é} usenix
4 THE ADVANCED

COMPUTING SYSTEMS
ASSOCIATION

Network Detection of Interactive
SSH Impostors Using Deep Learning

Julien Piet, UC Berkeley and Corelight;
Aashish Sharma, Lawrence Berkeley National Laboratory;
Vern Paxson, Corelight and UC Berkeley; David Wagner, UC Berkeley

https://www.usenix.org/conference/usenixsecurity23/presentation/piet

This paper is included in the Proceedings of the
32nd USENIX Security Symposium.
August 9-11, 2023 » Anaheim, CA, USA
978-1-939133-37-3

Open access to the Proceedings of the
32nd USENIX Security Symposium
is sponsored by USENIX.

+ B — = -
n A : 4
- pl TENE »

Network Detection of Interactive SSH Impostors Using Deep Learning

Julien Piet Aashish Sharma
UC Berkeley Lawrence Berkeley
and Corelight National Laboratory

Abstract

Impostors who have stolen a user’s SSH login credentials
can inflict significant harm to the systems to which the user
has remote access. We consider the problem of identifying
such imposters when they conduct interactive SSH logins by
detecting discrepancies in the timing and sizes of the client-
side data packets, which generally reflect the typing dynamics
of the person sending keystrokes over the connection.

The problem of keystroke authentication using unknown
freeform text has received limited-scale study to date. We
develop a supervised approach based on using a transformer
(a sequence model from the ML deep learning literature) and
a custom “partition layer” that, once trained, takes as input the
sequence of client packet timings and lengths, plus a purported
user label, and outputs a decision regarding whether the se-
quence indeed corresponds to that user. We evaluate the model
on 5 years of labeled SSH PCAPs (spanning 3,900 users) from
a large research institute. While the performance specifics
vary with training levels, we find that in all cases the model
can catch over 95% of (injected) imposters within the first
minutes of a connection, while incurring a manageable level
of false positives per day.

1 Introduction

Attackers who compromise the SSH credentials of an enter-
prise user pose a serious threat due to their ready access to
any server on which the user has an account. Such access will
often include interactive sessions during which the attacker
explores these servers to gauge their utility and assess any
data they hold or additional access they can provide. Accord-
ingly, there is a major benefit in being able to rapidly detect
such sessions in order to contain and mitigate the damage.
While the strong confidentiality properties of SSH hide
the interactive commands such imposters type from network
monitoring, it is more difficult for imposters to alter the fine-
grained dynamics of their individual keystrokes, which SSH
generally sends in distinct packets. In this work we consider

Vern Paxson David Wagner
Corelight UC Berkeley
and UC Berkeley

the problem of detecting imposters based on differences be-
tween their own keystroke dynamics and those of the legiti-
mate users whose credentials they have stolen.

Considerable prior work has addressed keystroke-based
authentication in constrained contexts: for users typing either
fixed text (such as passwords), or freeform text for which the
detector has available the specific characters typed (unlike for
network monitoring of SSH) and in some cases for how long
each key was pressed. To date, studies of the harder problem
of network-based detection using only unknown freeform text
have been of a proof-of-principle nature [15,30], with very
limited datasets (4—20 users), and lacking sufficient accuracy
for operational viability.

To explore this problem in depth we leverage a singular
dataset: 45 months of SSH PCAPs, labeled with usernames,
recorded from real traffic at the border of a large research
institute (12 TB, 4,000 users). Using a transformer—a se-
quence model from the ML deep learning literature—and a
custom “partition layer”, we train a neural network model
that authenticates users with high accuracy, relying only on
client packet timings and lengths. With ample training data
(equivalent to an hour of typing for an average typist), the
model can detect 99.2% of injected instances of imposters,
while incurring for the site about 9 false positives per day.
With much less training data (4 minutes of typing), the model
still detects 94% of imposters, with false positives rising to
about 30/day. Sites might plausibly deal with these false pos-
itives cheaply, either by requiring 2FA re-authentication, or
contacting users out-of-band to confirm their activity.

€ Call User (optional)

Regquire 2FA (optional) J' Alert Server

s No
D SSH User
< 3 E > Authentication 4

— ” Model
YES
=

Client Server
Figure 1: Operational architecture of our detector.

Sequence of times & lengths

USENIX Association

32nd USENIX Security Symposium 4283

Detection is also quite scalable: the model can process
more than 150 interactive sessions per second on hardware
costing under $1,500. Figure 1 illustrates the operational use
of our detector.

Our main contributions are:

* We can authenticate users in as little as 8 keystrokes, and
continuously improve accuracy as the connection gets
longer.

* We only require a modest amount of data per user. In our
main evaluation, we exceed 96% authentication accuracy
when using 4 minutes of typing over interactive SSH
per user per week, and still obtain over 90% accuracy
when training on as little as 40 seconds of typing over
interactive SSH connections per user per week.

* We showcase our models on a 6-year dataset of real
SSH traffic, totaling over 600,000 interactive sessions
for thousands of different users.

We begin in § 2 with a review of related work. Then,
we present our overall approach and its underlying ratio-
nale (§ 3), including feature extraction and embedding, and
deep-learning architecture. We describe the datasets we em-
ployed and the associated processing in § 4. With that in
place, § 5 presents our evaluation. We discuss a number of
considerations in § 6 and then provide a brief summary (§ 7).

2 Related Work

Our task directly relates to the general field of Keystroke
Authentication (KA). After sketching relevant prior work in
KA, we also touch upon aspects of anomaly detection and
deep learning salient for our effort, and then describe previous
efforts at specifically leveraging SSH keystrokes.

2.1 Keystroke Authentication

KA is a subset of behavioral authentication, which instead of
centering on concrete authenticators (passwords, 2FA token)
assesses a user’s activity—ideally forms of activity that the
user exhibits unconsciously, and thus has difficulty changing.
Such quasi-authenticators can be difficult for an attacker to
forge as extracting them may require in-depth data about the
user that the attacker wishes to impersonate. For keystroke
dynamics, some work has used generative models to imitate
typing patterns [20, 40], but the state of the art still comes up
short in terms of perfectly fooling authentication systems.

KA also has the advantage of operating in a transparent and
noninvasive fashion, potentially occurring in the background
of a user performing some other task. KA in addition permits
continuous authentication (though in this work we do not
explore using our models in this fashion).

Because of these appealing features, keystroke authenti-
cation (KA) has been a rich area of research for the past

two decades. We provide here a short summary of the main
directions in this space, and refer the reader to compre-
hensive systematizations of knowledge for deeper discus-
sion [5,29,49,52].

The two main veins of KA research concern “fixed” [9,
12,28,42,43,48] and “free” [2,22,28, 34,37] text-based au-
thentication. In fixed-text authentication, users are asked to
input a given string of text, whereas free-text authentication
aims to identify users regardless of their inputs. Efforts in
the literature generally rely on keystroke datasets contain-
ing the specific keys and the duration of each key press, as
well as the inter-keystroke timing. These works employ main
approaches:

Clustering: Early attempts at KA used clustering methods to
identify users, recording per-user their typing statistics
(key-press durations, and interarrival timings) per key se-
quence n-graph. By building vectors containing statistics
about each possible sequence of n keys, when presented
with a similar vector for a new input, the detector returns
the user with the closest statistics. [9,12,22,28,28,44]

Machine Learning: Follow-on work employs ML methods
such as SVMs, decision trees, or Bayesian classification.
As above, these generally employ per-character statis-
tics [10, 18,41,42,48]

Sequence models: More recent approaches draw upon ideas
from language models to build better classifiers. Instead
of looking at summary statistics per-character, these
works use sequential feature vectors, and algorithms such
as Hidden Markov Models, GRUs, LSTMs, or CNNs for
classification. [2,37,43]

Unlike these prior works, we only have available inter-
keystroke timings, not key-press durations nor clear-text char-
acters. Thanks to the use of a transformer model, we overcome
this limitation. Only the last approach (sequence models) can
work in this setting, albeit this has not been tried in these prior
works. We compare the efficacy of our approach to those
in[2,37]in § 5.

Previous work has established that keystroke dynamics
leak user information, using keystrokes to identify users’ gen-
ders [53], emotions [13], or even inferring possible content
from inter-keystroke timing [3, 19,51].

2.2 Anomaly Detection

Anomaly detection aims to identify events that deviate from
known prior behavior, comparing notions of expected behav-
ior to new activity (network traffic, in our context). The defi-
nition of “normal” comes from domain knowledge [23,27] or
data mining [16, 17,45].

Anomaly detection has been used to detect imposters that
use “pivoting” [7], where the attacker forwards commands

4284 32nd USENIX Security Symposium

USENIX Association

through an intermediate host. That work finds correlations
between incoming and outgoing connections to a server to
identify pivots. The method can be applied to SSH as well
as other protocols, but it can only detect imposters that pivot,
and mostly works in internal networks [26]. In contrast, our
approach can detect any SSH imposter, including those con-
necting from external hosts and those that do not pivot.

Some prior work in this space draws upon sequence
models to analyze packet payloads or sequences of pack-
ets [6, 25, 33, 39]. For SSH, anomaly-based solutions ex-
ist for detecting brute-forcing [25, 27] or finding intrud-
ers [16,23]. These last two works have similar goals to ours.
SSH-Cure [23] triggers off of patterns of scanning, brute-
forcing and compromise in network traffic to identify intru-
sions. In contrast, we aim to find imposters even if none of
these indications are present. The other work [16] uses statis-
tics regarding packet lengths and times to cluster traffic and
find anomalous activity, but its evaluation against the Lincoln
Labs DARPA IDS dataset—known to be problematic [38]—
appears to show limited power.

2.3 Network Classification via Deep Learning

Prior work has used deep learning to develop classifiers for
analyzing network activity [1,4,24,35,50,55]. These works
often classify single network packets and/or focus on identi-
fying application protocols, making them inapt for our detec-
tion problem. We note that similar to our method, some prior
approaches leverage sequence models to classify network
flows [10, 32]. FS-Net [32], in particular, achieves state-of-
the-art web application classification results using a GRU
architecture. Our goal is different from previous work in this
space, but their ideas can be ported to our problem: we adapt
and compare FS-Net to our model in § 5.

