
On E�ciently Implementing SchemaSQL on a SQL Database

System

Laks V. S. Lakshmanan�

IIT { Bombay
laks@cse.iitb.ernet.in

Fereidoon Sadri
UNCG

sadri@uncg.edu

Subbu N. Subramanian
IBM Almaden

subbu@almaden.ibm.com

Abstract

SchemaSQL is a recently proposed extension to
SQL for enabling multi-database interoperabil-
ity. Several recently identi�ed applications for
SchemaSQL, however, mainly rely on its ability
to treat data and schema labels in a uniform
manner, and call for an e�cient implementa-
tion of it on a single RDBMS. We �rst de-
velop a logical algebra for SchemaSQL by com-
bining classical relational algebra with four
restructuring operators { unfold, fold, split,
and unite { originally introduced in the con-
text of the tabular data model by Gyssens et
al. [GLS96], and suitably adapted to �t the
needs of SchemaSQL. We give an algorithm
for translating SchemaSQL queries/views in-
volving restructuring, into the logical algebra
above. We also provide physical algebraic op-
erators which are useful for query optimiza-
tion. Using the various operators as a vehi-
cle, we give several alternate implementation
strategies for SchemaSQL queries/views. All
the proposed strategies can be implemented
non-intrusively on top of existing relational
DBMS, in that they do not require any ad-
ditions to the existing set of plan operators.
We conducted a series of performance experi-
ments based on TPC-D benchmark data, us-
ing the IBM DB2 DBMS running on Win-
dows/NT. In addition to showing the relative
tradeo�s between various alternate strategies,
our experiments show the feasibility of im-
plementing SchemaSQL on top of traditional

�Currently on leave from Concordia Univ., Montreal,
Canada. Work performed by this author at IIT{Bombay.

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the VLDB copyright notice and
the title of the publication and its date appear, and notice is
given that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, or to republish, requires a fee
and/or special permission from the Endowment.

Proceedings of the 25th VLDB Conference,
Edinburgh, Scotland, 1999.

RDBMS in a non-intrusive manner. Further-
more, they also suggest new plan operators
which might pro�tably be added to the exist-
ing set available to relational query optimiz-
ers, to further boost their performance.

1 Introduction
Data warehousing is a technology motivated by deci-
sion support applications, which require consolidated
high-level information on the OLTP data for the pur-
pose of organizational decision making. A major chal-
lenge for this is the integration of data sources that
are schematically disparate, in that data values in one
source may be modeled as schema (attribute or rela-
tion) labels in another. Real examples of such dis-
parity abound (e.g., see [KLK91, LSS97]). As an ex-
ample, in Figure 1(a), a snap shot of a stock bro-
ker's database, the relation names in the ABC bro-
kerage database are stock (ticker) names that could
indeed be query-able information. We will use this
as a running example in the paper. In an attempt
to address this challenge of schematic disparity, re-
searchers have proposed higher-order extensions to re-
lational calculus and SQL that facilitate developing and
deploying data warehousing/data integration applica-
tions [KLK91, CKW93, Ros92]. SchemaSQL [LSS96] is
one such extension to SQL that allows for uniform ma-
nipulation of data and schema, and supports: (a) in-
teroperability in a mutlidatabase system and (b) easy
speci�cation of various complex queries and computa-
tions arising in data warehousing applications.

While SchemaSQL was originally proposed as a lan-
guage for multi-database interoperability and data
warehousing applications, since its proposal, re-
searchers have identi�ed several applications where it
can enhance the functionality of a single DBMS sig-
ni�cantly. These applications include publishing of
relational data on the web [MTW97, Mil98, KZ95],
techniques for providing physical data independence
[Mil98], developing tightly coupled scalable classi�ca-
tion algorithms in data mining [WIV98], and source
query optimization in the context of data warehousing

471

ABC Brokerage
ibm
date xge open close low high
10/01 NYSE 91.43 92.36 90.23 92.38
10/01 TSE 90.06 92.34 90.06 92.78
10/02 LSE 91.78 93.65 91.56 93.86
msft
date xge open close low high
10/01 NYSE 86.31 86.79 85.97 86.92
10/01 TSE 85.27 85.20 85.12 85.86
10/02 LSE 86.90 87.35 86.90 87.74

...

...
stock
ticker busType
ibm tech
msft tech
xon oil
.... ...

(a)
CREATE VIEW X(date, priceType, S) AS

SELECT T.date, PT, T.PT
FROM -> S, S T, S-> PT, T.xge X, stock U
WHERE PT <> date AND PT <> xge AND

S <> stock AND S = U.ticker AND
U.busType = `tech'

(c)

isa(ibm, ticker)
isa(msft, ticker)
isa(hp, ticker)

...
isa(open, priceType)
isa(close, priceType)

...
isa(T.xge, xge) relVar(S) & isa(S, ticker) &

tupleVar(T, S)
isa(T.date, date) relVar(S) & isa(S, ticker) &

tupleVar(T, S)
isa(T.PT, price) relVar(S) & isa(S, ticker) &

colVar(PT, S) & tupleVar(T, S)
isa(PT, priceType)

isa(T.ticker, ticker) tupleVar(T, stock)
isa(T.busType, busType) tupleVar(T, stock)

(b)
XgeView

NYSE
date priceType ibm msft ...
10/01 open 91.43 86.31 ...
10/01 close 92.36 86.79 ...
10/02 low 90.23 85.97 ...
...
TSE
date priceType ibm msft ...
10/01 open 90.06 85.27 ...
10/01 low 90.06 85.12 ...
10/02 high 92.78 85.86 ...
...

...

...
(d)

Figure 1: Example Stock Market Database: (a) ABC brokerage database; (b) Meta-data specs of schema in (a);
(c) An example restructuring SchemaSQL view against database (a); (d) Materialization of (c).
[SV98]. Thus there is a clear motivation for realizing
an e�cient implementation of SchemaSQL on even a
single database system, and this is the subject of this
paper.

Section 1.1 reviews SchemaSQL by examples, while
Section 1.2 elaborates on the applications mentioned
above, in order to bring out the motivation for our
work. [LSS96, Sub97] contain an elaborate exposition
of SchemaSQL.

1.1 SchemaSQL by Examples

SchemaSQL extends SQL in the following ways.
(1) While SQL allows only variables ranging over tu-
ples of a �xed relation, SchemaSQL allows variables
ranging over relation labels, column labels, tuples in
(several) relations, and domain values appearing in
relation columns.1. E.g., in the query part of the
SchemaSQL view de�nition of Figure 1(c), the decla-
ration `-> S' in the FROM clause (together with the
constraint `S <> stock' in the WHERE clause) says S
is a relation label variable that ranges over the rela-
tion labels (i.e.the ticker names) ibm, msft, ... in
the ABC brokerage; `S T' says T is a tuple variable
that ranges over the tuples in each of the ticker re-
lations; `S -> PT' says PT is a column label variable
that ranges over the column labels of the ticker rela-
tions, and `T.xge X' says X is a domain variable that
ranges over the values in the xge column of the ticker
relations.

1SchemaSQL, as originally proposed for a multi-database sys-
tem [LSS96], also permits database label variables. Given the
single-database focus of this paper, we drop database label vari-
ables here.

(2) SQL allows only one type of domain expression,
namely tupleVar.attr. In contrast, SchemaSQL al-
lows domain expressions of the form tupleVar.col
(e.g., U.ticker and T.PT in Figure 1(c)), relVar
(e.g., S), colVar (e.g., PT), and domVar (e.g., X). Note
that attr denotes a �xed attribute name, while col
may be an attribute name or a column label variable.

