HTI’P/I.I implementation of libwww (version 5.1) 
differs from the HTTP/l.0 implementation. It uses a full 
HTTP/l.1 compliant persistent cache generating 43 Condikmzl 
GET requests with appropriate cache validation headers to make 
the test more similar to likely browser behavior. Therefore the 
number of packets in the results reported, below for HTTP/1.0 
are higher than of the correct cache validation data reported for 
H’lTP/l,I. 

3.4 Network Environments Tested 

In order to measure the performance in commonly used different 
network environments, we used the following gable 1) three 
combinations of bandwidth and latency: 

Channel Connection RlT MSS 

High bandwidth, 
low lntency 

LAN - IOMbit Ethernet <Iltls 1460 

High bandwidth, WAN -MA (MlT/LCS) to CA 
high latency (J-W 

_ 9o ms 146o 

Low bandwidth, 
high latency 

PPP - 28.8k modem line using 
LCS dialup service 

_ 15o ms 146o 

Table 1 -Tested Network Environments 

3.5 Applications, Machines and OSs 

Several platforms were used in the initial stage of the 
experiments for running the HTTP servers. However, we ended 
up using relatively fast machines to try to prevent unforeseen 
bottlenecks in the servers and clients used. Jigsaw is written 
entirely in Java and relies on specific network features for 
controlling TCP provided only by Java Development Kit (JDK) 
1.1, Apache is written in C and runs on multiple UNIX variants. 

Component Type and Version 

Server Hardware www26.w3.org, Sun SPARC Ultra-l. Solaris 
2.5 

LAN Client Hardware zorch.w3.0rgI Digital AlphaStation 400 
41233, UNIX 4.0a 

Component Type and Version 

WAN Client Hardware tum.ee.lbl.gov. Digital AlphaStation 3000, uND[ 4.0 

PPP Client Hardware big.w3.org, Dual Pentium Pro PC, Windows 
NT Server 4.0 

HTTP Server Sofhvare Jigsaw 1.06 and Apache 1.2blO 

libwww robot, Netscape Communicator 4.0 
HlTP Client Software beta 5 and Microsoft Internet Explorer 4.0 

beta 1 on Windows NT 

Table 2 - Applications, Machines, and OSs 

None of the machines were under significant load while the tests 
were run. The server is identical through our final tests - only 
the client changes connectivity and behavior. Both Jigsaw and 
Libwww are currently available with HTTP/l.1 implementations 
without support for the features described in this paper and 
Apache is in beta release. During the experiments changes were 
made to all three applications. These changes will be made 
available through normal release procedures for each of the 
applications. 

4 Initial Investigations and Tuning 

The m/I.0 robot was set to use plain HTlWI.0 requests 
using one TCP connection per request. We set the maximum 
number of simultaneous connections to 4. the same as Netscape 
Navigator’s default (and hard wired maximum, it turns out). 

After testing HTIWl.0, we ran the robot as a simple HTIWl.1 
client using persistent connections. That is, the request / 
response sequence looks identical to HllWl.0 but all 
communication happens on the same TCP connection instead of 
4, hence serializing all requests. The results as seen in Table 3 
was a significant saving in TCP packets using HTIWl.1 but 
also a big increase in elapsed time. 

4.1 Pipelining 

As a means to lower the elapsed time and improve the 
efficiency, we introduced pipelining into libwww. That is, 
instead of waiting on a response to arrive before issuing new 
requests, as many requests as possible are issued at once. The 
responses are still serialized and no changes were made to the 
HTTP messages; only the timing has changed as the robot has 
multiple outstanding requests on the same connection. 

The robot generates quite small HlTP requests - our library 
implementation is very careful not to generate unnecessary 
headers and not to waste bytes on white space. The result is an 
average request size of around 190 bytes, which is significantly 
smaller than many existing product HTTP implementations, as 
seen in Table 10 and Table 11 below. 

The requests are buffered before transmission so that multiple 
HTTP requests can be sent with the same TCP segment. This 
has a significant impact on the number of packets required to 
transmit the payload and lowers system time CPU usage by both 
client and server. However, this means that requests are not 
immediately transmitted, and we therefore need a mechanism to 

158 



flush the output buffer, First we implemented a version with two 
mechanisms: 

1. The buffer was flushed if the data in the output buffer 
reached a certain size. We experimented with the output 
buffer size and found that 1024 bytes is a good 
compromise. In case the MTU is 536 or 512 we will 
produce two full TCP segments, and if the MTU is 1460 
(Ethernet size) then we can nicely fit into one segment. 

2, We introduced a timer in the output buffer stream which 
would time-out after a specified period of time and force 
the buffer to be flushed, It is not clear what the optimal 
flush time-out period is but it is likely that it is a function 
of the network load and connectivity. Initially we used a 1 
second delay for the initial results in Table 3, but used a 
50 ms delay in for all later tests. Further work is required 
to understand where we should set such a timer, which 
might also take into account the R’IT for this particular 
connection or other factors, to support old clients which 
do not explicitly flush the buffer. 

Max simultaneous sockets 

HlTP/l.I HlTF’/I.I 
HTTP’1’o Persistent Pipeline 

6 1 1 

Total number of sockets used 40 1 1 

Packets from client to server 226 70 25 

Packets from server to client 271 153 58 

Tot01 number of packets 497 223 83 

Total elapsed time [sets] 1.85 4.13 3.02 

Table 3 - Jigsaw - Initial High Bandwidth, Low Latency 
Cache Revalidation Test 

We were simultaneously very happy and quite disappointed with 
the initial results above, taken late at night on a quiet Ethernet. 
Elapsed time performance of HTTP/l.1 with pipelining was 
worse than HTTP/l.0 in this initial implementation, though the 
number of packets used were dramatically better. We scratched 
our heads for a day, then convinced ourselves that on a local 
Ethernet, there was no reason that HTTP/1.1 should ever 
perform more slowly than HTTP/1.0. The local Ethernet cannot 
suffer from fairness problems that might give multiple 
connections a performance edge in a long haul network. We dug 
into our implementation tirther. 