2.4 SSH Keystroke Analytics

Prior work has examined keystroke dynamics for SSH con-
nections in several ways. The seminal work of Song et al.
showed that SSH traffic leaks information about user pass-
words in its packet timing. [51]. We extend this by showing
that packet timing leakage is reliable enough to authenticate
users, with the help of deep learning. Guha et al. showed
that one can reliably distinguish keystroke packets from other
packets in SSH [21]. We employ a related technique to iden-
tify keystroke packets and identify interactive sessions based
on SSH packet echos.

Finally, three prior efforts tackle tasks quite similar to ours.
Koch and Rodosek used clustering to identify users based on
their SSH traffic, but their evaluation was limited to 4 different
users and showed limited accuracy [30]. Flucke used SSH
inter-keystroke timings collected by employing a man-in-
the-middle setup [15]; the evaluation is limited to a small,
synthetic dataset, and also shows limited accuracy. Nielsen

developed a KA approach for SSH [46], but it relies upon
server-side decryption to enable standard keystroke-aware
techniques, a major deployment hurdle.

In contrast, we achieve high accuracy in a real network with
hundreds of active users without relying on traffic decryption.

3 Machine learning models

Our goal is to detect use of stolen user credentials (password
or SSH private key) by imposters.

We consider two threat models: credential compromise
(attacker learns user’s SSH private key or passphrase), and
device compromise (attacker gains control of user’s device,
including SSH private key or passphrase).

We formulate the basic problem as follows. Given an in-
teractive SSH connection (i.e. a session in which the user
interacts with the server via keystrokes) and the username of
the user who purportedly authenticated over it to the server,
we would like to know if the actual person using the connec-
tion is in fact who they claim to be.

To tackle this authentication task, we use deep learning
sequence models to identify patterns in keystroke timings,
with a Transformer encoder architecture [54] at the core of our
model. Our model solely relies on two features: the sequences
of packet lengths and inter-arrival times. We first introduce the
intuition behind this feature choice and then describe some
custom building blocks specifically designed for working with
this sort of network data, enabling us to develop an effective
feature embedding. We then describe the final architecture for
how we use these building blocks for deep learning.

We implemented our models using the PyTorch library [47].
Our code is publically available here. !

3.1 Intuition

To detect imposters we rely on fundamental characteristics of
the user—specifically, characteristic patterns in their typing.
While SSH encrypts the individual keystrokes typed by a user,
rendering them invisible to a network monitor, it still leaks
timing information that we can employ to fingerprint specific
users. In particular, to provide an interactive experience, SSH
sends each keystroke as an individual packet, which the re-
mote server in most circumstances echoes back (also in an
individual packet). Thus, although encryption hides the con-
tent of each keystroke, we can still recover the inter-keystroke
timings. In fact, the mean number of client packets per second
in our data is close to the typing speed of an average human,
as found in a large study [11].

Given a PCAP recording of an SSH connection, the first
challenge is determining whether it includes keystrokes, and,
if so, where. Users can employ SSH connections for interac-
tive remote access, data transfers, tunneling of other protocols,

1https ://github.com/wagner-group/ssh_keystroke_analytics

USENIX Association

32nd USENIX Security Symposium 4285

https://github.com/wagner-group/ssh_keystroke_analytics
https://github.com/wagner-group/ssh_keystroke_analytics

and/or running remote scripts. In addition, SSH enables multi-
plexing of multiple instances and types of activity at the same
time. We discuss in § 4.3 different approaches we explored for
identifying interactive connections; the most effective rests
on looking for (1) the telltale “ping-pong” behavior of servers
echoing back client keystrokes, and (2) packet rates that lie
within bounds consistent with human typing.

For interactive connections, we then skip over the initial
SSH handshake (readily identifiable by the sizes and sequenc-
ing of the data packets at the beginning of the connection).
Subsequent data packets sent by the connection client should
correspond to keystrokes.

Due to variances in network round-trip times (RTTs), the
relative timing of these packets does not precisely match the
original inter-keystroke timing. In addition, very large RTTs
(100s of msecs—Ilikely rare on modern networks) may alter
how a user types as they switch to waiting to see keystroke
echoes before proceeding.

Our detector must (and does) accommodate for (1) both of
these potential sources of noise and (2) imperfect filtration of
interactive connections.

The sizes of client packets also potentially contain informa-
tion, such as larger-than-single-keystroke bursts due to escape
sequences or the user cut-and-pasting text into their input.
SSH somewhat masks the original size of client data, padding
packets contents to multiples of 8, 16 or 32 bytes, depending
on the chosen cipher. These padding parameters are given in
clear text during session negotiation, thus we can provide the
model a degraded length estimate to potentially learn from or
leverage in classification.

Finally, we include in our threat model attackers who have
taken control of a user’s device. Accordingly, we exclude the
client IP address (or any other device fingerprinting) from the
data examined by our detector.

Given the above considerations, we thus reduce SSH
connections—if deemed interactive—to a series of
interarrival-time/approximate-length pairs reflecting client-
to-server post-handshake activity, presumed to mainly
correspond to keystrokes.

3.2 Feature embedding: the partition layer

For each SSH connection, we observe a sequence of packet
interarrival times and approximate lengths. We need a way
to convert this data into a form well-suited for use by an ML
model, i.e., a feature embedding. We employ a custom feature
embedding designed specifically for classification with net-
work traces, which we call a “partition layer.” The partition
layer helps build robust, generalizable models by mapping
continuous values into a finite number of bins.

Our partition layer discretizes each keystroke interarrival
time and length into bins. Because these times and lengths
have a highly non-uniform distribution, using them directly
as input to the model does not perform well. Instead, we map

them to a finite set of unequally sized bins; empirically we
find that this improves the quality of the model.

Each bin corresponds to a range of values. Intuitively, this
lets us capture notions such as “short keystroke interarrival
time” or “large packet,” which is useful for our problem: pre-
vious work has found that interarrival times fall into different
modes that depend on the type of typist, the keyboard layout
and the distance between the keys [51].

The key challenge is how to learn an appropriate range of
values for each bin. It is not clear how to choose an appropriate
set of bins manually, so instead we learn these ranges as we
train the model.

With a naive mapping to ranges, this learning task is diffi-
cult. The process of discretization is discontinuous and non-
differentiable. In particular, if we define a function f; so that
fi(x) = L if x falls within the bounds of bin i and 0 otherwise,
then the first derivative of f; is 0 everywhere that it is defined.
For standard learning methods based on gradient descent, this
property of the derivative of f; leaves them unable to update
the bin bounds.

W w

Figure 2: Gaussian functions corresponding to bins (—co, 2],
[2,7] and [7,0). These functions have six learnable parame-
ters.

We incorporate a custom mapping that lets us learn the
optimal range for each bin. The main idea is to learn a “soft”
mapping f;, which is continuous and differentiable every-
where, and smoothly interpolates between O (outside the bin)
and 1 (inside the bin). In particular, we use a mapping function
of the form

fitg=e 7,

based on a Gaussian probability distribution function, as il-
lustrated in Figure 2. Intuitively, this mapping can be thought
of as representing approximately the range [y; — G;,u; + G];
values in that range are mapped to a number close to 1, and
values far from that range are mapped to a number close to
0. This transformation “smooths” the problem, since each
bin is no longer encoded as a one-hot vector, but as a smooth
function of x. Also, this f; is differentiable everywhere and
has a smooth first derivative, which makes it apt for use with
deep learning and optimization of each y;,; with gradient
descent.

In general, we use multiple bins. We map the timing/length
value x to the feature vector (fo(x),..., fe—1(x)), where each

4286 32nd USENIX Security Symposium

USENIX Association

fi corresponds to a different bin.

We discovered empirically that one shortcoming of this
approach is that the learning process might fail to learn a
set of bins that covers the full range of values of x, and the
bins may have gaps or excessive overlap. We solve this last
problem by constraining the parameter y; for each bin as
follows:

Uit1 =pi+sxo;, fori=0,1,...,c—1.

Here s is a learnable constant, and g = 0. (Note that we
still allow ©; to vary.) Thus, as shown in Figure 3, the f; are
dependent, and the center of each bin is a certain number of
standard deviations away from the previous one. This ensures
that the bins cover a range of values [0, u. + 6.] without gaps
or overlaps, and thus they form a soft partition of [0, . + G,].

20, +202\
_/ !

0.0 2.0 6.7

Figure 3: Partition of three dependent Gaussian functions,
with gap parameter s = 2. The number of parameters reduces
from 6 to 4.

We call partition embedding a set of dependent bins f;. In
practice, our partition layer uses multiple partition embed-
dings, and keeps a residual connection to the original input,
which allows the model to leverage multiple sets of bins and
the raw values. Denoting ((ﬁk),-<c)k<,, the set of p parti-
tions, each with ¢ bins, the encoding of a value x is the vector
(X,fé)(x), t c(')fl (x)7f(} (x)7 cet L[Ll (x>)

Our definition of f; is similar to Gaussian range encod-
ing [31], but we add constraints to ensure that the bins form a
partition. In our experiments, partitions are critical: they not
only increase model accuracy by 2 to 3%, but they enable train-
ing to converge on difficult tasks with more users—without
the partition constraints, training sometimes fails to converge.

3.3 Transformer model

We use a transformer encoder as the model. It accepts as input
a fixed-length sequence of values (namely, packet interarrival
times and lengths, encoded using the partition layer), and
produces as output the prediction for the authentication task.
The transformer architecture [54] has become a staple in
the sequence modeling space, for its representation power,
resilience to noise, and parallelizability. Our problem is a
discriminative one, so we only needed to use an encoder and
no decoder.

3.4 Model architecture

Figure 4 portrays the model architecture we use for authen-
tication. The input to the model is a sequence of dimension
D;, x § with the user encoded as a one-hot vector U of di-
mension Ny, where Ny is the number of users in the training
set, and S is the length of the sequence, with D;, values per
element of the sequence. In practice, the input is a sequence
of packet lengths and interarrival times, so we use D;,, = 2.