(3) The syntax of SchemaSQL permits restructuring
views which involve a clear interplay between schema
(i.e. relation/column) labels and data. For example,
the SchemaSQL view de�nition in Example 1(c) maps
the ABC brokerage database to the view XgeView of
Figure 1(d). Corresponding to each exchange `x' in
the ABC brokerage, XgeView has a relation labeled `x'.
This is achieved by using the domain variable X in the
relation label position in the CREATE VIEW statement.
Similarly using the variable S in the column label po-
sition generates a column labeled `t' in XgeView, for
each distinct ticker `t' in the input database ABC.

(4) Aggregations more general than the conventional
vertical aggregation of SQL can be readily expressed in
SchemaSQL: examples include horizontal and rectan-
gular block aggregations [LSS96].

1.2 SchemaSQL in the context of a single
database system

Several researchers including Miller [Mil98], Wang et
al. [WIV98], and Subramanian and Venkataraman
[SV98] have observed the useful functionality that
SchemaSQL can bring to a single DBMS. Below, we
summarize these \killer-apps" that form the basis of
their observations.

472

Database Publishing on the Web: Making infor-
mation in relational databases Web-available is an im-
portant problem in the context of databases and the
internet. In [Mil98], Miller makes a compelling argu-
ment for the role of SchemaSQL in this context: A web
user cannot be expected to know/learn the schema of
a data source, which might be quite complex. This
necessitates support for `schema independent query-
ing'. E.g., consider a keyword search interface that
permits users to �nd stocks (tickers) in the ABC bro-
kerage whose price is more than a certain amount on
any date. The user may not specify or even care about
the price type nor know that tickers appear as relation
labels in the database. Under these assumptions, this
is a higher-order query on the ABC database. The abil-
ity of SchemaSQL to quantify over schema labels can
be used to support such schema independent querying
required in database publishing environments.

Techniques for Physical Data Independence:
An important technique used in indexing architec-
tures for integrating new indexes into a query opti-
mizer is the usage of views for describing the indexes
[CKPS95, TSY96]. Conventional techniques (such as
[TSY96]) are restricted in that they can only describe
indexes that conform to the class of select-project-join
views [Mil98]. Miller [Mil98] gives examples of B+-
tree indexes for all subclasses of a class, that can be
expressed in SchemaSQL but not in SQL. Besides, she
also shows that the optimization of important classes
of queries including the data fusion queries [YPAG98],
ubiquitous on internet databases, can bene�t from
higher-order views de�nable only in languages like
SchemaSQL.

Scalable Classi�cation Algorithms in Data Min-
ing: Classi�cation is a fundamental operation in data
mining. The literature abounds with stand-alone al-
gorithms for doing classi�cation on data stored in �les
[AIS93]. In [WIV98], Wang et al. make a strong case
for a tightly coupled implementation of classi�cation
algorithms, well integrated with SQL, and give a scal-
able such algorithm whose operations are expressed us-
ing SQL queries. Despite the advantages of tight cou-
pling, they point out that the SQL queries produced
by the algorithm are numerous, complex, verbose, and
hard to optimize. They also provide a SchemaSQL-
based algorithm and show that the resulting queries
(and the algorithm) are concise, far fewer, and are
readily optimizable w.r.t. database scans. In order to
achieve this, they exploit SchemaSQL's ability to quan-
tify over schema labels.

Query Optimization in a Data Warehouse:
Optimization using materialized views is a popu-
lar and useful technique in the context of tradi-
tional database query optimization [BLT86, GMS93,
CKPS95, LMSS95, SDJL96] which has been success-
fully applied for optimizing data warehouse queries

[GHQ95, HGW+95, HRU96, GM96, GHRU97]. How-
ever, the materialized views considered by all of the
above works are traditional views expressed in SQL.
In [SV98], Subramanian and Venkataraman estab-
lish the surprising result that the use of materialized
SchemaSQL views involving data/schema restructuring
can have an order of magnitude improvement in the
execution times of even traditional SQL queries. Thus,
it is worth expanding the class of views that are can-
didates for materialization, beyond the class of queries
being optimized, in this case from those expressible in
SQL to those expressible in SchemaSQL.

The preceding applications demonstrate the need
for e�cient implementation of SchemaSQL even in the
context of an individual database system. Given the
popularity and extensive use of SQL systems, imple-
mentations of SchemaSQL that are non-intrusive are
particularly attractive: non-intrusive means that the
implementation should not require modi�cations to
the SQL engine, in particular, to the set of plan op-
erators used by existing query optimizers.

Contributions: E�cient implementation of
SchemaSQL on top of SQL systems with minimal in-
trusion is the main objective of this paper. To this
end, we develop a logical algebra consisting of classi-
cal relational algebra together with four restructuring
operators { unfold, fold, split, and unite { originally
introduced in [GLS96] and simpli�ed and adapted to
SchemaSQL setting (Section 3.1). We give an algo-
rithm that can detect whether schema label variables
in a given SchemaSQL query are properly constrained
and then translate it to an equivalent expression in
the logical algebra (Section 3.2). A key idea used
by our algorithm is the notion of meta-data speci�ca-
tion, which can be viewed as an augmentation to sys-
tem catalog tables, normally maintained in RDBMS.
We also provide a physical algebra (Section 4). Us-
ing that as a vehicle, we develop several implementa-
tion strategies (Section 5). Essentially, the optimizer
can choose either to use direct strategies for the log-
ical operators or reduce them to physical operators
and use strategies for the latter. We illustrate logi-
cal and physical query optimization issues arising with
SchemaSQL queries (Section 5.1). None of our strate-
gies requires additions/modi�cations to the existing
set of plan operators used by today's RDBMS. To test
the feasibility of our strategies and their relative per-
formance, we conducted a series of experiments based
on TPC-D benchmark data, the results of which we
report (Section 6). We conclude the paper by sum-
marizing the main results and discussing future work
(Section 7). For lack of space, we only consider sin-
gle block SchemaSQL queries without aggregation in
this paper. Details on processing arbitrary SchemaSQL
queries as well as proofs of various results we present
can be found in the full paper [LSS99]. We use the
terms queries and views interchangeably for conve-
nience, without causing confusion.

473

2 Related Work

Several languages have been proposed to deal with
schematic disparity in multi-databases. These include
(higher-order) logics [KLK91, LSS97, SAB+95], al-
gebras [Ros92, GLS96], and SQL extensions [KKS92,
GLRS93, LSS96, GL98]. The work in [LSS96, GL98] is
particularly relevant to this paper. Of these, [LSS96],
the paper which introduced SchemaSQL, mainly con-
cerns itself with deploying it in the context of multi-
database systems and related query processing is-
sues. The approach to query processing in [LSS96]
is based on compiling federation queries expressed in
SchemaSQL to SQL queries which are then dispatched
to component DBMS, answers eventually collected at
the server and restructured if necessary before being
presented to the user. To a large extent nd-SQL, an
o�shoot of the SchemaSQL project, has a similar focus,
except that it can express a substantially larger class
of OLAP queries than SchemaSQL. None of these pa-
pers has considered the implementation of SchemaSQL
or a variant, on a single DBMS.