4.1.1 Buffer Tuning 

After study, we realized that the application (the robot) has 
much more knowledge about the requests than libwww, and by 
introducing an explicit flush mechanism in the application, we 
could get significantly better performance. We modified the 
robot to force a flush after issuing the first request on the HTML 
document and then buffer the following requests on the inlined 
images. While H’ITP libraries can be arranged to automatically 
flush buffers automatically after a timeout, taking advantage of 
knowledge in the application can result in a considerably faster 
implementation than relying on such a timeout. 

4.1.2 Nagle Interaction 

We expected, due to experience of one of the authors, that a 
pipelined implementation of HTTP might encounter the Nagle 
algorithm [2] [5] in TCP. The Nagle algorithm was introduced 
in TCP as a means of reducing the number of small TCP 
segments by delaying their transmission in hopes of further data 
becoming available, as commonly occurs in telnet or rlogin 

traffic. As our implementation can generate data asynchronously 
without waiting for a response, the Nagle algorithm could be a 
bottleneck. 

A pipelined application implementation buffers its output before 
writing it to the underlying TCP stack, roughly equivalent to 
what the Nagle algorithm does for telnet connections. These two 
buffering algorithms tend to interfere, and using them together 
will often cause very significant performance degradation. For 
each connection, the server maintains a response buffer that it 
flushes either when full, or when there is no more requests 
coming in on that connection, or before it goes idle. This 
buffering enabIes aggregating responses (for example, cache 
validation responses) into fewer packets even on a high-speed 
network, and saving CPU time for the server. 

In order to test this, we turned the Nagle algorithm off in both 
the client and the server. This was the first change to the server - 
all other changes were made in the client. In our initial tests, we 
did not observe significant problems introduced by Nagle’s 
algorithm, though with hindsight, this was the result of our 
pipelined implementation and the specific test cases chosen, 
since with effective buffering, the segment sizes are large, 
avoiding Nagle’s algorithm. In later experiments in which the 
buffering behavior of the implementations were changed, we did 
observe significant (sometimes dramatic) transmission delays 
due to Nagle; we recommend therefore that HTTP/l.1 
implementations that buffer output disable Nagle’s algorithm 
(set the TCPNODELAY socket option). This confirms the 
experiences of Heidemann [7]. 

We also performed some tests against the Apache 1.2b2 server, 
which also supports HlTP/I.I, and observed essentially similar 
results to Jigsaw. Its output buffering in that initial beta test 
release was not yet as good as our revised version of Jigsaw, and 
in that release it processes at most five requests before 
terminating a TCP connection. When using pipelining, the 
number of HTTP requests served is often a poor indicator for 
when to close the connection. We discussed these results with 
Dean Gaudet and others of the Apache group and similar 
changes were made to the Apache server, our final results below 
are using a version of Apache 1.2blO. 

4.2 Connection Management 

Implementations need to close connections carefully. HTTP/l.0 
implementations were able to naively close both halves of the 
TCP connection simultaneously when finishing the processing 
of a request. A pipelined HTTP/l.1 implementation can cause 
major problems if it does so. 

The scenario is as follows: An HTTP server can close its 
connection between any two responses. An HTTP/l.1 client 
talking to a HTTP/l.1 server starts pipelining a batch of 
requests, for example 15 requests, on an open TCP connection. 
The server might decide that it will not serve more than 5 

159 



requests per connection and closes the TCP connection in both 
directions after it successfully has served the first five requests. 
The remaining 10 requests that are already sent from the client 
will along with client generated TCP ACK packets arrive on a 
closed port on the server. This “extra” data causes the server’s 
TCP to issue a reset; this forces the client TCP stack to pass the 
last ACK’ed packet to the client application and discard all other 
packets, This means that HTTP responses that are either being 
received or already have been received successfully but haven’t 
been ACK’ed will be dropped by the client TCP. In this 
situation the client does not have any means of finding out 
which HTTP messages were successful or even why the server 
closed the connection. The server may have generated a 
“Conneclion: Close” header in the 5th response but the header 
may have been lost due to the TCP reset, if the server’s sending 
side is closed before the receiving side of the connection. 
Servers must therefore close each half of the connection 
independently. 

TCP’s congestion control algorithms [I 1] work best when there 
are enough packets in a connection that TCP can determine the 
approximate optimal maximum rate at which to insert packets 
into the Internet. Observed packet trains in the Internet have 
been dropping [ 131, almost certainly due to H’lTP/l.O’s 
behavior, as demonstrated in the data above, where a single 
connection rarely involves more than 10 packets, including TCP 
open and close, Some IP switch technology exploits packet 
trains to enable faster IP routing. In the tests above, the packet 
trains are significantly longer, but not as long as one might first 
expect, since fewer, larger packets are transmitted due to 
pipelining. 

The HTTP/l.1 proposed standard specification does specify at 
most two connections to be established between a client/server 
pair. (If you get a long, dynamically generated document, a 
second connection might be required to fetch embedded 
objects,) Dividing the mean length of packet trains down by a 
factor of two diminish the benetits to the Internet (and possibly 
to the end user due to slow start) substantially. Range requests 
need to be exploited to enable good interactive feel in Web 
browsers while using a single connection. Connections should 
be maintained as long as makes reasonable engineering sense 
[9], to pick up user’s “click ahead” while following links. 