In total, the tunable parameters of this model are the number
of partitions P, the number of bins per partition B, the length
of the input sequence S, and the embedding dimension of the
users Dy .

The output is a real value between 0 and 1, indicating the
likeliness of the sample being from the alleged user. By de-
fault, if the output is above 0.5, we predict that the connection
did originate from the purported user, otherwise we predict
an imposter. We can adjust this value—coined the output
threshold—globally, or even on a per-user basis, to tune the
trade-off between false positives vs. false negatives. We illus-
trate the impact of setting the global threshold in § 5.1.

1. We first normalize the input sequence values to lie be-
tween O and 1. We divide each packet length by the
maximal size of TCP packets in our traces (1,500 bytes).
For interarrival times, there is no upper bound, thus we
use an arc tangent Norm(¢) = arctan ct, where ¢ = 20 to
give small keystroke interarrival higher resolution. The
output of this layer has the same dimension as the input,
namely Dj, X S.

2. We then embed our inputs using the partition layer. This
step takes as inputs the previously normalized values.
We use P independent partitions with B bins per par-
tition for packet lengths, and another P partitions of
B bins for interarrival times. Thus, the input sequence
((41,11),...,(£s,ts)) is mapped to (y1,...,ys) where

Vi = (Zi,l‘,’,Fl (éi), e 7FP(£i), G1 (l‘,’), ey Gp(l‘,'))

and each F;,G; is a separate partition of B bins, i.e.,

Fj(x) = (ijl(x), - ,fj,B(x)) with fj.l,- .. 7fj,B a set of
Gaussian mapping functions as described in § 3.2.

3. Next, we prepare the data for the transformer encoder.
We first embed the user vector to a dimension Dy. We
do this by one-hot encoding the users in a vector, and
using a fully connected network to embed it to a lower
dimension Dy . The specific dimension does not matter
much on the classifier performance. In practice, we use
Dy = 32. We then concatenate every element in the
sequence with this value. The point of doing so instead
of simply embedding the user in the first token of the
sequence is to have the user be a parameter in every self-
attention computation, not just in interactions between
the first token and others. We then add padding to each

USENIX Association

32nd USENIX Security Symposium 4287

[s2] [52]

[$Dp/ [S)Du/

) () CLS

O O 0 og

O || O O OO

O || O |s| © OO
St S5 H 2 > EH—EE
o |E| O£ o oo

O |Z| O O OO

O O 0 Of

I O

[$+)Dy_/

o) | |
XS L §a><3
g =2 SE2
LE] Il 8%§ [| Output
= =} <=

—> OE)E »E RPE

o
< L]
g L]
= |

—

Input User D—)[User Embedding

)

Figure 4: The model architecture. Layer dimensions are in parallelograms, rectangles are layers, and CLS is the class token.

element of the sequence to reach a dimension of Dys X S,
where Dy, is the input dimension of the encoder.

After padding the vector, we prepend a learnable class
token to the sequence, before inputting it to the Trans-
former encoder layers. In our experiments, we use four
layers using 4 separate heads, with a model Dy, = 256.

. Finally, we apply the transformer encoder, then pass the
output of the class token through a fully connected layer
followed by a sigmoid to convert to a likelihood.

4 Dataset

Our data contains 632,000 interactive SSH connections, la-
beled by user, spanning over 6 years of network traffic at
the Lawrence Berkeley National Laboratory (LBNL). We ex-
tracted these interactive connections from the much larger set
of all SSH traffic at the site. We here describe this dataset: its
nature (§ 4.1), how we derived labels (§ 4.2), how we filtered
all SSH connections to only keep inactive traffic (§ 4.3), and
how we converted each interactive session to features (§ 4.4).
We then characterize the filtered connections (§ 4.5) and de-
scribe the training process (§ 4.6). Appendix A presents a
more in-depth characterization of our dataset, including statis-
tics about clients, servers, and users.

4.1 Data collection

LBNL is a large research institute with several thousand users
and tens of thousands of systems on their network. The site’s
security team captures extensive traces and logs to support
incident response, forensics, and threat hunting, and has done
so for many years.

Our work was approved by LBNL’s IT policy team. Since
the 1990s, users at LBNL have been required to consent to
network monitoring, which the site has used for both security
monitoring and a number of research studies. Our primary
analysis was all performed on fully anonymized datasets,

with payloads stripped and usernames and IP addresses con-
sistently remapped to generic tokens (e.g., “U1” for the first
user appearing in a trace). The only exceptions concerned
error/accuracy analysis, which when requiring access to the
original (non-exported, site-resident) data was conducted un-
der strict confidentiality restrictions by LBNL staff and by
affiliates contractually bound by confidentiality requirements.

For this study we drew upon PCAPs of SSH traffic recorded
at the site’s Internet border, spanning from Aug 2016 through
Dec 2022. The traces are made using a system that truncates
per-connection capture once the size of a connection exceeds
a given cutoff, typically 250KB for our datasets. Due to the
heavy-tailed nature of SSH connection sizes, this approach
greatly reduces the total volume of recorded traffic, but still
leaves us ample per-connection data to work from. In total,
our raw data spans 77 months, for a volume of 21 TB.

The number of connections per month varies significantly.
As best as we can tell, this is due to variations in the packet
capture setup (the syslog data discussed next does not reflect
the same degree of fluctuation). We have no reason to believe
these changes introduce bias in terms of which users we’re
able to analyze, but the lulls were large enough that for many
months we lacked sufficient training or testing data for all but
a small number of users.

In addition to the PCAP traces, we had access to syslogs
captured from most of the site’s SSH servers. These records
allow us to label each inbound SSH connection with the asso-
ciated username, as well as in most cases a fingerprint of the
user’s public key. We however are not able to label outbound
SSH connections, and do not consider them further in our
work.

Finally, we also had access to a full-packet PCAP of
100 days of Telnet/Rlogin traffic captured at LBNL in 2001
from Sep 7 to Dec 17, long archived for potential research pur-
poses, which (after the filtering we describe below) yielded
24,000 interactive connections for 1,300 users. Telnet and
Rlogin were SSH predecessor protocols, likewise providing
remote login, but without encryption. As such, this dataset

4288 32nd USENIX Security Symposium

USENIX Association

includes cleartext keystrokes as well as the contents of what
the server sent in reply. Per § 5.7, we use this dataset to both
confirm that our approach works effectively with interactive
login protocols in addition to SSH, and to analyze the nature
of some of the false positives that our detector generates.

4.2 Deriving labels

We parsed the syslog datasets and matched them via transport
4-tuple to the SSH connections in the network traces. These
logs include the username on the server that the client logged
into, and in many cases the hash of the SSH key used to
authenticate. Thus we could extract usernames as labels, and
look for different usernames that share the same SSH key,
which are suggestive of aliases. We treat a single username as
the same user even when seen across multiple servers, as in
general (but not always, see below) the site keeps usernames
distinct for different people.

The syslog data is incomplete: some records are simply
missing, and some servers do not report them. The most sig-
nificant of the latter concerns a sister institute that receives a
high volume of outbound SSH traffic from the site. In total,
about 40% of SSH connections have no corresponding log,
mostly due to this latter site as well as some outbound connec-
tions. While these lacunae diminish the data we can analyze,
we have not identified any likely bias that the absences might
induce, and at the end of the day we are still able to label
110M SSH connections.

Using usernames to identify specific people is imperfect,
and in principle could muddle our detection since our under-
lying premise is that keystroke dynamics are tied to people,
not usernames. Multiple people can use the same account
(e.g., a server’s root account), the same username on two dif-
ferent servers can correspond to two different people (again,
common for root), and in general people might use different
usernames on different systems. We searched for instances
of these situations using the hashed SSH keys and found
that such variances are rare, but do happen occasionally. We
discuss how their presence affects our results in § 5.1.

Finally, the site’s 9 security experts are confident that there
are no actual account compromises in the datasets. This is
the result of 20 years of SSH security, during which they
have implemented multifactor authentication and proactively
detect weak passwords and new accounts by mining system
logs and brute-forcing accounts.

Even if a handful of compromised accounts occurred in our
training sets, causing a few labels to be incorrect, this should
prove acceptable since transformer-based models generally
work well even in the presence of noisy data.

4.3 Filtering down to interactive connections

Given our problem formulation, we want to focus on only
interactive SSH connections, as only interactive sessions carry

Filter Remaining connections

Raw data 115,000,000
Ping-pong behavior 890,000
Sufficient duration 718,000
High rate 667,000

Low rate 632,000

Table 1: Effects of interactivity filters on data volume

information about the user’s typing patterns. However we lack
labels regarding whether a particular SSH connection was
used for interactive login or for other purposes (bulk transfer,
scripted execution, tunneling). Accordingly, we employ sev-
eral heuristics to remove likely-non-interactive connections.
Table | lists these heuristics and their impact on connection
volumes.

Our first heuristic assesses plausible interactivity by look-
ing for the “ping-pong” behavior that interactive sessions will
manifest (to at least some degree) due to keystroke echoes, as
described in § 3.1. In looking for this behavior, we first iden-
tify and remove the handshake part of the SSH connection,
which we track by matching to the SSH state machine the se-
quence, sizes, and directionality of the initial data packets. We
require at least 10 ping-pong exchanges after the handshake
to consider a flow as potentially interactive.

The second heuristic is to remove connections lasting less
than 5 seconds, which removes short-lived scripts and small
downloads, but shouldn’t remove a significant portion of in-
teractive connections.

These two filters significantly reduce the volume of data.
For the initial 110M connections, only 3% last more than
5 seconds, and (separately) fewer than 1% manifest the ping-
pong behavior. Of these latter, only 20% last less than 5 sec-
onds, which suggests that our filtering procedures agree on
interactive SSH connection identification.

After applying these filters, we obtain 718K SSH connec-
tions. From our exploration of the first three months of data,
we identified that some non-interactive SSH connections still
remained. These arose because automated SSH scripts some-
times exhibit the ping-pong pattern. Removing these is im-
portant to ensure that detection only relies on a user’s typing
patterns (and thus has the greatest potential to generalize) and
not on the scripting the user employs.