Miller [Mil98] made powerful observations concern-
ing the value that SchemaSQL can bring to a single
DBMS (see Section 1.2). This, together with the
SQL/SchemaSQL-based classi�cation algorithm devel-
oped by Wang et al. [WIV98], and the work of Subra-
manian and Venkataraman on query optimization in
data warehousing applications [SV98] form a core mo-
tivation for our work. Miller calls a schema �rst-order
with respect to a set of queries Q, provided all queries
in Q can be expressed in SQL. Intuitively, this means
all information of interest (to the queries in Q) is mod-
eled as data. Our notion of \
at schema" (Section
3.1) is similar to that of �rst-order schema in [Mil98],
but a major di�erence is
atness is an absolute no-
tion, in that it does not depend on the query class
being considered. Besides,
at schemas play merely
a technical role in query processing in that conceptu-
ally we can regard as though all source data is
at-
tened so as to conform to a
at schema before being
manipulated further. Miller restricts the integration
schema in a federation of databases, or a restructur-
ing schema in a single database, to be �rst-order. In
addition, all sources should be expressed as views of
the integration/restructuring schema in the fragment
of SchemaSQL that does not use relation label or col-
umn label variables. For this setting, she addressed
the problem of determining whether an SQL query on
the integration/restructuring schema is answerable, as
an SQL or SchemaSQL query, over the sources, and
provides algorithms to translate the given federation
query to a query over the sources.

The main focus of our work is implementing
SchemaSQL on a single relational DBMS. In this
context, we show that the full-
edged language of
SchemaSQL can be implemented as SQL applications
with no modi�cation to SQL engines. We also study the

issue of optimizing SchemaSQL queries non-intrusively,
as well as the feasibility of highly e�cient (intrusive)
implementation of SchemaSQL.

In [SV98] Subramanian and Venkataraman study
the utility of materialized SchemaSQL views for improv-
ing the performance of even traditional SQL queries.
In this context, they propose algorithms that given
an SQL query against the base tables and a set of
SchemaSQL views that de�ne the materialized restruc-
tured tables, generates alternative queries that ex-
ploit the SchemaSQL views. They also propose tech-
niques for incorporating these alternative choices for
cost based query optimization. The contributions in
[SV98] are complementary to our work in this paper.

3 A Logical Algebra for SchemaSQL

Our approach to implementing SchemaSQL on top
of a relational DBMS is based on �rst transforming
SchemaSQL queries into equivalent queries in an ex-
tended relational algebra, which are then translated
into a physical algebra, consisting of the standard suite
of physical operators for relational DBMS, together
with new physical operators introduced in Section 4.
The logical algebra is the topic of this section. It con-
sists of classical relational algebra augmented with four
restructuring operators { unfold, fold, split, and unite,
originally introduced in the context of the tabular alge-
bra, by Gyssens et al. [GLS96]. Our aim in this paper
is to develop practical and e�cient strategies for im-
plementing SchemaSQL. With this in mind, we adapt
the de�nitions of the restructuring operators above to
our context.

3.1 Restructuring Operators Simpli�ed

We assume in�nite pairwise disjoint sets of names N

and values V . We assume that dom : N!2V is a
partial function such that whenever dom(N) is de�ned,
it associates name N with a non-empty set of values
dom(N) � V. The following basic notion is needed in
the rest of the paper.

De�nition 1 (Flat Scheme) A relation scheme
R(A1; : : : ; An) is said to be
at provided all the en-
tries R;A1; : : : ; An are names. A database scheme is

at if all relation schemes in it are.

The relational model implicitly assumes that
schemes are
at. The intuition is that normally one
assumes all information of interest is in the values
(data). By requiring that no values appear in schema
labels, most if not all useful queries against a
at
database scheme can be expressed in a �rst-order
query language like SQL. E.g., the relation scheme
stock(ticker, busType) in Figure 1(a) is
at, as-
suming all the labels stock, ticker, busType are
names. However, as the same �gure illustrates (e.g.,
see relations ibm(date, xge, open, close, low,
high), msft(...), ...), databases corresponding
to non-
at schemes do get implemented using stan-
dard RDBMS.

474

We next give the intuition behind the restructur-
ing operators.2 The unfold operator takes a relation
over a set of names as input and produces a cross-tab
like output which is equivalent in information content
to the input, as shown in Figure 2: (a) & (b). The
fold operator does the converse. Similarly, the split
operator takes a relation as input and produces a set
of relations, one for each distinct value of a speci�ed
attribute, as output. The labels of the latter relations
are set to the said attribute values. This is illustrated
in Figure 2: (a) & (c). Finally, unite is the converse
of split.

stock xge price
att nyse 91.56

lucent nyse 89.45
att tse 92.35

lucent tse 87.45

stock nyse tse
att 91.56 92.35

lucent 89.45 87.45

(a) Input table close (b) Table uf-close
result of unfold by xge on price (close)

stock price
att 91.56

lucent 89.45

stock price
att 92.35

lucent 87.45
(i) table nyse (ii) table tse

Result of split by xge(close)

Figure 2: Illustration of operator de�nitions.
We now give the formal de�nitions of the four re-

structuring operators, adapted from [GLS96]. We use

the abbreviation ~Ai:j to denote the sequence Ai; :::; Aj .

De�nition 2 (Unfold) Let r be a relation over a

scheme f ~A1:ng, where Ai are names. Then
unfold by Ai on Aj

(r) is a relation s over the scheme

f ~A1:(i�1); ~A(i+1):(j�1); ~A(j+1):n; u1; :::; umg,
where fu1; :::; umg is the set of distinct values ap-
pearing in column Ai of r. The contents of s are
de�ned as s = f(~a1:(i�1);~a(i+1):(j�1);~a(j+1):n); ~v1:m j
(~a1:(i�1); u`;~a(i+1):(j�1); v`;~a(j+1):n 2 r; 1 � ` � mg.

As an illustration, apply-
ing unfold by xge on price (close) to the table close
of Figure 2(a) produces the table uf-close of Fig-
ure 2(b). Note that for unfold, all input column
labels must be names.

De�nition 3 (Fold) Let r be a relation over the

scheme f ~A; u1; :::; umg, where ~A is a vector of names.
Suppose the ui are values from dom(B), and all en-
tries appearing in columns u1; :::; um of r are ele-

ments of dom(C), for some names B;C 62 f ~Ag.
Then fold by C on B(r) is a relation s over the scheme

S(~A;B;C), de�ned as s = f(~a; ui; vi) j 9 a tuple t 2

r : t[~A] = ~a & t[ui] = vig.

Fold requires input column labels to be either
names or values coming from the domain of a com-
mon attribute. The e�ect of applying fold is to \
at-
ten" the relation over such a scheme. E.g., applying
fold by price on xge(uf-close), where uf-close is the
table in Figure 2(b) yields the table close in Fig-
ure 2(a).

2Each operator can be de�ned to manipulate a set of rela-
tions, thus giving closure. For easy exposition, we only show
their de�nition on a single input relation.

CREATE VIEW uf-close (stock, X) AS
(Q1) SELECT stock, T.price

FROM close T, T.xge X

CREATE VIEW close (stock, xge, price) AS
(Q2) SELECT stock, X, T.X

FROM uf-close -> X, uf-close T
WHERE X <> `stock'

CREATE VIEW X (stock, price) AS
(Q3) SELECT stock, price

FROM close T, T.xge X

CREATE VIEW close (stock, xge, price) AS
(Q4) SELECT T.stock, X, T.price

FROM -> X, X T

Figure 3: SchemaSQLQueries corresponding to the four
Restructuring Operators.
De�nition 4 (Split) Let r be a relation over a
scheme R(A1; :::; An) such that R is a name. Then
split by Ai

(r) is a set of relations obtained as
follows. For each distinct value u 2 �Ai

(r),
split by Ai

(r) contains a unique relation u over

the scheme U(~A1:(i�1); ~A(i+1):n), de�ned as u =

ft[~A1:(i�1); ~A(i+1):n] j t 2 r & t[Ai] = ug.

As an illustration, applying split by xge(close) to
the table close in Figure 2(a) produces the two tables
`nyse' and `tse' in Figure 2(c). Note that split requires
the input relation label to be a name.