5 After Initial Tuning Tests 

To make our final round of tests as close as possible to likely 
real implementations, we took the opportunity to change the 
HTTP/l.1 version of the robot to issue full HTTP/I.1 cache 
validation requests. These use If-None-Makh headers and 
opaque validators, rather than the HEAD requests used in our 
HTTP/l.0 version of the robot. With the optimized clients and 
servers, we then took a complete set of data, for both the first 
time retrieval and cache validation tests, in the three network 
environments. 

It was easiest to implement full HlTP/I.l caching semantics by 
enabling persistent caching in libwww. This had unexpected 
consequences due to libwww’s implementation of persistent 
caching, which is written for ease of porting and implementation 
rather than performance. Each cached object contains two 
independent files: one containing the cacheable message headers 
and the other containing the message body. This would be an 
area that one would optimize carefully in a product 

implementation; the overhead in our implementation became a 
performance bottleneck in our HTTP/l.1 tests. Time and 
resources did not permit optimizing this code. Our final 
measurements use correct HlTP/l.l cache validation requests, 
and run with a persistent cache on a memory file system to 
reduce the disk performance problems that we observed. 

The measurements in Table 4 through Table 9 are a consistent 
set of data taken just before publication. While Jigsaw had 
outperformed Apache in the first round of tests, Apache now 
outperforms Jigsaw (which ran interpreted in our tests). Results 
of runs generally resembled each other. For the WAN test 
however, the higher the latency, the better HTTP/l.1 performed. 
The data below was taken when the Internet was particularly 
quiet. 

5.1 Changing Web Content Representation 

After having determined that HTTP/l.1 outperforms HTTP/l.0 
we decided to try other means of optimizing the performance. 
We therefore investigated how much we would gain by using 
data compression of the HTIP message body. That is. we do not 
compress the HTTP headers, but only the body using the 
“Content-Encoding” header to describe the encoding 
mechanism. We use the zlib compression library [23] version 
1.04, which is a freely available C based code base. It has a 
stream based interface which interacts nicely with the libwww 
stream model. Note that the PNGlibrary also uses zlib, so 
common implementations will share the same data compression 
code. Implementation was at most a day or two. 

The client indicates that it is capable of handling the “deflate” 
content coding by sending an “Accept-Encoding: deflate” header 
in the requests. In our test, the server does not perform on-the- 
fly compression but sends out a pre-computed deflated version 
of the Microscape HTML page. The client performs on-the-fly 
inflation and parses the inflated HTML using its normal HTML 
parser. 

Note that we only compress the HTML page (the first GET 
request) and not any of the following images, which are already 
compressed using various other compression algorithms (GIF). 

The zlib library has several flags for how to optimize the 
compression algorithm, however we used the default values for 
both deflating and inflating. In our case this caused the 
Microscape HTML page to be compressed more than a factor of 
three from 42K to IIK. This is a typical factor of gain using 
this algorithm on HTML files. This means that we decrease the 
overall payload with about 31K or approximately 19%. 

6 Measurements 

The datga shown in these tables are a summary of the more 
detailed data acquisition overview. In all cases, the traces were 
taken on client side, as this is where the interesting delays are. 
Each run was repeated 5 times in order to make up for network 
fluctuations, except Table 10 and Table 11, which were repeated 
three times. In the tables below, Pa = Packets, and Set = 
Seconds. %ov is the percentage of overhead bytes due to TCP/IP 
packet headers. 

160 



First Time Retrieval Cache Validation First Time Retrieval Cache Validation 

Pa Bytes Set %ov Pa Bytes Set %ov Pa Bytes Set %ov Pa Bytes Set %ov 

HTTP/I .O 510.2 216289 0.97 8.6 374.8 61117 0.78 19.7 HTTP/l.0 559.6 248655.2 4.09 8.3 370.0 61887 2.64 19.3 

HTlWl.1 309.4 191436.0 6.14 6.1 101.2 14255 4.43 22.6 HTTP/l.1 281.0 191843 1.25 5.5 133.4 17694 0.89 23.2 

HlTP/l.l 
Pipelined 181.8 191551 0.68 3.7 32.8 17694 0.54 6.9 

HTTP/l.1 
Pipelined 221.4 191180.6 2.23 4.4 29.8 15352 0.86 7.2 

HTTP/l.1 HTlWl.1 
Pipelined VI. 148.8 159654 0.71 3.6 32.6 17687 0.54 6.9 Pipelined w. 182.0 159170.0 2.11 4.4 29.0 15088 0.83 7.2 
compression compression 

Table 4 - Jigsaw - High Bandwidth, Low Latency Table 7 - Apache - High Bandwidth, High Latency 

First Time Retrieval Cache Validation 

Pa Bytes Set %ov Pa Bytes Set %ov First Time Retrieval Cache Validation 

HTTP/I .O 489.4 215536 0.72 8.3 365.4 60605 0.41 19.4 Pa Bytes Set %ov Pa Bytes Set %ov 

HTTP/I.1 244.2 189023 0.81 4.9 98.4 14009 0.40 21.9 Hl-lWl.1 309.6 190687 63.8 6.1 89.2 17528 12.9 16.9 

HITP/I.l Pipelined 175.8 189607 0.49 3.6 29.2 14009 0.23 7.7 HI-IW1.I 
Pipelined 284.4 190735 53.3 5.6 31.0 17598 5.4 6.6 