We developed a heuristic to remove automation by analyz-
ing client-side packet rates. We base this approach on a recent
study on 170,000 participants that found that typical users
type at an average of 4.3 characters per second (cps) [11]. The
study found that fast typists average 8.6 cps (with the very
fastest attaining 16.7 cps), and the slowest average 1 cps.

Non-interactive SSH connections can send packets at much
higher rates than very quick typists, so we remove connections
that send data at a higher rate than is consistent with human
typing. For each flow, we estimate cps values by computing
the rate of client packets using an 8-character sliding window

USENIX Association

32nd USENIX Security Symposium 4289

around each keystroke. We deem a connection as automated
if the first quartile of these values exceeds 15 cps, a value
unattainable by most typists. We also remove connections for
which the first quartile is under 0.25 cps, as even if interactive
these do not contain meaningful inter-keystroke information.
These two heuristics remove 51,000 and 35,000 connections,
respectively.

In total, this heuristic remove 86,000 automated connec-
tions, leaving us with 632,000 labeled SSH connections. It
turns out that removing these connections improves classi-
fier accuracy only slightly (about 1%), so it is unlikely this
heuristic is biasing our results. However, the more important
goal in removing these connnections is to enhance detection
robustness, by trying to ensure that the packet arrival times
represent user keystroke timings and not other artifacts.

4.4 Features

We extract from the remaining connections the sequence of
client packet lengths and interarrival times. As discussed
in § 3.1, we refrain from also including metadata such as
IP addresses, SSH configurations/versions, or time-of-day, as
these features could lead to less robust models in the presence
of attackers who subvert a user’s own device.

Packet lengths provide a useful feature because they can
help the model distinguish keystroke packets (usually small
in size) from other packets, such as cut-and-paste of text.
However, the lengths we observe in SSH network traffic are
imprecise due to padding introduced by the encryption and
integrity algorithms chosen for each connection. From study
of the SSH RFC [56] and the OpenSSH source code, we iden-
tified the relationships between plaintext length vs. ciphertext
lengths for the different SSH ciphers and MAC algorithms.
Using these relationships we can readily determine, for any
ciphertext length, the range of all possible plaintext lengths
that could have generated it.

To reflect this uncertainty in our modeling, during feature
extraction we randomly sample a number in that possible
range of values before applying the feature encoding. Doing
so allows our model to generalize across ciphers, so that if
a user’s SSH connections employ one cipher during training
and another cipher at test time, the model should still work
well. Adding this small measure of noise to packet lengths
also gives the training somewhat more varying data to master,
which improves the robustness of the resulting model.

In an ablation study we found that using only packet inter-
arrival times and ignoring packet lengths decreases accuracy
by about 5 percentage points. We were not able to train a
classifier that relies solely on packet lengths. This shows that
interarrival times are the most useful feature, and gives us in-
creased confidence that the model mostly relies on keystroke
dynamics, rather than other patterns, to identify users.

4.5 Dataset characterizations and implica-
tions

300
100

[3%)

Number of Users

0 5,000 10,000 15,000 20,000 25,000 30,000 35,000
Number of Keystrokes

Figure 5: Histogram of keystrokes per user, truncated at
35K keystrokes, log-scaled Y-axis. The red line indicates
the fewest keystrokes per user we have successfully trained
a model with (1,024), the green line the number required for
near-optimal results (5,120).

In total, our data includes 3,900 users. However, many of
these are seldom seen. We need a minimum amount of train-
ing data to recognize a user, which will preclude developing
detectors for rare users. Figure 5 presents a histogram of per-
user keystroke count, aggregated over all of their connections.
Even for quite limited training we require 1,024 keystrokes
per user, but 37% of users do not have enough data over the
span of the datasets to satisfy this requirement. For the three
months (Aug—Oct 2016) we used to develop our approach,
this requirement limited us to 50% of the users seen in this
timespan.

While these discarded users might not be identifiable, we
can still make use of them as negative examples when train-
ing detectors for users who do have enough data to provide
positive examples. We discuss this further in the next section.

70,000
60,000
50,000
40,000
30,000
20,000
10,000

#Connections

0 100 200 300 400 500 600 700 800 900 1,000
#Keystrokes

Figure 6: Histogram of keystrokes per SSH connection. The
mode lies at 23 keystrokes. Note that this plot only incor-
porates interactive SSH connections that have passed our
previous filters, which is why the histogram lacks very short
connections.

Another important consideration for the success of our
model is connection length. Very short connections lack suffi-
cient information for accurate classification. Figure 6 shows
a histogram of the number of client SSH packets (assumed

4290 32nd USENIX Security Symposium

USENIX Association

to be keystrokes, given our previous filtering) per connection.
The plot shows that most connections are short-lived, with a
mode of 23 keystrokes per connection, but also with a heavy
tail: even though the median is 85 keystrokes per connection,
the average is 170 keystrokes. We cut off the histogram at
1,000 keystrokes for clarity (only 0.6% of connections ex-
ceed this, with the longest being 2,200 keystrokes). Some
connections were likely much larger, but with the remainder
unavailable due to the truncation employed by the packet
recording, as discussed in § 4.1.

4.6 Training process

In this section we describe how we train the detection model.
First, we observe that we should avoid training on entire con-
nections (those truncated at, e.g., 250KB by the packet capture
mechanism), lest long connections dominate the dataset. With
Figure 6 as guidance, we chose to truncate connections at
512 keystrokes (92% of connections are shorter than this
threshold).

Short connections can also cause trouble, since they offer
scant information. Our exploration of the first three months
revealed that the detector can produce useful results for as
little as 8 keystrokes, but not less, so we discarded shorter
connections (in practice, a negligible amount of data).

As mentioned previously, we employ users with too little
traffic as negative examples, and do not otherwise attempt to
model them for detection. We set this threshold based on the
user’s total number of keystrokes, rather than the number of
connections, since connections have variable lengths.

We start by training the model on full-length connections,
then fine-tune by subsampling shorter contiguous sequences
within each connection, to help the model classify shorter
or partial connections. In deployment, to authenticate a user
we run the model on the first 512 keystrokes, or on the full
connection if shorter. Thus, long connections will only be
labeled once they reach 512 keystrokes, which at the average
user typing rate will take about two minutes. For prompter
decisions, we could stop earlier, at the cost of a drop in perfor-
mance. We investigate the accuracy of the model for varying
input lengths in § 5.

Our dataset exhibits considerable class imbalance: some
users have much more data than others. We found that unless
we take steps to counteract this, the highest-volume users
dominated and the model did not learn the behavior of low-
volume users. To address this concern, we weight each class
to restore balance. We do so by sampling an equal number
of keystroke sequences per user, which, depending on the
training keystroke threshold, often results in low-volume users
having repeated samples in their training set.

Training requires negative samples (where the actual per-
son typing doesn’t match the authenticated username) as well
as positive samples (where it does). We generate negative
samples by randomly sampling connections from other users

(including low-volume users we excluded due to having in-
sufficient data). We sample as many negative examples as the
user has positive ones to maintain a balanced training set.

This procedure ensures the model is able to distinguish
traffic for a given user from traffic from any other user. We
verified this by training the model from our first evaluation on
90% of users. Then, we tested this altered model on two test
sets: the original testing set, and a testing set only containing
the removed users. This second evaluation only has a drop in
accuracy of 0.5%: our model can identify imposters even if
they were not present in the training set.

For most evaluations we use 3 months of SSH data for
training, and evaluate on the following month. The number
of users varies, depending on how many users have enough
keystrokes in the training data. For training periods where
few users appear, real deployments should extend the training
period in order to capture enough traffic. (This can arise, for
example, for users who usually work from their office at the
site—not seen by the border monitoring—but now and then
work remotely, or log in during travel, providing occasional
visibility.)

5 Evaluation

For our evaluation, we proceed as follows. First, we train a
model on 3 months of data, and analyze authentication perfor-
mance in the following month. We use this setting to evaluate
our model’s ability to authenticate short connections (§ 5.2),
to cope with limited data (§ 5.3), to deal with congestion
(§ 5.5), and to remain useful over time (§ 5.4).

Second, we evaluate the real-world usability of our ap-
proach by continuously training models during a full year of
traffic in § 5.6.

We finish with three auxiliary evaluations. First, we apply
the same methods to the Telnet/Rlogin dataset, to examine
their applicability to other interactive login protocols, and
to illuminate the failure modes of our approach. Second, we
briefly discuss our experiences with a complementary classi-
fication model, which (once trained) takes as input unlabeled
SSH connections and produces as output the name of the user
who most likely produced the connection. Third, we compare
the performance of our model with ones used in prior work for
traffic classification and plaintext keystroke authentication.

5.1 SSH authentication results

For our first evaluation we used training data from Aug—
Oct 2016, with the Nov 2016 data as a test set. We retained
only users with at least 5,120 keystrokes per user. This corre-
sponds to 10 connections with 512 keystrokes, equivalent to
an hour of continuous typing for an average typist, or about
1 minute of typing per workday over the three months. This
threshold provided us with a pool of 183 users. We used
12 partitions of 8 bins per dimension. We trained the model

USENIX Association

32nd USENIX Security Symposium 4291

over 30 epochs, with a learning rate of 5 x 107, using the
AdamW [36] optimizer and cross-entropy loss.

The model achieved an average per-user accuracy of 94.6%,
which we computed by taking the average of user accuracies,
to understand how well the model works for a typical user.
The median user had an accuracy of 98.1%; 25% of users
had an accuracy above 99.3%; and 25% of users were under
94.5%. The average accuracy is around this first quartile figure
due to a few hard-to-classify users: the three worst users had
accuracies under 66%.

Most errors stem from false positives, i.e., where a legiti-
mate user is falsely accused by the model of being an imposter.
The average per-user probability of failing to detect an ad-
versary (false negative rate; FNR) is only 2.0%. While over
25% of users have a FNR under 1%, 8 out of the 183 users
with a FNR above 5%, and the most problematic user had a
8.7% FNR. So at worst the detector would miss only 9 out
of every 100 imposter interactive SSH connections for any of
the 183 users, and on average only misses 2.