De�nition 5 (Unite) Let u1; :::; um be the set of
all relations in a given database, such that each re-
lation label ui is an element of dom(B), for some
�xed name B. Suppose also that they all have

a common scheme f ~Ag. Then unite by BjCond(),

where Cond is any boolean combination of condi-
tions of the form B relOp const, is a relation r

over the scheme fB; ~Ag, de�ned as r = ft j

9� 2 ui; for some ui where Cond(ui) : t[~A] =

� [~A] & t[B] = uig. When Cond is \true", we omit
it.

The operation unite by xge(), when applied against
the database consisting of the tables in Figure 2(c):(i)
& (ii), yields the table in Figure 2(a). Note that un-
like the preceding operators, unite does not take ar-
guments. It is always implicitly applied against the
current state of a database. When so applied, the re-
lation labels in the database are evaluated against the
conditions Cond, and those that satisfy them are ma-
nipulated by unite.

For further illustration, in Figure 3, we present
examples of SchemaSQL queries corresponding to the
four operators above, against the database scheme
of Figure 2: Q1: unfold by xge on price (close); Q2:
fold by price on xge(uf-close); Q3: split by xge(close);
and Q4: unite by xge().

3.2 Translating from SchemaSQL to Extended
Algebra

We start with an overview of our translation process.
First, we check whether the schema label variables in a
given SchemaSQL query are properly constrained. Intu-
itively, this means no column label variable ranges over

475

labels whose attribute types are di�erent, and no re-
lation label variable ranges over relation labels whose
schemes are di�erent. E.g., a column label variable
ranging over both date and xge is not properly con-
strained, nor is a relation label variable ranging over
both `ibm' and stock. Queries with schema label vari-
ables that are not properly constrained are not well-
de�ned. With each schema label L, we can associate
an attribute type as follows. If L is a name, its at-
tribute type is L. If it is a value, then the name A

such that L 2 dom(A) is said to be its attribute type.
Finally, if a schema label variable V ranges over a set of
schema labels all of whose attribute type is A, we say
the attribute type of V is A. Essentially, properly con-
strained column label variables are those that have a
well-de�ned attribute type, while properly constrained
relation label variables range over relation labels with
an identical scheme. In the full paper [LSS99], we give
an algorithm for checking whether a SchemaSQL query
is well-de�ned, which at once can also determine the
attribute types associated with various labels and label
variables.

A key idea used in attribute type detection is
meta-data speci�cation, expressed in the form of a
Datalog program3. For instance, for the database
scheme of Figure 1(a), the corresponding meta-data
speci�cation is given in Figure 1(b). The predicate
isa(X; attribute) indicates the entry X is a value
from the domain of attribute; predicate colVar(X)
means X is a column label variable, etc. The facts
in the top part of the program say `ibm', `msft', etc.
have ticker as their attribute type. The �rst rule says
whenever S is a relation label variable with attribute
type ticker and T is a tuple variable ranging over the
tuples in the relations S, T.xge has xge as its attribute
type. More interestingly, T.PT has price as its at-
tribute type, whenever T is as above and PT is a column
label variable with attribute type priceType. This
idea was inspired by a similar idea, used in [LSS96] for
handling semantic heterogeneity in multi-databases.

Once a query is found to be well-de�ned and the
attribute types are detected, the next step is to \
at-
ten" the various relations involved in the query. E.g.,
if tuple variable T ranges over one relation which is in
unfolded form. Then we apply a fold operation to this
table with relevant parameters. On the other hand,
if T ranges over many relations which correspond to a
split representation, we apply a unite operation to this
set of relations. Combinations of the above scenarios
may arise and are handled in a similar manner. As a
concrete example, in the view de�nition in Figure 1(c),
T ranges over many relations whose labels (ibm, msft,
...) are in the range of variable S. Thus, a unite oper-
ation is called for. However, each of these relations is

3Our methodology and techniques do not depend on the spec-
i�cation language. Indeed, the \speci�cation" could well be a
C++ program. However, a declarative speci�cation is much
easier to read, and we chose Datalog for this reason.

in unfolded form, so a fold operation is also planned.
After
attening the relevant input relations, the

next step is to apply a Cartesian product together
with necessary selections and projections. These are
identi�ed from the WHERE clause and the SELECT state-
ment, as usual. Two issues need special attention: (i)
if a label variable appears in the relation position in
the CREATE VIEW statement, the attribute type of that
variable should also be included in the project list; (ii)
domain expressions that appear in the SELECT state-
ment and in the WHERE clause need to be modi�ed so
that they can be correctly applied as parameters to
projection and selection on the Cartesian product of
the
attened input tables.

Finally, if necessary an unfold and a split may have
to be applied. The parameters for these operations are
obtained by query analysis.

Consider a generic SchemaSQL query/view Q below.

CREATE VIEW rel (col1, ..., colk) AS
SELECT dom1, ..., domk

(Q): FROM decl1, ..., decln
WHERE conditions

Here, coli is either an identi�er (i.e. name) or a do-
main variable, domi is a domain expression, and decli
is a variable declaration.

A concrete example �tting the above template is
given in Figure 1(c). It asks \for each tech stock,
and for each price type, �nd the price value on each
date and arrange it into one relation per exchange,
where each such relation has one column per stock
(i.e. ticker)".

Figure 4 gives an algorithm for translating single
block SchemaSQL queries without aggregation into an
expression in the extended algebra described in the
preceding section. It invokes the following algorithms:
(i) flatten (r;C), an algorithm which takes as input
a relation label or variable r and the constraintsC that
apply to r (if any), and
attens r as explained above;
(ii) wellDe�ned(Q, S, CS), which takes in a SchemaSQL
query Q, a schema label variable S in Q, and any ap-
plicable constraints CS on S, and checks whether S is
properly constrained. Details of these algorithms, sup-
pressed here for lack of space, can be found in [LSS99].

Example 1 (Translating SchemaSQL to Algebra)
Consider the database scheme and SchemaSQL
query/view shown in Figure 1(c). This query is clearly
well de�ned. Application of step 3 of the algorithm
yields the expression template:
split by splitPar(unfold by ufPar1 on ufPar2 (
�splitPar;mod(T:date);mod(PT);mod(T:PT)(
�
mod(S)=mod(U:ticker) & mod(U:busType)=`tech'[

flatten (S; fS 6= stockg) �
flatten (stock; ``true")]))).

In step 4, we can infer that since X ranges over the
domain of xge, splitPar = xge. In step 5, we �nd that
since the attribute type of S is ticker and that of
T.PT is price, ufPar1 = ticker, ufPar2 = price. In
step 6, we can identify the parameters for projection

476

Algorithm Translate(Q);
Input: A single block SchemaSQL query Q without aggregation;
Output: An expressionE in the extended algebra, that is equivalent
to Q under multiset semantics.

1. identify r1; :::; rm, the list of relations or relation label vari-
ables appearing in the declarations in the FROM clause;

2. for each schema var S f
//test if query is well-de�ned;

identify the set of conditions CS of the form S relOp
const, in the WHERE clause;

if not wellDe�ned(Q, S, CS)

return(error); g

3. Build the expression:
//at this point, the attribute types of all schema
//vars is known from Algorithm wellDe�ned;
E = split by splitPar(unfold by ufPar1 on ufPar2 (
�splitPar;mod(dom1);:::;mod(domk) �mod(conditions) [flatten (r1) �

� � � � flatten (rm)]));

where mod(domi), mod(sc), ufPar1 , ufPar2 , and splitPar
are determined as follows.