HTTP/l.1 Hl-rP/l.l 
Pipelincdw. 139,s 156834 0.41 3.4 28.4 14002 0.23 7.5 Pipelinedw. 234.2 159449 47.4 5.5 31.0 17591 5.4 6.6 
compression compression 

Table 5 - Apache - High Bandwidth, Low Latency Table 8 - Jigsaw - Low Bandwidth, High Latency 

First Time Retrieval Cache Validation 

Pa Bytes Set %ov Pa Bytes Set %ov First Time Retrieval Cache VaIidation 

Pa Bytes Set %ov Pa Bytes Set %ov H’l-lWl.1 308.6 187869 65.6 6.2 89.0 13843 11.1 20.5 

HTTP/l $0 565.8 251913 4.17 8.2 389.2 62348.02.96 20.0 HTlWl.1 Pipelined 281.4 187918 53.4 5.7 26.0 13912 3.4 7.0 

HTTP/I.1 304.0 193595 6.64 5.9 137.0 18065.64.95 23.3 
HTTP/l.1 
Pipelined w. 233.0 157214 47.2 5.6 26.0 13905 3.4 7.0 
compression 

H’ITPA.1 Pipelined 214.2 193887 2.33 4.2 34.8 18233.2 1.10 7.1 

Table 9 - Apache - Low Bandwidth, High Latency HTTP/l. I 
Pipelinedw. 183.2 161698 2.09 4.3 35.4 19102.2 1.15 6.9 
compression 

Table 6 - Jigsaw - High Bandwidth, High Latency First Time Retrieval Cache Validation 

Pa Bytes Set %ov Pa Bytes Set %ov 

Netscape Navigator’ 339.4 201807 58.8 6.3 108 19282 14.9 18.3 

Internet 
Explore? 360.3 199934 63.0 6.7 301.0 61009 17.0 16.5 

Table 10 -Jigsaw - Netscape Navigator and MS Internet 
Explorer, Low Bandwidth, High Latency 

161 



First Time Retrieval Cache Validation 

Pa Bytes Set %ov Pa Bytes Set %ov 

Nefficape Nempc’ 334.3 199243 58.7 6.3 103.3 23741 5.9 14.8 

Internet Explore? 381.3 204219 60.6 6.9 117.0 23056 8.3 16.9 

Table 11 - Apache - Netscape Navigator and MS Internet 
Explorer, Low Bandwidth, High Latency 

7 Observations on HTTP/l.0 and 1.1 Data 

Buffering requests and responses significantly reduces the 
number of packets required. For a common operation in the Web 
(revisiting a page cached locally), our HTTP/l.1 with buffered 
pipelining implementation uses less than l/IO of the total 
number of packets that HTTP/1.0 does, and executes in much 
less elapsed time, using a single TCP connection on a WAN. 
This is a factor of three improvement over H‘llW1.1 
implemented without buffering of requests and responses. HlTP 
requests are usually highly redundant and the actual number of 
bytes that changes between requests can be as small as 10%. 
Therefore, a more compact wire representation for HTTP could 
increase pipelining’s benefit for cache revalidation further up to 
an additional factor of five or ten, from back of the envelope 
calculations based on the number of bytes changing from one 
request to the next. 

An H’IlW1.1 implementation that does not implement 
pipelining will perform worse (have higher elapsed time) than 
an HTJW1.0 implementation using multiple connections. 

The mean number of packets in a TCP session increased 
between a factor of two and a factor of ten. The mean size of a 
packet in our traffic roughly doubled. However, if style sheets 
see widespread use, do not expect as large an improvement in 
the number of packets in a TCP session, as style sheets may 
eliminate unneeded image transfers, shortening packet trains. 

Since fewer TCP segments were significantly bigger and couId 
almost always fill a complete Ethernet segment, server 
performance also increases when using pipelined requests, even 
though only the client changed behavior. 

’ These measurements were performed using max 4 (default) 
simultaneous connections and HTTP/l.0 Keep-Alive headers. 
The Netscape HTTP client implementation uses the HTTP/1.0 
Keep-Alive mechanism to allow for multipIe HTTP messages to 
be transmitted on the same TCP connection. It therefore used 8 
connections compared to 42 for the libwww H’IlW1.0 
implementation, in which this feature was disabled. 

’ The measurements were performed using max 6 (default) 
simultaneous connections and H’IlWI.0 Keep-Alive headers. 
As with Netscape Communicator, it uses the HTTP/1.0 Keep- 
Alive mechanism to allow for multiple H’ITP messages to be 
transmitted on the same TCP connection. The total number of 
connections used in the test case is 6. 

For the first time retrieval test, bandwidth savings due to 
pipelining and persistent connections of HTTP/1.1 is only a few 
percent. Elapsed time on both WAN and LAN roughIy halved. 

8 Compression Issues 

8.1 Why Compression is Important 

The first few packets of a new TCP connections are controlled 
by the TCP slow start algorithm. The first TCP packet of 
payload (that is, not part of the TCP open handshake) on an 
Ethernet contains about 1400 bytes (the HTTP response header 
and the first part of the HTML body). When this first packet 
arrives, the client starts parsing the HTML in order to present 
the contents to the end-user. Any inlined objects referenced in 
the first segment are very likely to be on the same server and 
therefore can be pipelined onto the same TCP connection. If the 
number of new requests generated by the parser exceeds the 
pipeline output buffer size then a new batch of H’lTP requests 
can be sent immediately - otherwise in our implementation, the 
batch is delayed until either of the pipeline flush mechanisms is 
triggered. 