The false positive rates (FPR), however, are higher, with a
FPR of 8.7% over all connections, though the median per-user
FPR is 0.5%. A quarter of the users had no false positives in
our evaluation, while the worst quarter experienced 8.5% FPR
or higher. These figures suggest that the model can readily
learn behaviors not expected for a given user, but can struggle
at times to fully capture the complete range of actual behavior
exhibited by a user.

We manually investigated errors for some of the users with
high error rates and found potential explanations for these
error rates:

* Some users exhibited large decreases in traffic volume
at test time. Although they had sufficient training data,
their test set was quite small, and thus a single mistake
in a small set of test examples has a big impact on the
overall user performance. (This effect also explains why
some users with low traffic have perfect accuracy.)

» Users can also exhibit behavioral changes, e.g., due to
different keyboard layouts. We found that some prob-
lematic users had a disproportionate (compared to other
users) number of connections coming from new IP sub-
nets, with previously unseen SSH clients and ciphers.
This suggests either the user changed devices, or that
someone else is actually using the account.

Note that our model can still work in the presence of
new ciphers, clients, and IP addresses—many users have
connections from new subnets with new parameters, and
new SSH client implementations, yet are still correctly
authenticated.

We explore other possible sources of error using the Tel-
net/Rlogin dataset; see § 5.7 below.

While we might consider removing troublesome users from
the training set after seeing their poor performance on a held-

out portion of data, we found that poor performance on held-
out training data is not predictive of poor performance in the
testing data. We discuss possible mitigations for FPs in § 6.

We also investigated the impact on accuracy of username-
to-user mismatches (i.e., incorrect labels). One scenario oc-
curs when multiple different people have the same username.
This could be due to different people sharing the same ac-
count, or different people with the same username but on
different servers (homographs). Using contextual information
for each connection, mainly SSH versions, ciphers, clients,
endpoint IPs, and public key hashes for non-interactive au-
thentication, we identified 21 accounts potentially shared by
multiple users, and one homograph, over the 3 months of
training data. Only 9 of the 21 shared accounts had enough
traffic to include in our training set, with root being one (and
achieving a sub-par accuracy of 88%). Of the remaining eight,
only two have low accuracy (89.0% and 93.5%). We conclude
that shared accounts can have a negative impact on perfor-
mance, which is best embodied by the root account having
the highest false negative rate of any user. Fortunately, these
seem rare. Homographs seem less of an issue—the one in our
dataset obtains near-perfect results.

Another possible scenario arises when a single user has
multiple usernames. Using the same contextual information,
we found 32 usernames in our 3 month training data that
shared an SSH key with at least one other username, suggest-
ing they were used by the same actual person. We found two
such pairs that had sufficient data to be included in the dataset.
One pair had almost perfect accuracy, while the other consists
of root and another user with 95.4% accuracy.

1.00 ——

0.75 AUC 0.98 ® Default outpt threshold of 0.5

Maximum accuracy of 95.1%
(output threshold of 0.98)

Under | false alarm a day
B (output threshold of 0.99996)

False Alarm Rate

1.00 0.75 0.50 0.25 0.00
Adversary Detection Rate

Figure 7: ROC curve for the § 5.1 model.

Impact of output threshold: Our model outputs a real
value between O and 1. By default, we say a connection is
correctly authenticated if this output is under 0.5 (§ 3.4). In-
creasing this output threshold will reduce the number of false
alarms, at the cost of missing some adversaries. Figure 7
plots § 5.1°s receiver operating characteristic curve on the
testing data. Our default threshold of 0.5 achieves near opti-
mal accuracy. Setting the threshold to 0.98 yields a maximal
accuracy of 95.1%. We can tune our model to only get one
false positive per day, at the cost of only catching one in three
adversaries.

4292 32nd USENIX Security Symposium

USENIX Association

5.2 Time to detection

The discussion to this point has focused on detection for
“max-sized” SSH connections, truncated at 512 keystrokes.
We also examined the model’s detection performance when
less data is available at test time. For this evaluation, we
limited our assessment to the first n client packets of each
evaluated connection, using the same model as previously
trained on 5,120 keystrokes per user.

0.96
0.94
0.92

0.90

Accuracy

0.88

0 50 100 150 200 250 300 350 400 450 500
Keystrokes

Figure 8: Authentication accuracy on Nov 2016 data, as a
function of the number of client keystrokes analyzed.

Figure 8 plots the average per-user accuracy for varying
values of n (ordered highest-to-lowest). As we would ex-
pect, performance declines for shorter connections, going
from 95.5% for the maximal size to 87% for the minimal.
However, the drop-off only becomes pronounced below about
n = 70 keystrokes. This means that when using a model for
detection, we can make decisions fairly quickly at the start
of new connections, rather than having to wait for them to
accrue hundreds of client packets: the median time until the
70" client packet in our test set is 30 sec.

5.3 Training with limited data

Our evaluations above used a threshold of only training mod-
els for users with the equivalent of 10 maximal-sized connec-
tions, i.e., 5,120 keystrokes” worth of data. We now examine
the model’s performance when training with different data
volumes.

Table 2 lists the results when varying the training thresh-
old but otherwise using the same parameters as before. We
find that generally, users with good accuracy for one model
also did well in other models. The most data-hungry model,
requiring thirty 512-keystroke connections, achieves a false
negative rate of under 1% on average, but does not signifi-
cantly outperform the model from the previous section. In
fact, we found that performance of both models is similar for
most users, however the worst users in the small model did
significantly better than the worst users for the larger model.
We see that even training with as few as five 512-keystroke
connections, equivalent to 45 seconds of typing per week (for
average users), we can get results within 6% of the most data-
hungry model, while supporting more than 4 times as many

users.

Keystroke #Users | Accuracy Max length | Min length FPR FNR

Threshold accuracy accuracy
15,360 66 96.1% 96.1% 88.9% | 7.1% | 0.8%
10,240 103 94.9% 95.1% 87.9% | 9.0% | 1.3%
5,120 183 94.6% 95.5% 87.0% 8.7% | 2.0%
2,560 275 90.9% 93.6% 80.7% | 12.0% | 2.8%
1,024 444 87.0% 92.1% 80.6% | 11.5% | 6.0%

Table 2: Authentication accuracy, false positive and false neg-
ative rates for different user thresholds

5.4 Performance over time

1.0 0.10

Accuracy ---- FNR FPR

0.8 0.08
=2
&

0.6 0.06
] ez
> zZ
3 =~
5 04 0.04
Q
o
<

0.2 ._03_".4"_"' “.‘,_,‘: M ‘¢u\~"';\o‘_\,~\:“\;, 0.02

0.0 0.00

0 6 12 18 24 30 36 42 48 54 60 66 72
Months Since Training

Figure 9: Decay of authentication accuracy over time

We based the above evaluations on training the model on
three months of data and then evaluating on the month fol-
lowing the training data. We now examine for how long a
trained model remains useful. Using the model trained on
Aug—Oct 2016, with a threshold of 5,120 keystrokes per user,
we evaluate it on the following 74 months of data. Figure 9
plots the average accuracy, FPR and FNR. While performance
degrades considerably as time goes by, the model manages
to achieve over 80% accuracy for the first 9 months, and the
FNR stays negligible for the entire period.

This latter finding provides some confidence in the training
method, as it appears that the model learns what makes each
user unique, rather than learning what other traffic looks like.
We find it plausible that users change their behaviors over time,
so the FPR quickly grows, but the algorithm still achieves
quasi one-sided error, even years after training. That said,
given the low cost of training, in a real deployment we would
still recommend retraining every month or so, to keep up with
the evolution of user behavior, as well as to accommodate
new users.

The spike in performance during the 54" month is due to
an increased volume of traffic from users in the training data.

USENIX Association

32nd USENIX Security Symposium 4293

5.5 Effect of network congestion

Our packet capture at LBNL is a multi-year trace of real
network traffic—as such, many of the flows in our dataset
exhibit congestion. In this section, we show that our main
model from § 5.1 is resilient to network delays caused by
traffic congestion.

Congestion is a complex phenomenon. Adding congestion
to an existing packet capture has been recognized as a hard
problem for years [14], for which we do not know of a so-
lution with a valid theoretical basis. Therefore, we perform
natural experiments, leveraging existing congestion already
organically present in our dataset and analyzing its impact on
detection accuracy, instead of simulating additional conges-
tion, which would not have been well-founded.

We partitioned our data into three categories: category (1)
connections have no congestion, category (2) have low con-
gestion (< 10 retransmitted packets), and category (3) have
high congestion (> 10 retransmitted packets). We find that
each category has enough data to support realistic assessments
in natural experiments. In particular, over our full dataset, we
have:

Category (1): 290K connections, 40 client implementations,
33K client IPs, 2.5K server IPs, 3.6K users.

Category (2): 270K connections, 30 client implementations,
37K client IPs, 2.3K server IPs, 3.3K users.

Category (3): 80K connections, 25 client implementations,
16K client IPs, 1.5K server IPs, 2.2K users.

For the training set on which we developed most of our
models (spanning 3 months in 2016), incorporating 183 users
with over 5120 keystrokes, we have:

Category (1): 11K connections, 14 client implementations,
1.6K client IPs, 250 server IPs, 183 users.

Category (2): 9.5K connections, 13 client implementations,
1.8K client IPs, 230 server IPs, 181 users.

Category (3): 2.7K connections, 10 client implementations,
700 client IPs, 150 server IPs, 165 users.

Most users and client implementations are present in all
three congestion scenarios, so in general the only varying
factor between each is the level of congestion. Given that even
for the 3-month subset we have well over 150 users in each
category, we believe this approach is robust against any small-
number effects, and provides insight into how performance
varies with network congestion.

Test flows without congestion have average performance:
they obtain 95.0% accuracy, with 8.0% false positives and
1.9% false negatives. The model detects flows with little con-
gestion with slightly higher accuracy, classifying these flows
correctly in 95.5% of cases, with a false positive rate of 6.7%,

and a false negative rate of 2.1%. This finding illustrates the
benefits of employing organic data: network artifacts present
in traffic add noise to the training set, making the model more
robust to future traffic delays.