4. if rel (in the CREATE VIEW statement) is a constant f

remove the split operation;

remove the parameter splitPar from the project list; g

else f

let rel be a domain variable X, declared to range over
the domain of attribute A;
//A is thus a splitting column;
then splitPar = A; g

5. if no coli in the CREATE VIEW statement is a domain var

remove the unfold operation;

else f //unfold is needed;

if more than one col is a domain var return(error);

let coli be the unique col which is a domain var, say
X;obtain the attribute type B of X from algorithm
wellDe�ned;

obtain the attribute type C of domi from algorithm
wellDe�ned;

ufPar1 = B; ufPar2 = C; g

6. for each domi f

if domi is of the form tupleVar.col f
�nd the relation label (variable) reln associ-
ated with tupleVar;

�nd the attribute type attr of the domain
expression tupleVar.col from the meta-data
specs;

mod(domi) =
at-reln.attr, where
at-reln
refers to the name of the relation obtained
by
attening reln; g

if domi is of the form domVar, declared as FROM
tupleVar.col domVar, where tupleVar and col are
as above, the treatment is similar to the above;

if domi is of the form colVar, declared as FROM
reln-> colVar, where reln is either a relation la-
bel or a relation label variable f

�nd the attribute type attr of colVar from
algorithm wellDe�ned;

mod(domi) =
at-reln.attr, where
at-reln
refers to the name of the relation obtained
by
attening reln; g

if domi is of the form relVar, declared as FROM ->
relVar f

�nd the attribute type attr of relVar from
algorithm wellDe�ned;

mod(domi) =
at-relVar.attr, where
at-
relVar refers to the name of the relation ob-
tained by
attening relVar; g

replace each domain expression in conditions us-
ing the same rules as above and set the result to
mod(conditions); g

Figure 4: Algorithm for translating SchemaSQL queries
into extended algebra.

as
at-S.date,
at-S.priceType,
at-S.price. The
�rst three conditions in the WHERE clause simply en-
sure the variables S, PT are properly constrained. We
then obtain the modi�ed conditions
at-S.ticker =

at-stock.ticker and
at-stock.busType = `tech'
corresponding to the last two. These may be fur-
ther simpli�ed to
at-S.ticker = stock.ticker and
stock.busType = `tech'. These two conditions would
be parameters for selection. The �nal algebraic ex-
pression obtained by the translation algorithm is:
split by xge(unfold by ticker on price (
�xge;
at�S:date;
at�S:priceType:
at�S:price(
�
at�S:ticker=stock:ticker & U:busType=`tech0 [
flatten (S; fS 6= stockg)� stock)])).

We have the following result, the proof of which is
suppressed for lack of space.

Theorem 1 (Correctness of Algorithm Translate)
Algorithm Translate(Q) always translates a
SchemaSQL query Q into an expression in the extended
algebra that is equivalent to it whenever Q is well-
de�ned and reports an error otherwise.

4 A Physical Algebra
In this section, we propose some physical operators
into which the restructuring operators of Section 3 can
be compiled. The advantage is that the compiled ex-
pression can be conveniently used for choosing query
execution strategies. As mentioned earlier, we are par-
ticularly interested in e�cient but non-intrusive strate-
gies, i.e. those that do not require any modi�cations or
additions to the set of plan operators used by current
relational query optimizers. At a conceptual level, an
interesting observation that forms the basis of logical
to physical algebra transformation is that SchemaSQL,
with all its higher-order power, can be essentially re-
duced to SQL together with looping over attribute do-
mains. For example, split by A(r) can be seen as re-
peatedly doing the selection �A=ai(r), 8ai 2 �A(r).

The �rst physical operator is called iterated selec-
tion. It is a generalization of the idea discussed above.
It comes in two
avors { iterated selection by name
and by value.

De�nition 6 (Iterated Selection) Let r be a re-
lation with scheme fA1; :::; Ang, where Ai are all
names, and let C be a set of conditions of the form
A relOp const, or of the form A relOp B, where

A;B 2 fA1; :::; Ang. Suppose f ~Bg is a set of attributes

such that f ~Bg � (f ~Ag � fAig) and Aj 2 f ~Bg, and

f~Cg is a set of attributes such that f~Cg � (f ~Ag �
fAi; Ajg). Then the operators iterated selection by

name, iSeln(r; Ai; C; ~B), applied to relation of r, by
Ai. subject to conditions C, and iterated selection by

value, iSelv(r; Ai; Aj ; C; ~C), applied to relation of r, by
Ai on Aj , subject to conditions C, are de�ned as fol-
lows.

477

Iterated Selection by name: iSeln(r; Ai; C; f ~Bg): Let
fa1; :::; akg be the set of distinct Ai-values in �Ai

(r).

Then this operator produces k output tables relap(~B),

1 � p � k, such that relap = ft[~B] j t 2 r & t[Ai] =
ap & t satis�es Cg.

Iterated Selection by value: iSelv(r; Ai; Aj ; C; f~Cg): Let
fa1; :::; akg be the set of distinct Ai-values in �Ai

(r).

Then the operator produces k tables relap(~C; ap), 1 �

p � k, such that relap = ft[~C;Aj] j t 2 r & t[Ai] =
ap & t satis�es Cg.

Remarks: (1) iSeln intuitively partitions relation r
on column Ai (after �ltering out tuples violating con-
ditions C), and writes each partition into a separate

output table, dropping attributes not in ~B, includ-
ing Ai. The scheme of each output relation produced

is set to f ~Bg. Note that the value of attribute Aj

is written under column named Aj in the output re-
lations. (2) iSelv is almost identical to iSeln except

the output scheme of rela consists of f~C; ag, so tu-
ples in the partition associated with rela are written
into this relation, so that all Aj-values are lined up
against column `a'. (3) For the sake of generality, the
above de�nition avoids committing to any implemen-
tation strategy. Several strategies will be proposed in
the sequel. (4) Like the restructuring operators, the
physical operators also can be easily extended to ma-
nipulate sets of relations. We focus on applications of
these operators to single relations, for clarity. Here is
an example of iterated selection.

tabA
stock price
att 91.56

tabB
stock price
att 92.35

tabC
stock xge price
att nyse 91.56

lucent nyse 89.45

tabD
stock xge price
att tse 92.35

lucent tse 87.45
tabE
stock nyse
att 91.56

lucent 89.45

tabF
stock tse
att 92.35

lucent 87.45

Figure 5: Examples for Physical Operators.

Example 2 (Illustrating iSeln and iSelv)
Applying iSeln(close; xge; fprice > 90g; fstock;
priceg) to the relation close in Figure 2(a)
yields the two output relations tabA and tabB
of Figure 5. As another example, applying
iSelv(close; xge; price; \true"; fstockg) to the same
input table as above produces the two tables tabE and
tabF of Figure 5.

The second operator is called iterated projection.
The basic idea is that if an input table contains many
column labels a1; a2; ::: corresponding to values from
the domain of some name A, this operator will out-
put projections of the input table on di�erent sets of
column labels such that each label ai ends up in a dif-
ferent projection. Like iterated selection, there are two

avors { corresponding to \by name" and \by value".

De�nition 7 (Iterated Projection) Let r be a re-

lation with scheme f ~A; a1; :::; amg, where As are
names, ai 2 dom(A); 1 � i � m, for some name

A 62 f ~Ag, and for 1 � i � m, all entries in columns ai
are values from dom(B), for some �xed name B 62 f ~Ag,
B 6= A. Suppose C is a set of conditions of the form
L1 relOp const, or of the form L1 relOp L2, where

L1; L2 are each, either one of the attributes in ~A, or
a label ai, for some 1 � i � m. Then the operators
iterated projection by name, iProjn(r; A;B; C), and it-
erated projection by value, iProjv(r; A;B; C), applied
to relation of r, by B on A, and subject to conditions
C, are de�ned as follows.
Iterated Projection by name iProjn(r; A;B; C): This op-

erator produces m output tables relap(~A;A;B), 1 �

p � m, such that relap = ft[~A] � `ap'�t[ap] j t 2
r & t satis�es Cg.
Iterated Projection by value iProjv(r; A;B; C): This op-

erator produces m output tables relap(~A; ap), 1 � p �

m, such that relap = ft[~A; ap] j t 2 r & t satis�es Cg.