If the next batch of requests is delayed, then no new data is 
written to the client TCP stack. Since the connection is in slow 
start, the server can not send any more data until it gets an ACK 
from the first segment. TCP can either piggy back its ACK onto 
an outgoing packet or generate a separate ACK packet. In either 
case, the end result is an extra delay causing overall 
performance degradation on a LAN. 

A separate ACK packet is subject to the delayed 
acknowledgement algorithm that may delay the packet up to 
2OOms. Another strategy, which we have not tried, would be to 
always flush the buffer after processing the first segment if no 
new segments are available, though this would often cost an 
extra packet. 

We observed these delayed ACKs in out traces on the first 
packet sent from the server to the client. In the Pipelining case, 
the HTML text (sent in clear) did not contain enough 
information to force a new batch of requests. In the Pipelining 
and HTML compression case, the first packet contains 
approximately 3 times as much HTh4L so the probability of 
having enough requests to immediately send a new batch is 
higher. 

HTML compression is therefore very important since it 
increases the probability that there are enough inlined objects in 
the first segment to immediately issue a new batch without 
introducing any extra delay (or conversely, generating more 
packets than otherwise necessary.) 

This indicates that the relationship between payload, TCP 
packets and transfer time is non-linear and that the first packets 
on a connections are relatively more “‘expensive” than later 
packets. 

The exact results may depend on how the slow start algorithm is 
implemented on the particular platform. Some TCP stacks 
implement slow start using one TCP segment whereas others 
implement it using two packets 

In our tests, the dient is aIways decompressing compressed data 

162 



on the fly, This test does not take into account the time it would 
take to compress an HTML object on the fly and whether this 
will take longer than the time gained transmitting fewer packets. 
Further experiments are needed to see if compression of 
dynamically generated content would save CPU time over 
transferring the data. Static content can be compressed in 
advance and may not take additional resources on the server 

8.2 Summary of Compression Performance 

Transport compression helped in all environments and enabled 
significant savings (about 16% of the packets and 12% of the 
elapsed time in our first time retrieval test); the decompression 
time for the client is more than offset by the savings in data 
transmission, Deflate compression is more efficient than the data 
compression algorithms used in modems (see section 8.3). Your 
mileage will vary depending on precise details of your Internet 
connection. 

For clients that do not load images, transport compression 
should provide a major gain. Faster retrieval of HTML pages 
will also help time to render significantly, for all environments. 

8.3 Further Compression Experiments 

We also performed a simple test confirming that zlib 
compression is significantly better than the data compression 
found in current modems [24]. The compression used tbe zlib 
compression algorithm and the test is done on the HTML page 
of the Microscape test site. We performed the HTML retrieval (a 
single HTTP GET request) only with no embedded objects. The 
test was run over standard 28.8Kbps modems. 

This section explores how CSS, PNG and MNG may be used to 
compression content. We converted the images in our test page 
to PNG, animations to MNG, and where possible replaced 
images with HTML and CSS. 

9.1 Replacing Images with HTML and CSS 

While CSS give page designers and readers greater control of 
page presentation, it has the added value of speeding up page 
downloads. First of all, modularity in style sheets means that the 
same style sheet may apply to many documents, thus reducing 
the need to send redundant presentation information over the 
network. 

Second, CSS can eliminate small images used to represent 
symbols (such as bullets, arrows, spacers, etc.) that appear in 
fonts for the Unicode character set. Replacing images with CSS 
reduces the number of separate resources referenced, and 
therefore reduces the protocol requests and possible name 
resolutions required to retrieve them. 

Third, CSS gives designers greater control over the layout of 
page elements, which will eliminate the practice of using 
invisible images for layout purposes. Images may now be 
images -be seen and not waited for. 

The Microscape test page contains 40 static GIF images, many 
of which may be replaced by HTML+CSS equivalents. Figure 1 
shows one such image that requires 682 bytes. 

r---------------- --.---------- 1 

Ixe--.zzl’ll”_ !*+J 4 <’ 512 12 _.^__ __- 
: i- P 

-_. .__... ._- ._.-._.- -. -2 
Figure l- “solutions” GIF 

Jigsaw Apache 

Pa Set Pa Set 

Uncompressed HTML 

Compressed HTML 

Snved using 
compression 

67 12.21 67 12.13 

21.0 4.35 4.35 4.43 

68.7% 64.4% 68.7% 64.5% 

The default compression provided by zlib gave results very 
similar to requesting best possible compression to minimize 
size, 

Case of HTML tags can effect compression. Compression is 
significantly worse (35 rather than .27) if mixed case HTML 
tags are used. The best compression was found if all HTML 
tags were uniformly lower case, (since the compression 
dictionary can reuse what are common English words). HTML 
tool writers should beware of this result, and we recommend 
HTML tags be uniformly lower case for best performance of 
compressed documents. 

9 Impact of Changing Web Content 

In the preceding section, the compression experiments did not 
take advantage of knowledge of the content that was transmitted. 
By examining the content (text and images) of documents, they 
can be re-expressed in more compact and powerful formats 
while retaining visual fidelity. 

The image depicts a word (“solutions”) using a certain font (a 
bold, oblique sans-serif, approximately 20 pixels high) and color 
combination (white on a yellowish background) and surrounding 
it with some space. Using HTML+CSS, the same content can be 
represented with the following phrase: 

P-banner { 
color: white; 
background: 8FCO; 
font: bold oblique 2Opx sans-serif; 

i 

css 
padding: 0.2em 1Oem 0.2em lem; 

1 

cP CLASS=bannerxsolutions 
HTML 

The HTML and CSS version only takes up around 150 bytes. 
When displayed in a browser that supports CSS. the output is 
similar to the image. Differences may occur due to 
unavailability of fonts, of anti-aliasing and the use of non-pixel 
units. 