Finally, the model’s performance on high congestion flows
is worse than for the previous two categories. It obtains 93.9%
accuracy, with 9.5% false positives, and 2.5% false negatives.
Although these numbers are close to the original figures, it
is clear that heavy congestion makes the problem somewhat
more difficult.

5.6 Continuous evaluation

1.00 Accuracy -® - Training set duration 180
160
5, 0.95 110
3)
£ 120 9
= 090 S
3 100 5
2 o----0---9
< 085 > et 80
| G S 4 T 60
0.80 #Users: 200 | 49

S K e PR e R A
ARV AR AR A A A SR A

Date FOMICLEICA G L GIR AL EICAN S

Figure 10: Authentication accuracy per month, when retrain-
ing monthly for 200 users, 2022. The right axis gives the
number of days in the training set.

We now look at the detection model in an extended setting
for all of 2022. We build a new classifier for use in each new
month using data from previous months. To deal with the
diminished data in some of the PCAPs (per § 4.1), instead
of training on a fixed period of time to evaluate on the next
month, we fix a target number of users (200), keep the original
keystroke per-user minimum (5,120), and determine the start
of the training data window with respect to these requirements.
Doing so allows us to compare the performance of the model
over time in equal standings.

We trained a separate model for each evaluation month,
plotting the resulting accuracies and training data duration
in Figure 10. The accuracy of the resulting classifiers varies
from 88.6% to 94.6%. Interestingly, the worst two months
are September and October, which are trained with summer
data, during which fewer users are active. The model detects
97% of adversaries, and achieves an overall aggregate FPR
of 11.9%. This represents a total of 7,000 false positives over
the course of 10 months, or an average of 23 false positives
per day.

We can reduce this number of false positives by increasing
the output threshold. By using an output threshold of 0.98
(optimal value from § 5.1), the false positive rate goes down
to 8.7%, while the model still detects 95% of adversaries. In
this setting, the number of false positives per day falls to 17.

We discuss ways to deal with false positives in § 6.

4294 32nd USENIX Security Symposium

USENIX Association

5.7 Telnet/Rlogin results

We also evaluated the same authentication model on the Tel-
net/Rlogin dataset. We used the first two months of data for
training, and the last month for testing, for which we obtained
63 users using a keystroke threshold of 15,320. The model ob-
tained 95.6% accuracy averaged over all users (slightly higher,
97.6%, when only using 512-length samples), demonstrating
that the technique works for other interactive protocols.

In addition, because Telnet and Rlogin provide cleartext
data, we can directly inspect the model’s errors to gain greater
insight into their nature. As for SSH, the model has near one-
sided error, so we focus on the false positives, which we found
arose for several reasons:

* Some users had quite similar sessions (mostly running
the Pine email reader), but with client IP addresses from
totally different subnets, suggesting differing network
dynamics might have altered the user’s typing style. For
example, the RTTs for one particular problematic user
averaged 150 ms in the training set, 130 ms in the true
positive test samples, but fell to 20 ms for false positives—
highly suggestive of the impact of network dynamics on
the user’s typing style.

* Some false positives arose from connections that con-
tained virtually no regular keystrokes, instead heavy use
of escape sequences (such as up/down arrows) when
reading email.

* Switches to different basic types of activity can induce
errors. For example, one user went from reading email
in earlier sessions to coding. One’s keystroke patterns
might plausibly change depending on the task at hand.

It seems reasonable that these sorts of changes could also
occur in SSH connections, possibly explaining some of the
errors we were not able to track down.

Finally, we note that our technique’s success for Telnet and
Rlogin suggests we may be able to extend the approach to
work with other interactive protocols, such as RDP.

5.8 SSH classification

While our main focus has been on the authentication problem
given its practical importance, we also extended our approach
to develop classification models that infer which user is as-
sociated with an unlabeled SSH. Classification is a harder
problem than authentication—and less useful for security
purposes, since we usually care about identifying intruders,
not classifying unlabeled SSH connections—but we can use
classification to shed light on some of the behavior of the
authentication models.

In the interest of brevity, we omit the details of the deep
learning architecture used for classification as it is quite simi-
lar to what we use for authentication (actually slightly sim-
pler).

We use the same setup as for the first authentication eval-
uation (§ 5.1). Overall, the classifier achieves an accuracy
of 78%, which goes up to 86% when only using 512-length
samples, and down to 50% for connections of 8 keystrokes.
Although these accuracies seem inferior to those achieved
for authentication, one should keep in mind that a random
classifier in this setting would only achieve an accuracy of
% ~ 0.5%. With only 8 keystrokes, we can build a classifier
100 times more accurate than random, and if we use as few
as 40 keystroke, the accuracy exceeds 75%.

Of more direct interest, we can employ the classification
models to analyze more subtle errors exhibited by the authen-
tication models. In particular, we can look more deeply at
the effects of users with multiple usernames. The user with
root access that we discussed earlier in § 5.1 gets classified
as root in 2.5% of samples—small, but showing some sense
of confusion. We also looked at mistakes made by the model
when classifying users with little traffic, labeled as “other”.
We found that two of these low-volume users were in fact
systematically mistaken for the same high-volume user, and
upon further investigation, discovered that these accounts all
reflected the same person, showing how keystroke dynamics
are tied to individuals, not specific usernames.

5.9 Comparison to other ML architectures

Prior work has not appeared for our particular problem—
keystroke authentication without contents, at scale—but has
for network traffic classification and plaintext keystroke au-
thentication, so we undertook of a comparison against these.
Using PyTorch [47], we implemented FS-Net [32], which
achieves state-of-the-art results for web traffic classification
and was designed for sequential data, the CNN+GRU architec-
ture from [37], and the more recent TypeNet architecture [2].

To give the models equal functionality to ours, we added
a user input to all three. We also modified FS-Net to sup-
port continuous values such as times rather than categorical
data, and extended the input vectors used by CNN+GRU and
TypeNet to include packet lengths, to give the models equal
standing to ours.

Unfortunately we were unable to successfully train the
CNN+GRU model. Despite trying different rates and model
parameters, we did not find a configuration for it that per-
formed better than random choice. We did however success-
fully train the other two models.

Table 3 presents the accuracy of TypeNet, FS-Net and our
model. The first two rows show authentication accuracy on 66
users, the last two on 183 users, in the same setting as in § 5.3.
On the easier task involving 66 unique users, both other mod-
els produce good results, though a bit lower than our model.
TypeNet performs well on the harder task with 183 users, but
struggles to keep up with our results for 512-length samples.
FS-Net’s accuracy is 6% lower than ours when evaluating on
all samples, and 5% lower when restricting to 512-keystroke

USENIX Association

32nd USENIX Security Symposium 4295

Kevstroke Evaluation
Users Thy Sample TypeNet [2] | FSNet [32] | Our model
reshold Lengths
\ 66 \ 15,360 \ All \ 93.4% \ 94.9% \ 96.1% \
\ 66 \ 15,360 \ 512 \ 92.7% \ 95.8% \ 96.1% \
[183] 5,120 | All | 92.1% | 88.8% | 94.6% |
\ 183 \ 5,120 \ 512 \ 92.0% \ 90.6% \ 95.5% \

Table 3: Accuracy of other models on two different authenti-
cation tasks

connections. We attribute our better results to the partition
layer, which more aptly captures keystroke behavior.

6 Discussion and Limitations

Limitation Comments
Operational See § 6.1
impact of FPs

Data availability See § 6.2
User coverage See § 6.2
Evasion See § 6.3
Shared usernames | See § 5.1

User behavior
change

Model might not capture large
changes in user behavior due to de-
vice changes or congestion.

Deep learning produces results that
are hard to interpret.

Our data does not contain real SSH

Non-explainable
results
No real intrusions

intrusions.
Data Our data lacks ground truth to dis-
imperfections tinguish interactive use from other
uses.

Table 4: Summary of limitations.

Our work raises several considerations and possibilities for
follow-on explorations, which we briefly sketch here. We also
frame our work’s limitations.

6.1 Real world deployment and base-rate fal-
lacy

Practitioners are rightfully wary of seemingly low false pos-
itive rates for detectors [8]. In the context of our work, an
overwhelming majority of interactive SSH traffic will be le-
gitimate, so even with low false positive rates, our model will
generate more false positives than true positives. For example,
in our continuous evaluation from § 5.6 the FPR of 8.7% in
the second example translates over time to 5,200 false pos-
itives. Thus, for the 200 users with the most training data
available, analysts would have to cope with an average of

17 false positives per day. When using the standard output
threshold, that number rises to 23 false positives per day.

The first way to limit false positives is to increase the output
threshold, as discussed in § 5.1. However, this decreases the
likelihood of detecting an adversary. Instead, we propose other
ways of dealing with false positives.

One approach would be for the site to require the user to
reauthenticate using a second factor, terminating the connec-
tion if not attended to promptly. A related approach would be
to contact the user out-of-band, for example via a cell phone
voice conversation; this does not integrate as readily with
existing security mechanisms but provides robustness against
attackers powerful enough to manipulate the second factor.
Both approaches are shown in the operational diagram of our
detector (Figure 1).

Alternatively, the detector could only report events to secu-
rity analysts once a day per user. For the continuous evaluation
from § 5.6, this lowers the 17 FPs/day to 11; a few users are
responsible for most of the false positives, because of changes
in their behavior. More broadly, we might consider setting a
threshold on the number of confirmed false positives per user,
ignoring subsequent alerts for that user until the next model
update. Doing so is somewhat risky, because a powerful at-
tacker who subverts the user’s system for a sufficiently long
period of time could purposefully add noise to the user’s legit-
imate SSH connections in order to exceed the threshold, and
then attack unnoticed. (This scenario however requires the
attacker to subvert the user’s system’s kernel.) In particular,
this mitigation would work well against attackers with stolen
credentials but who have not compromised one of the user’s
client devices.

A variation of this idea would be to use an online machine
learning model, instead of a fixed one, so it can be updated in
the presence of false positives. This, however, could open the
door to poisoning attacks.