Remark: Iterated projection by name and value are
similar: the core step involved in each of these opera-
tors is projecting r onto each of the column label sets

f ~A; ag, 8a 2 fa1; :::::; amg; in the former case, we also
append the corresponding A-value `a' and re-label col-
umn `a' as B, whereas in the latter we don't. Once
again, notice the lack of commitment to any speci�c
implementation strategy.

Example 3 (Illustrating iProjn and iProjv)
Applying iProjn(uf-close; xge; price; \true") to the
table in Figure 2(b) results in the two tables tabC
and tabD of Figure 5. As another example, apply-
ing iProjv(uf-close; xge; price; \true") to the same
input table results in the tables tabE and tabF of Fig-
ure 5.

We next show that each of the four restructuring
operators { unfold, fold, split, and unite { can be com-
puted using iterated selection and projection together
with classical relational algebraic operations. For a set
of relations R we denote their natural join as 1 (R)
and their union, whenever their schemes are identical,
as
S
(R).

Theorem 2 1. Let r be any relation over the

scheme f ~Ag consisting of only names, and let

Ai; Aj 2 f ~Ag be any two distinct names
in the scheme. Then the output computed
by the expressions unfold by Ai on Aj

(r) and

1 (iSelv(r; Ai; Aj ; \true"; (f ~Ag � fAi; Ajg))) are
equivalent.

2. Let r be a relation over the scheme f ~A; b1; :::; bmg,

where f ~Ag is a set of names, b1; :::; bm are val-
ues from the domain of some name B, and the

478

entries in columns bi of r are from the domain
of another name C. Then the output com-
puted by the expression fold by C on B(r) andS
(iProjn(r; B;C; \true")) are equivalent.

3. Let r be a relation over the scheme f ~Ag, such that

f ~Ag includes two names B;C. Then the output
computed by the expressions split by B(r) and

iSeln(r; B;C; \true"; (f ~Ag�fBg)) are equivalent.

4. Let b1; :::; bk be relations with the identical scheme

f ~Ag, such that b1; :::; bk are values from the do-
main of some name B. Then the output computed
by the expression unite by B() and the expressionS

1�i�k(f`b
0
ig�relbi) over the scheme fB; ~Ag are

equivalent.

5 Implementation Strategies
We can obtain several implementation strategies for
computing SchemaSQL queries by considering ways in
which the physical operators introduced in the pre-
vious section can be implemented. In addition, we
will see that sometimes it makes sense to compute a
logical operation such as unfold directly. The exact
choice of the operator to be used for query execution
and the strategy for the chosen operator should be
a cost-based decision made by the query optimizer.
While these issues are beyond the scope of the pa-
per, we illustrate by examples that di�erent operators
and strategies may lead to e�cient executions under
di�erent circumstances. Also, for lack of space, we
only give strategies for iterated selection by value, it-
erated projection by name, unfold, and unite. Strate-
gies for other operators are discussed in the full version
[LSS99].

Strategies for Iterated Selection:

We give two strategies for iterated selection by name.
The �rst strategy does not involve sorting, while the
second strategy incurs an initial sorting overhead.
Strategy iSel I for iSelv(rel;By;On;Conditions;ProjList):

1. �nd the set of distinct values u1; :::; uk in column By of re-
lation rel, using SELECT DISTINCT ...;

2. for each distinct value found ui f
create table tabi(ProjList; ui) ;
INSERT INTO tabi
SELECT ProjList, On
FROM rel
WHERE Conditions AND By = ui g

Strategy iSel II for
iSelv(rel;By;On;Conditions;ProjList):

1. sort relation rel on the column By;

2. while there are unread blocks f
� read the next block of tuples from rel;
� if the By-value of the block, ui, is new

create a new table tabi(ProjList; ui);
� project the block on the columns (ProjList, On)

and write it into tabi; g

Strategies for Unfold:

Strategies for the unfold operator can be derived by ex-
ploiting the equivalence result in Theorem 2. First an

iterated selection is performed, then the resulting re-
lations are joined to obtain the unfolded relation. The
unfold strategy unfold I is obtained by using strategy
iSel I for the iterated selection, while unfold II uses
iSel II.

It turns out there is a third, direct strategy for the
unfold operator.
(Direct) Strategy unfold III:

1. �nd the set of distinct values u1; :::; uk in column By of rela-
tion rel, using SELECT DISTINCT ...;

2. do CREATE TABLE uf-rel(ProjList, u1; :::; uk);

3. form a partition, say hP1; :::; Pmi of rel such that each Pi is
a maximal set of tuples which agree on ProjList but disagree
on column By;
//this may be done by sorting on ProjList, By, and using a
bitvector
//representation for the membership of the uis in each parti-
tion;

4. for each cell in the partition, Pi = f(~p; u1; v1); :::; (~p; uk; vk)g
write the tuple (~p; v1; :::; vk) into uf-rel;

The direct strategy unfold III avoids intermediate
storage costs for storing the output of iterated selection
(unlike Strategies unfold I and unfold II) as well as the
�nal join cost. However, it incurs a sorting overhead.
While it may super�cially appear as though Strategy
III, implemented judiciously to bene�t from block I/O,
will always outperform the other strategies, we will
show later in the section that expressing a query us-
ing the physical operators sometimes allows to exploit
unique optimization opportunities. Our non-intrusive
implementation of unfold III strategy (Section 6) is
less e�cient than unfold I strategy due to the tuple-
at-a-time nature of the implementation. But our C++
implementation of unfold III turned out to be signi�-
cantly more e�cient.

Strategies for Iterated Projection:

In this paragraph, we give two strategies for iterated
projection by name. The �rst one involves k separate
SPJ queries each of which will be used to populate
one output table. The second one starts by creating
the output tables (schemas); for each input tuple t, it
writes the appropriate \piece" of t into the relevant
output table. A block-based variant of this strategy
can be applied where a block of records is read into
memory and processed instead of one tuple, at a time.
Strategy iProj I for iProjn(rel;By;On;Conditions;ProjList):

1. let u1; :::; uk be the column labels of rel that correspond to
dom(B);

2. for (i = 1; i <= k; i ++)
CREATE TABLE tabi(ProjList; B;C);
INSERT INTO tabi
SELECT ProjList, `ui', ui
FROM rel
WHERE Conditions

Strategy iProj II for
iProjn(rel;By;On;Conditions;ProjList):

1. let u1; :::; uk be the column labels of rel that correspond
to dom(B);

2. for (i = 1; i <= k; i ++)
� CREATE TABLE tabi(ProjList; B; C);

3. while there are unread tuples f
� read the next tuple t from rel and test if it satis�es

Conditions;
� write t[ProjList] � `ui'�t[ui] into tabi; g

479

Strategies for Unite

Strategy unite I involves explicit creation of interme-
diate tables by \padding" each input table ui by a
column whose values are `u0i for all tuples, and then
unioning these intermediate tables. Strategy unite II,
given below, avoids the creation of the intermediate
tables.
(Direct) Strategy unite II:

let u1(~colLabels); :::; uk(~colLabels) be the set of all relations such
that the labels u1; :::; uk 2 dom(B), for some name B;

1. CREATE TABLE unite-rel(B; ~colLabels);

2. for (i = 1; i <= k; i ++) f
� read each tuple t in relation ui;
� write the tuple `u0

i � t into unite-rel; g

In the following section, we illustrate some query
optimization opportunities available to SchemaSQL
processing { both at a logical and a physical level.
In the full paper [LSS99], we establish several identi-
ties among expressions in the logical algebra and also
discuss several physical optimizations in detail.