Replacing this image with HTML and CSS has two implications 
for performance. First, the number of bytes needed to represent 
the content is reduced by a factor of more than 4, even before 
any transport compression is applied. Second, there is no need to 
fetch the external image, and since HTML and CSS can coexist 
in the same file one HTTP request is saved. 

Trying to replicate all 40 images on the Microscape test page 
reveals that: 

163 



l 22 of the 40 images can be represented in 
HTMLtCSS. Encoded in GIF, these images take up 
14791 bytes, and the HTML+CSS replacement is 
approximately 3200 bytes, a savings factor of around 
4.6. This factor will increase further if compression is 
applied to the HTMLtCSS code. 

. Further, 3 images can be reduced to roughly half their 
size by converting part of their content to 
HTMLtCSS. Their current size is 7541 bytes, and the 
HTMLtCSS demo-replacement is 610 bytes. 

. The elimination of 22 HTI’P requests would save 
approximately 4600 bytes transmitted and the 
approximately 4300 bytes received, presuming the 
length of the requests (210 bytes) and responses (192 
bytes for cache validation, and -240 bytes for an 
actual successful GET request). This slightly 
overstates the savings; many style sheets will be stored 
separate from the documents and cached 
independently. 

. 14 of the 40 images, taking up 80601 bytes, cannot be 
represented in HTMLtCSSl. These are photographs, 
non-textual graphics, or textual effects beyond CSS 
(e.g. rotated text). However, these images can be 
converted to PNG. 

It should be noted that the HTML+CSS sizes are estimates 
based on a limited test set, but the results indicate that style 
sheets may make a very significant impact on bandwidth (and 
end user delays) of the web. At the time of writing, no CSS 
browser can render all the replacements correctly. 

9.2 Converting images from GIF’ to PNG and MNG 

The 40 static GIF images on the test page totaled 103,299 bytes, 
much larger than the size of the HTML file. Converting these 
images to PNG using a standard batch process (giftopnm, 
pnmtopng) resulted in a total of 92,096 bytes, saving 11,203 
bytes. 

The savings are modest because many of the images are very 
small. PNG does not perform as well on the very low bit depth 
images in the sub-200 byte category because its checksums and 
other information make the file a bit bigger even though the 
actual image data is often smaller. 

The two GIF animations totaled 24,988 bytes. Conversion to 
MNG gave a total of 16,329 bytes, a saving of 8,659 bytes. 

It is clear that this sample is too small to draw any conclusions 
on typical savings (-19% of the image bytes, or -10% of the 
total payload bandwidth, in this sample) due to PNG and MNG. 
Note that the converted PNG and MNG files contain gamma 
information, so that they display the same on all platforms; this 
adds 16 bytes per image. GIF images do not contain this 
information. 

A very few images in our data set accounted for much of the 
total size, Over half of the data was contained in a single image 
and two animations, Care in selection of images is clearly very 
important to good design. 

10 Implementation Experience 

Pipelining implementation details can make a very significant 
difference on network traffic, and bear some careful thought, 
understanding, and testing. To take full advantage of pipelining. 
applications need explicit interfaces to flush buffers and other 
minor changes. 

The read buffering of an implementation, and the details of how 
urgently data is read from the operating system, can be very 
significant to get optimal performance over a single connection 
using HTlP/l.l. If too much data accumulates in a socket buffer 
TCP may delay ACKs by 2OOms. Opening multiple connections 
in HTTP/l.0 resulted in more socket buffers in the operating 
system, which as a result imposed lower requirements of speed 
on the application, while keeping the network busy. 

We estimate two peopIe for two months impIemented the work 
reported on here, starting from working HTTP/l.0 
implementations. We expect others leveraging from the 
experience reported here might accomplish the same result in 
much less time, though of course we may be more expert than 
many due to our involvement in HTTP/l.1 design. 

10.1 Tools 

Our principle data gathering tool is the widely available 
rcpdump program [14]; on Windows we used Microsoft’s 
NetMon program. We also used Tim Shepard’s xplot program 
[8] to graphically plot the dumps; this was very useful to find a 
number of problems in our implementation not visible in the raw 
dumps. We looked at data in both directions of the TCP 
connections. In the detailed data summary, there are direct links 
to all dumps in xplot formats. The fcpshow program [21] was 
very useful when we needed to see the contents of packets to 
understand what was happening. 

11 Future Work 

We believe the CPU time savings of HTTP/l.1 is very 
substantial due to the great reduction in TCP open and close and 
savings in packet overhead, and could now be quantified for 
Apache (currently the most popular Web server on the Internet). 
HlTP/l.l will increase the importance of reducing parsing and 
data transport overhead of the very verbose HTTP protocol, 
which, for many operations, has been swamped by the TCP open 
and close overhead required by HTTP/1.0. Optimal server 
implementations for HTTP/l.1 will likely be significantly 
different than current servers. 

Connection management is worth further experimentation and 
modeling. Padmanabhan [1] gives some guidance on how long 
connections should be kept open, but this work needs updating 
to reflect current content and usage of the Web, which have 
changed significantly since completion of the work. 

Persistent connections, pipelining, transport compression, as 
well as the widespread adoption of style sheets (e.g. CSS) and 
more compact image representations (e.g. PNG) will increase 
the relative overhead of the very verbose HTTP text based 
protocol. These are most critical for high latency and low 
bandwidth environments such as cellular telephones and other 
wireless devices. A binary encoding or tokenized compression 

164 



of HTTP and/or a replacement for HTTP will become more 
urgent given these changes in the infrastructure of the Web. 