6.2 Limited data

The authentication model needs to know which user logged
in when it sees the flow, which requires it to have access to
the server’s system logs. This requirement suggests a possible
avenue for future work: can unsupervised frameworks detect
imposters without system logs for ground truth? Generative
deep learning models could learn keystroke dynamics from
an unlabeled set of interactive SSH traffic, without needing
negative examples. These models would not be able to tell two
users from the same company apart, but could differentiate
between employees and outsiders.

Another issue concerns low-volume and new users. We
note that sites might in practice have considerably more data
available per user than we had in our datasets, since our data
only included traffic that crossed the Internet border. Internal
traffic (local system to local system) could occur in high
volume, providing the necessary data much more quickly. In

4296 32nd USENIX Security Symposium

USENIX Association

addition, sites could consider requiring low-volume users to
perform an extra multifactor authentication step until they
have provided enough data for training.

6.3 Evasion

Attackers who are aware our detector is in use can take steps
to try to evade it. If they have control over a user’s device for
sufficiently long they could record the user’s typing patterns
and train a generative model to fool our classifier, as developed
in [20,40]. We note however that today these state-of-the-art
techniques still do not perform well enough to be worrisome—
they only double the likelihood of avoiding detection.

A simpler approach would be for the attacker to modify
their SSH client to send packets with timings that match
a previously seen user connection, precisely duplicating its
keystroke timings (or adding some jitter to complicate identi-
fication of the mimicry). This might not always exactly work,
given varying packet sizes, and the need to often wait for
server responses. A possible countermeasure for this evasion
might be to include server packet timings and lengths in our
features in addition to the client packets.

Finally, an attacker with full control over the user’s device
could wait for the user to log into a desired target system and
type enough so that the connection is considered legitimate,
then hijack the connection to inject the attacker’s desired com-
mands. One could counter this technique by using continuous
authentication, rather than only authenticating the beginning
of login sessions. We leave this for future work.

6.4 Limitations

In addition to the limitations previously discussed (impact
of false positives, data availability, partial user coverage, at-
tacker evasion, shared usernames), our approach comes with
drawbacks as summarized in Table 4.

User behavior change. Our dataset includes users with
multiple types of devices and connections with various
amounts of congestion. The model accommodates these vari-
ations, but in general the model might not work well for ex-
treme cases such as very high congestion, or users switching
from desktop computers to smartphones. The model only
learns behaviors present in the training set.

No real intrusions. Our dataset does not contain real intru-
sions. Despite this, we are confident that our models identify
the unique patterns in each user’s behavior, as shown by our
evaluations, and the user-removal experiment § 4.6.

Data imperfections. We use data from a physical site to
demonstrate the applicability of our solution, enduring the
imperfections that inevitably accompany large real-world data

at scale. Because of the complexity of the site’s network, we
are likely missing some connections and some system logs,
meaning we cannot label all inbound SSH connections. We
do not have robust ground truth to distinguish interactive SSH
sessions from other forms of SSH, so we have to resort to
heuristics. While we have confidence in our data filtering pro-
cess, we cannot be certain we have fully removed all artifacts,
and some non-interactive connections may remain.

7 Summary

We have developed a detection model that leverages keystroke
dynamics (client packet sizes and timing) for interactive SSH
sessions, with an aim of confirming whether the person gen-
erating the keystrokes corresponds to the reported username
in the login. Our model uses a deep-learning transformer to-
gether with a novel “partition layer.” The model is trained on
labeled instances from past logins by the given user.

Our evaluation draws upon 6 years of labeled SSH con-
nections from a large research institute. We examine how
much training data is needed, finding that the model can
achieve high performance when trained on modest levels
of data (equivalent to a few minutes of typing by an aver-
age user), and remains effective at identifying imposters over
several years. However, false positives rise over time due to
shifting user behaviors. Re-training the model monthly re-
duces the number of false positives to about 20 per day (for
authenticating the 200 most active users), or about 10 per day
if we only report the first alert per user each day. Sites can
likely handle these alerts by requiring re-authentication using
a second factor, or contacting the detected users out-of-band
to confirm their access.

Acknowledgements

We thank LBNL’s network security team, in particular Jay
Krous for faciliating access to the data, Michael Simitasin
for extensive feedback on the paper, and James Welcher for
setting up the infrastructure and logs. We are grateful to Core-
light’s Labs team for their feedback on our work. We are also
grateful to our anonymous shepherd and reviewers for their
insightful comments. This work was supported by generous
gifts from C3 Al, Open Philanthropy and Google.

References

[1] Giuseppe Aceto, Domenico Ciuonzo, Antonio Montieri,
and Antonio Pescapé. Mobile Encrypted Traffic Classi-
fication using Deep Learning. In 2018 Network Traffic
Measurement and Analysis Conference (TMA). IEEE.

[2] Alejandro Acien et al. TypeNet: Deep learning
keystroke biometrics. IEEE Transactions on Biometrics,
Behavior, and Identity Science, 2021.

USENIX Association

32nd USENIX Security Symposium 4297

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

Ebenezer Akinyemi Ajayi et al. Keystrokes Timing
Analysis and Timing Attacks System on Secure Shell:
Instance Based Learning (IBL) Model Approach Revis-
ited. Advances in Multidisciplinary Research Journal,
2016.

Isra Al-Turaiki and Najwa Altwaijry. A convolutional
neural network for improved anomaly-based network
intrusion detection. Big Data, 2021.

Md Liakat Ali, John V Monaco, Charles C Tappert, and
Meikang Qiu. Keystroke biometric systems for user
authentication. Journal of Signal Processing Systems,
2017.

Sara A Althubiti, Eric Marcell Jones, and Kaushik Roy.
LSTM for anomaly-based network intrusion detection.
In 2018 28th International telecommunication networks
and applications conference (ITNAC).

Giovanni Apruzzese, Fabio Pierazzi, Michele Colajanni,
and Mirco Marchetti. Detection and threat prioritization
of pivoting attacks in large networks. IEEE Transactions
on Emerging Topics in Computing, 2020.

Stefan Axelsson. The base-rate fallacy and its implica-
tions for the difficulty of intrusion detection. In Pro-
ceedings of the 6th ACM Conference on Computer and
Communications Security, 1999.

S. Bleha, C. Slivinsky, and B. Hussien. Computer-access
security systems using keystroke dynamics. /IEEE Trans-
actions on Pattern Analysis and Machine Intelligence,
1990.

Jiahao Cao et al. Fingerprinting SDN applications via
encrypted control traffic. In 22nd International Sympo-
sium on Research in Attacks, Intrusions and Defenses
(RAID 2019).

Vivek Dhakal et al. Observations on typing from 136
million keystrokes. In Proceedings of the 2018 CHI
Conference on Human Factors in Computing Systems,
2018.

Salima Douhou and Jan R Magnus. The reliability of
user authentication through keystroke dynamics. Statis-
tica Neerlandica, 2009.

Clayton Epp, Michael Lippold, and Regan L Mandryk.
Identifying emotional states using keystroke dynamics.
In Proceedings of the sigchi conference on human fac-
tors in computing systems, 2011.

Sally Floyd and Vern Paxson. Difficulties in simulating
the Internet. IEEE/ACM Transactions on Networking,
2001.

[15]

[16]

(17]

(18]

[19]

(20]

(21]

(22]

(23]

(24]

[25]

(26]

Thomas J Flucke. Identification of Users via SSH Tim-
ing Attack. Master’s thesis, Calpoly, 2020.

Vahid Aghaei Foroushani, Fazlollah Adibnia, and Elham
Hojati. Intrusion detection in encrypted accesses with
SSH protocol to network public servers. In 2008 Inter-
national Conference on Computer and Communication
Engineering.

Sahil Garg and Shalini Batra. Fuzzified cuckoo based
clustering technique for network anomaly detection.
Computers & Electrical Engineering, 2018.

Romain Giot, Mohamad El-Abed, Baptiste Hemery, and
Christophe Rosenberger. Unconstrained keystroke dy-
namics authentication with shared secret. Computers &
security, 2011.

Nahuel Gonzélez, Enrique P Calot, Jorge S Ierache, and
Waldo Hasperué. The Reverse Problem of Keystroke Dy-
namics: Guessing Typed Text with Keystroke Timings
Only. In 2021 International Conference on Electrical,
Computer and Energy Technologies (ICECET).

Nahuel Gonzdlez et al. Towards liveness detection in
keystroke dynamics: Revealing synthetic forgeries. Sys-
tems and Soft Computing, 2022.

Saptarshi Guha et al. A streaming statistical algorithm
for detection of SSH keystroke packets in TCP connec-
tions. Technical report, Purdue Univ Lafayette, 2011.

Daniele Gunetti and Claudia Picardi. Keystroke analysis
of free text. ACM Transactions on Information and
System Security (TISSEC), 2005.

Rick Hofstede, Luuk Hendriks, Anna Sperotto, and Aiko
Pras. SSH compromise detection using NetFlow/IPFIX.
ACM SIGCOMM Computer Communication Review,
2014.

Jordan Holland, Paul Schmitt, Nick Feamster, and Pra-
teek Mittal. nPrint: A Standard Data Representa-
tion for Network Traffic Analysis. arXiv preprint
arXiv:2008.02695, 2020.

Md Delwar Hossain, Hideya Ochiai, Fall Doudou, and
Youki Kadobayashi. SSH and FTP brute-force Attacks
Detection in Computer Networks: LSTM and Machine
Learning Approaches. In 2020 5th International Con-
ference on Computer and Communication Systems (IC-
CCS).

Martin Husdk, Giovanni Apruzzese, Shanchieh Jay
Yang, and Gordon Werner. Towards an efficient de-
tection of pivoting activity. In 2021 IFIP/IEEE Interna-
tional Symposium on Integrated Network Management.

4298 32nd USENIX Security Symposium

USENIX Association

[27] Mobin Javed and Vern Paxson. Detecting stealthy, dis-
tributed SSH brute-forcing. In Proceedings of the 2013
ACM SIGSAC conference on Computer & communica-
tions security.

[28] Rick Joyce and Gopal Gupta. Identity authentication
based on keystroke latencies. Communications of the
ACM, 1990.