5.1 Query Optimization

To appreciate logical optimization, consider the
queries Q5, Q6 given below, expressed against the
database of Figure 2. Q5 is a straight projection of
uf-close (Figure 2(b)) on column stock. In this
case, the translated query �stock(flatten (T; \true"))
is equivalent to �stock(fold by price on xge(uf-close))
which in turn is equivalent to �stock(uf-close). In
general, whenever the projectList is disjoint with both
the parameter lists of fold, we can push down projec-
tion, which in this case ends up removing fold. For Q6,
by a similar reasoning, we can show that the trans-
lated query can be rewritten into the equivalent query
�stock(�nyse>90_tse>90(uf-close)), which does not
involve any restructuring operator. Likewise, there are
several opportunities for logical optimization, which
are based on operator identities. The decision of when
to apply
atten or not should, however be based not
only on logical equivalence, but on available indexes
and properties of data. Another class of query equiv-
alences have to do with operator commutativity: e.g.,
unfold and split commute whenever their parameter
lists do not overlap.

SELECT T.stock
FROM uf-close T

Q5

SELECT T.stock
FROM uf-close -> X, uf-close T
WHERE X <> stock AND T.X > 90

Q6

Next we consider physical optimization. Recall the
translation of the SchemaSQL query in Figure 1(c) (see
Example 1). The resulting expression is depicted as a
tree in Figure 6(a).

Now, several execution strategies are possible. One
option is to combine Cartesian product with selection
and projection (as is done in classical relational op-
timization), and then apply unfold, followed by split.
Clearly, any strategy for join may be used, and any
of the proposed strategies for unfold and split may

xge,"true",*-{xge}

flatten(S,{S<>stock}) stock

X

flat-S.ticker=stock.ticker AND stock.busType=‘tech’
select

by xge

by ticker on price

Split

Unfold

iSeln

iSelv
ticker,price,"true",*-{ticker,price}

select
flat-S.ticker=stock.ticker AND stock.busType=‘tech’

X

Join

flatten(S,{S<>stock}) stock

(a) (b)

flat-S.ticker,flat-S.date, flat-S.priceType, flat-S.price

flat-S.ticker,flat-S.date, flat-S.priceType, flat-S.price

proj
xge,

proj
xge,

Figure 6: (a) Operator Tree corresponding to the
SchemaSQL query in Example 1; (b) Equivalent op-
erator tree employing physical operators, where we
use abbreviations: *-fAg" means all attributes in the
scheme except A.
be used as well. Since the sets of parameters for un-
fold and split are disjoint, as argued above, the or-
der of these operations can be swapped, leading to a
slightly di�erent execution strategy. So far, we have
not utilized the physical operators. To do that, we
must translate the restructuring operators in the tree
into appropriate physical operators. Doing so leads to
the tree shown in Figure 6(b).

Now, any of the strategies proposed for the phys-
ical operators can be used for computing them. In
addition, examining the operators iSelv and iSeln in
the tree, we notice that the steps needed to perform
these operators can be combined. E.g., consider us-
ing strategy II for both iSelv and iSeln. Then in-
stead of �rst computing iSelv in full and then (after
the join) computing iSeln, the sorts required for these
operations can be combined, and we can sort the ta-
ble generated by projection on the columns ticker,
xge. However, the join operation is done on the at-
tributes xge, date, so it makes sense to sort the ta-
ble on the columns ticker, xge, date, in that order.
Now, conceptually, after iSelv , the resulting tables (for
di�erent ticker-values) are already sorted on xge,
date, and can be joined e�ciently. As we join them,
we can write the output tuples into di�erent relations
corresponding to di�erent xge-values. In fact, even
the intermediate output tables corresponding to the
application of iSelv need not be explicitly created and
stored. Thus, we can perform the three operations of
iSelv , 1, and iSeln in one shot, on the
y.

6 Experiments
We conducted experiments using TPC-D benchmark
data [TPC93] on NT workstation running DB24. Our
experiments were designed with the following objec-
tives
� To demonstrate the feasibility of non-intrusive im-
plementation of SchemaSQL on an SQL engine.

� To assess relative performance of di�erent non-
intrusive strategies.

4DB2 is a trademark of IBM.

480

As a possible indication of the e�ciency that may
be a�orded by an intrusive implementation, we also
implemented the various operations directly in C++,
externally to the DBMS.

6.1 The iterated selection and unite opera-
tions

We implemented two non-intrusive strategies for the
iterative select, viz., iSel I and iSel II (Section 5).
The non-intrusive implementation of iSel II uses SQL
ORDER BY facility for the sorting, and a cursor to scan
the sorted tuples. We also implemented unite I and
unite II strategies, both non-intrusively. We used the
lineItem table in the TPC-D benchmark as a basis
for our experiments, which we conducted for varying
sizes, while keeping the number of distinct values in
the \By" column almost constant. The following ta-
ble summarizes the timing results. `Size of table' in-
dicates the number of tuples in the input table (for
iSel operations) or output table (for unite operations).
`Number of split tables' indicates the number of tables
generated (for iSel operations) or the number of tables
united (for unite operations). The experiments show
a linear performance for all operations in the range of
table sizes we tested. Performance of iSel I and iSel II
are somewhat similar, with iSel II becoming less e�-
cient as size of table increases. This may be the result
of sorting overhead. Performance of unite II is better
than that of unite I since unite II avoids the gener-
ation of intermediate tables. Execution times are in
seconds.

size splits iSel I iSel II unite I unite II

2770 326 108 100 176 31
5335 329 132 145 198 36
6712 330 158 180 224 37
14042 333 236 312 334 71
20702 334 281 429 389 101

We also coded, in C++, a direct implementation
based on iSel II strategy. It di�ers from iSel II in
that using a (external) sort-merge sorting algorithm,
the generation of output tables is built into the merge
phase of the sort-merge algorithm. Hence the C++
implementation avoids storing the sorted table. The
performance was surprising: about an oder of mag-
nitude faster than the non-intrusive implementations.
Note that the direct C++ implementation avoids sig-
ni�cant database overheads such as logging, maintain-
ing the catalog tables, and other similar foot prints.
Nevertheless, these experiments suggest that an ef-
�cient intrusive implementation of SchemaSQL might
yield signi�cant bene�ts. We are currently investigat-
ing this hypothesis.

6.2 The unfold and fold operations

We implemented unfold I and unfold III strategies
(Section 5) both non-intrusively. The unfold II strat-
egy di�ers from unfold I only in the underlying
iSel strategy and its performance can be derived by

adding the di�erence in iSel I and iSel II to that
of unfold I. We also implemented two strategies for
the fold operation. The following table summarizes
the timing results. We used the projection of the
TPC-D lineitem table on orderkey, linenumber,
extendedprice for these experiments. Since the FD
forderkey, linenumberg! extendedprice holds in
this table, the number of tuples in the projection is un-
changed.