We have not investigated perceived time to render (our browser 
has not yet been optimized to use HTI’P/l.l features), but with 
the range request techniques outlined in this paper, we believe 
H’ITP/l,l can perform well over a single connection. PNG also 
provides time to render benefits relative to GIF. The best 
strategies to optimize time to render are clearly significantly 
different from those used by HTI’P/l.l. 

Serious analysis of trace data is required to quantify actual 
expected bandwidth gains from transport compression. At best, 
the results here can motivate such research. 

Future work worth investigating includes other compression 
algorithms and the use of compression dictionaries optimized for 
HTML and CSSl text. 

12 Conclusions 

For HTTP/l .l to outperform HTTP/l.0 in elapsed time, an 
implementation must implement pipelining. Properly buffered 
pipelined implementations will gain additional performance and 
reduce network traffic further. 

HTTP/I.1 implemented with pipelining outperformed 
H’ITP/l.O, even when the H‘lTP/I.O implementation uses 
multiple connections in parallel, under all circumstances tested. 
In terms of packets transmitted, the savings are typically at least 
a factor of two, and often much more, for our tests. Elapsed time 
improvement is less dramatic, but significant. 

We experienced a series of TCP implementation bugs on our 
server platform (Sun Solaris) which could only be detected by 
examining the TCP dumps carefully. We believe the data in this 
paper to be unaffected by these problems. Implementers of 
HTTP doing performance studies should not presume that their 
platform’s TCP implementation is bug free, and must be 
prepared to examine TCP dumps carefully both for HTI’P and 
TCP implementation bugs to maximize performance. 

The savings in terms of number of packets of HTfP/l.l are truly 
dramatic. Bandwidth savings due to HTTP/l.1 and associated 
techniques are more modest (between 2% and 40% depending 
on the techniques used). Therefore, the HTTP/l.1 work on 
caching is as important as the improvements reported in this 
paper to save total bandwidth on the Internet. Network overloads 
caused by information of topical interest also strongly argue for 
good caching systems, A back of the envelope calculation shows 
that if all techniques described in this paper were applied, our 
test page might be downloaded over a modem in approximately 
60% of the time of HTI’P/l.O browsers without significant 
change to the visual appearance. The addition of transport 
compression in HTI’P/l.l provided the largest bandwidth 
savings, followed by style sheets, and finally image format 
conversion, for our test page. 

We believe HTTP/l .I will significantly change the character of 
traffic on the Internet (given HTI’P’s dominant fraction of 
Internet traffic). It will result in significantly larger mean packet 
sizes, more packets per TCP connection, and drastically fewer 
packets contributing to congestion (by elimination of most 
packets due to TCP open and close, and packets transmitted 

before the congestion state of the network is known). 

Due to pipelining H’lXY1.1 changes dramatically the “cost”’ and 
performance of HTTP, particularly for revalidating cached 
items. As a result, we expect that applications will significantly 
change their behavior. For example, caching proxies intended to 
enable disconnected operation may find it feasible to perform 
much more extensive cache validation than was feasible with 
HTTP/1.0. Researchers and product developers should be very 
careful when extrapolating from current Internet and HTTP 
server log data future web or Internet traffic and should plan to 
rework any simulations as these improvements to web 
infrastructure deploy. 

Changes in web content enabled by deployment of style sheets; 
more compact image, graphics and animation representations 
will also significantly improve network and perceived 
performance during the period that HTTP/1.1 is being deployed. 
To our surprise, style sheets promise to be the biggest possibility 
of major network bandwidth improvements, whether deployed 
with HTTP/l.0 or HTTP/1.1, by significantly reducing the need 
for inlined images to provide graphic elements, and the resulting 
network traffic. Use of style sheets whenever possible will result 
in the greatest observed improvements in downloading new web 
pages, without sacrificing sophisticated graphics design. 

13 References 

[1] Padmanabhan, V. N. and J. Mogul, “Improving HTTP 
Latency,” Computer Networks and ISDN Systems. v.28, pp. 25- 
35, Dec. 1995. Slightly Revised Version in Proceedings of the 
2nd Intemational WWW Conference ‘94: Mosaic and the Web, 
Oct. 1994. 

[2] Nagle, J., “Congestion Control in IPfI’CP Intemetworks,” 
RFC 896, Ford Aerospace and Communications Corporation, 
January 1984. 

[3] Bemers-Lee, Tim, R. Fielding, H. Frystyk. “Informational 
RFC 1945 - Hypertext Transfer Protocol -- HTTP/1.0.” 
MIT/LCS, UC Irvine, May 1996. 

[4] Fielding, R., J. Get&, J.C. Mogul, H. Frystyk, T. Bemers- 
Lee, “RFC 2068 - Hypertext Transfer Protocol -- HTTP/l.I,” 
UC Irvine, Digital Equipment Corporation, MIT. 

[5] Touch, J., J. Heidemann, K. Obraczka. “Analysis of HTTP 
Performance,” USC/Information Sciences Institute, June, 1996. 

[6] Spero, S., “Analysis of HTTP Performance Problems,” 
http://www.w3.org/Protocols/HTI’P/l.O/HTIPPerformance.htmI 
July 1994. 

[7] Heidemamr, J., “Performance Interactions Between P-HTTP 
and TCP Implementation.” ACM Computer Communication 
Review, 27 2,65-73, April 1997. 

[8] Shepard, T., Source for this very useful program is available 
at ftp://mercury.lcs.mit.edufpub/shep. S.M. thesis “TCP Packet 
Trace Analysis.” The thesis can be ordered from MIT/LCS 
Publications. Ordering information can be obtained from +l 617 
253 5851 or send mail to publications@lcs.mit.edu. Ask for 
MIT/LCS/TR-494. 

165 



[9] Mogul, J, ‘“The Case for Persistent-Connection HTIY, 
Western Research Laboratory Research Report 95/4, 
http://www,research.digital.com/wrVpublication~abstrac~95.4. 
html, Digital Equipment Corporation, May 1995. 

[lo] Lie, H., B. Bos, “Cascading Style Sheets, level 1,” W3C 
Recommendation, World Wide Web Consortium, 17 Dee 1996. 

[I I] Jacobson, Van, “Congestion Avoidance and Control.” 
Proceedings of ACM SIGCOMM ‘88, page 314329. Stanford, 
CA, August 1988. 

[12] Pastel, Jon B., ‘Transmission Control Protocol,” RFC 793, 
Network Information Center, SRI International, September 
1981. 

[13] Paxson, V., “Growth Trends in Wide-Area TCP 
Connections,,’ IEEE Network, Vol. 8 No. 4, pp. 8-17, July 1994. 

[I41 Jacobson, V., C. Leres, and S. McCanne, tcpdump, 
available at ftp://ftp.ee.lbl,gov/tcpdump.tar.Z. 

[IS] Scheifler, R.W., J. Gettys, “The X Window System,,, ACM 
Transactions on Graphics # 63, Special Issue on User Interface 
Software, 

[IG] Manasse, Mark S., and Greg Nelson, ‘Trestle Reference 
Manual,“’ Digital Systems Research Center Research Report # 
68, December 1991. 

[ 171 Braden, R., “Extending TCP for Transactions -- Concepts,,, 
RFC-1379, USC/ISI, November 1992. 

[18] Braden, R., ‘“DTCP -- TCP Extensions for Transactions: 
Functional Specilication,” RFC-1644, USUISI, July 1994. 

[19] Touch, J., ‘“ICP Control Block Interdependence,,, RFC 
2140, USC/ISI, April 1997. 

[2OJ Boutell, T,, T. Lane et. al. “PNG (Portable Network 
Graphics) Specification,,, W3C Recommendation, October 
1996, RFC 2083, Boutell.Com Inc., January 1997. 
http://www.w3.org/pub/WWW/Graphics/PNG has extensive 
PNG information. 

[21] Ryan, M., tcpshow, LT. NetworX Ltd., 67 Menion Square, 
Dublin 2, Ireland, June 1996. 

[22] Deutsch, P., “DEFLATE Compressed Data Format 
Specification version 1.3,“’ RFC 1951, Aladdin Enterprises, May 
1996. 

[23] Deutsch, L. Peter, Jean-Loup Gailly, “ZLIB Compressed 
Data Format Specification version 3.3,” RFC 1950, Aladdin 
Enterprises, Info-ZIP, May 1996. 

[24] “Recommendation V.42bis (01/90 - Data Compression 
procedures for data circuit terminating equipment (DCE) using 
error correction procedures,,’ ITU, Geneva, Switzerland, January 
1990. 

[26] Mogul, Jeffery, Fred Doughs, Anja Feldmann, Balachander 
Krishnamurthy, “Potential benefits of delta-encoding and data 
compression for HTTP,” Proceedings of ACM SIGCOMM ‘97, 
Cannes France, September 1997. 

[27] Nielsen, Henrik Frystyk, “Libwww - the W3C Sample 
Code Library,,, World Wide Web Consortium, April 1997. 
Source code is available at http://www.w3.org/Library. 

[28] Baird-Smith, Anselm, “Jigsaw: An object oriented server,,, 
World Wide Web Consortium, February 1997. Source and other 
information are available at http://www.w3.org/Jigsaw. 

[29] The Apache Group, ‘The Apache Web Server Project.” The 
Apache Web server is the most common Web server on the 
Internet at the time of this paper’s publication. Full source is 
available at http://www.apache.org. 

[30] A Web page pointing to style sheet information in general 
can be found at http:l/www.w3.orglStyle/. 

[31] Multiple-image Network Graphics Format (MNG), version 
19970427. ftp://swrinde.nde.swri.edu/pub/mng/documents/draft- 
mng-19970427.html. 

14 Acknowledgements 

Jeff Mogul of Digital’s Western Research Laboratory has been 
instrumental in making the case for both persistent connections 
and pipelining in HTTP. We are very happy to be able to 
produce data with a real implementation confirming his and 
V.N. Padmanabhan’s results and for his discussions with us 
about several implementation strategies to try. 

Our thanks to Sally Floyd, Van Jacobson, and Craig Leres for 
use of a machine at Lawrence Berkeley Labs for the high 
bandwidth/high latency test. 

Our thanks to Dean Gaudet of the Apache group for his timely 
cooperation to optimize Apache’s HTI’P/I.l implementation. 

Ian Jacobs wrote a more approachable summary of this work; 
some of it was incorporated into our introduction. 

Our thanks to John Heidemann of IS1 for pointing out one 
Solaris TCP performance problem we had missed in our traces. 
Our thanks to Jerry Chu of Sun Microsystems for his help 
working around the TCP problems we uncovered. 

Digital Equipment Corporation supported Jim Gettys’ 
participation. 

The World Wide Web Consortium supported this work. 

[25] Online summary of results and complete data can be found . 
at http:llwww.v~3.org/ProtocolsfHTI’P/Performance/. 

166 