The experiments show a linear performance for all
operations in the range of table sizes we tested. In the
table below, the columns u-size, uI, and uIII represent
the size of unfolded table, unfold I, and unfold III al-
gorithms, respectively. Number of unfolded columns is
7. The relative ine�ciency of unfold III is attributed
to the tuple-at-a-time nature of this non-intrusive im-
plementation. Our C++ implementation of unfold III
shows a performance improvement similar to that of
the iterated select operation: more than an order of
magnitude faster. The comments we made regarding
the C++ implementation of iterated select are valid
here too. In addition, the C++ implementation uses
the fstrem library class that performs block I/O. The
strategies fold I and fold II di�er in that fold I explic-
itly generates intermediate tables that are UNIONed
to produce the folded table, while fold II avoids the
generation of these intermediate tables (in this respect,
they are similar to unite I and unite II, discussed ear-
lier). Their performance �gures re
ect the more e�-
cient nature of fold II. The parameter `no. of unfolded
columns' refers to the number of column labels which
are values that belong to the domain of some name.

size u-size uI uIII fold I fold II

24146 6000 40 104 41 17
48214 12000 79 210 74 33
60175 15000 89 263 88 48
120515 30000 193 520 182 87
180566 45000 307 801 336 149

7 Summary and Future Work

E�cient implementation of SchemaSQL on a single
RDBMS is the main focus of this paper. As men-
tioned in Section 1, there are several important appli-
cations which motivate this. We developed a logical
algebra and a physical algebra. We gave an algorithm
for translating SchemaSQL queries into equivalent ex-
pressions in the logical algebra and established equiv-
alences between logical operators and expressions in
the physical algebra. We illustrated several opportu-
nities for optimization at the logical and physical level.
We proposed several implementation strategies for the
various operators, all of which are non-intrusive in the
sense that they require no additions to the plan oper-
ators used by existing SQL systems. We conducted a
series of experiments based on the TPC-D bench mark
data and showed: (i) the feasibility of the various pro-
posed strategies and (b) their relative performances.

481

In this paper, we con�ned ourselves to single block
SchemaSQL queries without aggregation. In the full
paper [LSS99], we address aggregation and nested
queries. Our experiments showed the possible promise
of intrusive implementations. We are currently inves-
tigating this hypothesis. For lack of space, we could
only sketch the optimization opportunities available.
A comprehensive study of cost-based query optimiza-
tion as well as development of schema independent in-
dexes for SchemaSQL query processing is a promising
direction of work. Many \classical" optimization prob-
lems like containment and query answerability using
views, acquire a new twist in the SchemaSQL context
because of data/schema interplay. We are investigat-
ing some of these issues.
Acknowledgements: We would like to thank Keir
B. Davis who implemented the operations in C++
and helped with the creation of TPC-D benchmark
tables. Lakshmanan's work was supported in part by
NSERC (Canada) and Sadri's work was supported by
NSF (USA).

References
[AIS93] Agrawal, R., Imielinski, T., and Swami, A.

Database Mining: A Performance Perspec-
tive. IEEE TKDE, 5(6):pp 914-925, 1993.

[BLT86] J.A. Blakeley, P.A. Larson, and F.W.
Tompa. E�ciently Updating Materialized
Views. Proc. ACM SIGMOD, 61{71, May
1986.

[CKPS95] S. Chaudhuri et al. Optimizing Queries with
Materialized Views. ICDE, March 1995.

[CKW93] Chen W., Kifer M., and Warren D.S. Hilog:
A foundation for higher-order logic program-
ming. Jl. of Logic Prog., 15(3):187{230, 1993.

[GHQ95] A. Gupta, V. Harinarayan, and D. Quass. Ag-
gregate Query Processing in Data Warehous-
ing Environments. VLDB, 358{369, Sept.
1995.

[GHRU97] H. Gupta et al. Index Selection for OLAP.
ICDE, May 1997.

[GL98] Gingras F. and Lakshmanan L.V.S. nD-SQL:
a multi-dimensional language for interoper-
ability and olap. VLDB, 1998.

[GLRS93] Grant, J. et al. Query Languages for Rela-
tional Multidatabases. VLDB Journal, 2(2):
pp 153-171, 1993.

[GLS96] Gyssens, Marc, Lakshmanan, L.V.S., and
Subramanian, S. N. Tables as a paradigm for
querying and restructuring. In Proc. ACM
Symp. on PODS, June 1996.

[GM96] A. Gupta and I.S. Mumick. What is the
Data Warehousing Problem? Are Material-
ized Views the Answer. VLDB, 1996.

[GMS93] Gupta, A., Mumick, I.S., and Subrahmanian,
V.S. Maintaining views incrementally. ACM
SIGMOD, 1993.

[HGW+95] Hammer, J. et al. The Stanford Data Ware-
housing Project. Data Engg Bulletin, 18(2),
June, 1995.

[HRU96] V. Harinaryanan, A. Rajaraman, and J.D.
Ullman. Implementing Data Cubes E�-
ciently. ACM SIGMOD, 205{216, May 1996.

[KKS92] Kifer, M., Kim, W., and Sagiv, Y. Querying
Object-Oriented Databases. ACM SIGMOD,
393-402, 1992.

[KZ95] Krishnamurthy, R., and Zloof, M. RBE: Ren-
dering By Example ICDE, 1995.

[KLK91] Krishnamurthy, R., Litwin, W., and Kent,
W. Language features for interoperability
of databases with schematic discrepancies.
ACM SIGMOD, 40{49, 1991.

[LMSS95] A.Y. Levy et al. Answering Queries Using
Views. ACM Symp. on PODS, May 1995.

[LSS93] Lakshmanan L.V.S., Sadri F., and Subrama-
nian I. N. On the logical foundations of
schema integration and evolution in heteroge-
neous database systems. DOOD '93, 81{100.
LNCS-760, Dec. 1993.

[LSS96] Lakshmanan L.V.S., Sadri F., and Subra-
manian, I. N. SchemaSQL { a language
for querying and restructuring multidatabase
systems. VLDB, 239{250, Bombay, India,
September 1996.

[LSS97] Lakshmanan L.V.S., Sadri F., and Subrama-
nian I. N. Logic and algebraic languages
for interoperability in multidatabase systems.
Jl. of Logic Prog., 33(2):101{149., November
1997.

[LSS99] Lakshmanan L.V.S., Sadri F., and Subrama-
nian I. N. On An E�cient Implementation of
SchemaSQL Technical Report, IIT Bombay,
1999.

[Mil98] Miller R.J. Using Schematically Heteroge-
neous Structures. ACM SIGMOD, 189{200,
Seattle, WA, May 1998.

[MTW97] Miller R.J. et al. DataWeb: Customizable
Database Publishing for the Web. IEEE Mul-
tiMedia 4(4): 14-21 (1997).

[Ros92] Ross, K.. Relations with relation names as ar-
guments: Algebra and calculus. ACM Symp.
on PODS, 346{353, June 1992.

[SAB+95] Subrahmanian, V.S. et al. HERMES: Het-
erogeneous Reasoning and Mediator System.
Tech. report, University of Maryland, College
Park, MD, 1995.

[SDJL96] D. Srivastava et al. Answering Queries with
Aggregation Using Views. VLDB, Sept 1996.

[Sub97] S.N. Subramanian. A Foundation for Inte-
grating Heterogeneous Data Sources. PhD
Thesis, Department of Computer Science,
Concordia University, Montreal, Canada,
1997.

[SV98] S.N. Subramanian and S. Venkataraman.
Query Optimization Using Restructuring-
Views. IBM Internal Report, 1998. (Submit-
ted for publication.)

[TSY96] O. Tsatalos et al. The GMAP: A Versatile
Tool for Physical Data Independence. VLDB
Jl, 5(2), April 1996.

[TPC93] TPC. TPC BenchmarkTM D (Decision Sup-
port). Working draft 6.0, Transaction Pro-
cessing Performance Council, August 1993.

[WIV98] Wang, M. et al. Scalable Mining for Classi-
�cation Rules in Relational Databases. Int.
Database Engg and Applications Symposium
(IDEAS'98), Cardi�, Wales, U.K., July 1998.

[YPAG98] Yerneni, R. et al. Fusion Queries Over Inter-
net Databases EDBT, pp 57-71, 1998.

482