[29] Kevin S Killourhy and Roy A Maxion. Comparing
anomaly-detection algorithms for keystroke dynamics.
In 2009 IEEE/IFIP International Conference on De-
pendable Systems & Networks.

[30] Robert Koch and Gabi Dreo Rodosek. User identifica-
tion in encrypted network communications. In 2010
International Conference on Network and Service Man-
agement.

[31] Bing Li et al. Two-Stream Convolution Augmented
Transformer for Human Activity Recognition. AAAI
Conference on Artificial Intelligence, 2021.

[32] Chang Liu, Longtao He, Gang Xiong, Zigang Cao, and
Zhen Li. Fs-net: A flow sequence network for encrypted
traffic classification. In IEEE INFOCOM 2019-1EEE
Conference On Computer Communications.

[33] Jiaxin Liu et al. Deep anomaly detection in packet
payload. Neurocomputing, 2022.

[34] Ximing Liu, Yingjiu Li, and Robert H Deng. Typing-
proof: Usable, secure and low-cost two-factor authenti-
cation based on keystroke timings. In Proceedings of
the 34th Annual Computer Security Applications Con-
ference, 2018.

[35] Manuel Lopez-Martin et al. Network Traffic Classifier
with Convolutional and Recurrent Neural Networks for
Internet of Things. IEEE Access, 5, 2017.

[36] Ilya Loshchilov and Frank Hutter. Decoupled weight
decay regularization. arXiv preprint arXiv:1711.05101,
2017.

[37] Xiaofeng Lu et al. Continuous authentication by free-
text keystroke based on CNN and RNN. Computers &
Security, 2020.

[38] Matthew V Mahoney and Philip K Chan. An analysis
of the 1999 DARPA/Lincoln Laboratory evaluation data
for network anomaly detection. In International Work-

shop on Recent Advances in Intrusion Detection, pages
220-237. Springer, 2003.

[39] Ali H Mirza and Selin Cosan. Computer network intru-
sion detection using sequential LSTM neural networks
autoencoders. In 2018 26th signal processing and com-
munications applications conference (SIU).

[40] John V Monaco, Md Liakat Ali, and Charles C Tappert.
Spoofing key-press latencies with a generative keystroke
dynamics model. In 2015 IEEE 7th international con-
ference on biometrics theory, applications and systems

(BTAS).

[41] John V Monaco, Ned Bakelman, Sung-Hyuk Cha, and
Charles C Tappert. Recent advances in the development
of a long-text-input keystroke biometric authentication
system for arbitrary text input. In 2013 European Intel-
ligence and Security Informatics Conference.

[42] John V. Monaco et al. One-handed Keystroke Biomet-
ric Identification Competition. In 2015 International
Conference on Biometrics (ICB).

[43] John V. Monaco and Charles C. Tappert. The Partially
Observable Hidden Markov Model and its Application
to Keystroke Dynamics, 2016.

[44] Fabian Monrose and Aviel D Rubin. Keystroke dynam-
ics as a biometric for authentication. Future Generation
computer systems, 2000.

[45] Gerhard Miinz, Sa Li, and Georg Carle. Traffic anomaly
detection using k-means clustering. In GI/ITG Workshop
MMBnet, 2007.

[46] Bjgrn Ivar Nielsen. Continuous Authentication on an
SSH Connection. Master’s thesis, NTNU, 2022.

[47] Adam Paszke et al. PyTorch: An Imperative Style, High-
Performance Deep Learning Library. In Advances in
Neural Information Processing Systems. 2019.

[48] N. Pavaday and K.M.S. Soyjaudah. Enhancing perfor-
mance of Bayes classifier for the hardened password
mechanism. In AFRICON 2007.

[49] Paulo Henrique Pisani and Ana Carolina Lorena. A
systematic review on keystroke dynamics. Journal of
the Brazilian Computer Society, 2013.

[50] Shahbaz Rezaei and Xin Liu. Deep Learning for En-
crypted Traffic Classification: An Overview. IEEE Com-
munications Magazine, 57, 2019.

[51] Dawn Xiaodong Song, David Wagner, and Xuqing Tian.
Timing analysis of keystrokes and timing attacks on
SSH. In 10th USENIX Security Symposium, 2001.

[52] Pin Shen Teh, Andrew Beng Jin Teoh, and Shigang Yue.
A survey of keystroke dynamics biometrics. The Scien-
tific World Journal, 2013.

[53] Toannis Tsimperidis, Avi Arampatzis, and Alexandros
Karakos. Keystroke dynamics features for gender recog-
nition. Digital Investigation, 2018.

USENIX Association

32nd USENIX Security Symposium 4299

[54] Ashish Vaswani et al. Attention is all you need. Ad-
vances in neural information processing systems, 2017.

[55] Wei Wang et al. Malware Traffic Classification us-
ing Convolutional Neural Network for Representation
Learning. In 2017 International Conference on Infor-
mation Networking. IEEE.

[56] Tatu Ylonen and Chris Lonvick. The secure shell (SSH)
protocol architecture. Technical report, 2006.

A Dataset description

We evaluated our model on extensive operational data col-
lected at the Lawrence Berkeley National Laboratory’s border,
a large research institute with several thousand users and tens
of thousands of systems on their network. Using real data
ensures our experiments reflect practical considerations. Our
evaluations show that our model achieves high accuracy, de-
spite underlying network delays and variations in user behav-
ior. We now describe the site’s interactive SSH traffic, after
the filters from Section 4.3, to convey how it is representative
of real networks.

Lawrence Berkeley National Laboratory’s network com-
prises thousands of users. As of early 2023, the site sees an
average of 18,000 unique devices per day, for an average daily
volume of 20 TB crossing the network border.

We observe a total of 632,000 interactive connections, rang-
ing from August 2016 to December 2022. These sessions span
3,900 users, going to 2,750 unique server IPs, and coming
from 55,000 unique client IPs. Our dataset includes 39 dif-
ferent SSH client implementations, with a total of 800 client
versions. 12% of connections are from internal subnets, lo-
cated at the site’s premises, while the rest comes from external
networks.

Network round trip time (RTT) variances add noise to
packet timings, and large RTTs can influence keystroke dy-
namics, as users might wait for packet echoes before typing
new characters. We extracted our data from a real network,
and therefore it contains a gamut of network delays. The av-
erage round trip time is 30ms, with an interquartile range of
23ms. We observe a tail of large RTTs: half the interactive
SSH connections have a RTT under 13ms, but the 5% largest
are above 150ms, with a maximal observed RTT of almost 4
seconds.

Our models are resilient to RTT variations. We did not
find bad performance to correlate to large variations in the
training set. However, for our Telnet analysis we found that
large differences in RTT between training samples and testing
samples could degrade performance.

Another observable sign of network delays is congestion,
visible through packet retransmissions. 45% of connections
do not have any retransmissions, while another 42% have a
small amount of congestion (between 1 and 10 retransmis-
sions), and 13% of connections experience heavy congestion,

with over 10 retransmitted packets. We show in § 5.5 that
connections with mild congestion did not impact model per-
formance. Connections with high congestion had a minor
impact, decreasing model accuracy by just 2%.

We windowed interarrival times to values attainable by
a human typist, between 1 millisecond and 15 seconds, to
characterize user typing speeds in our dataset. The average
“character-per-second” count is 4.5, close to the observation
in [11]. This reinforces our belief that packet inter-arrival
times are a good proxy for inter-keystroke timings.

We now describe different entities in our dataset in depth,

to emphasize the diversity of our data and the applicability of
our method.
Users On average, each user has interactive SSH connec-
tions with 3 different servers. 50% of users only interact with
2 servers, while the top 1% connect to over 19 servers, the
maximum being account “root”, which has been seen inter-
acting with 352 distinct IPs.

The median user is seen from 5 different client IPs, but
only 1 client SSH implementation. This most likely means
the median user only connects from a single device, but the
IP changes due to DHCP.

25% of users have at least two different SSH client imple-
mentations, and 1% of them have 5 or more. Many of these
implementations are OS-specific, which seems to indicate a
significant proportion of users use multiple devices to connect
to SSH servers.

Servers Each server receives SSH connections from on av-
erage 5 different users with interactive connections. 50% of
them are used by a single interactive user. The top 5% see
at least 10 users, the maximum being 837 users for a single
server. These high-volume servers are used as login platforms,
before accessing other resources.

Clients 90% of client IPs are associated with a single user,
most likely being DHCP addresses from large pools such as
those maintained by ISPs. A small fraction of IPs are recycled
by many users, which can be explained by NATs. 95% of IPs
only have a single client SSH implementation, which seems
to indicate most devices have a single SSH implementation.

Agents The most common SSH software are OpenSSH,
used in 90% of interactive connections, and PuTTY, used in
4.5% of connections. Specifically, 18% of interactive con-
nections use the Ubuntu implementation of OpenSSH, 4%
use Debian, and 1.5% use a Windows implementation of
OpenSSH. In total, 91% of users have a connection that uses
some version of OpenSSH.

7.5% of all interactive connections use some Windows
implementation (PuTTY, OpenSSH for Windows, or other
software), and 22% of users have at least one flow from a
Windows machine. In fact, at least 10% of users use both
Windows and Unix implementations of SSH.

Smartphone connections (using the JuiceSSH client) only
make up 0.03% of all traffic, and are used by less than 1% of
all users.

4300 32nd USENIX Security Symposium

USENIX Association

	Introduction
	Related Work
	Keystroke Authentication
	Anomaly Detection
	Network Classification via Deep Learning
	SSH Keystroke Analytics

	Machine learning models
	Intuition
	Feature embedding: the partition layer
	Transformer model
	Model architecture

	Dataset
	Data collection
	Deriving labels
	Filtering down to interactive connections
	Features
	Dataset characterizations and implications
	Training process

	Evaluation
	SSH authentication results
	Time to detection
	Training with limited data
	Performance over time
	Effect of network congestion
	Continuous evaluation
	Telnet/Rlogin results
	SSH classification
	Comparison to other ML architectures

	Discussion and Limitations
	Real world deployment and base-rate fallacy
	Limited data
	Evasion
	Limitations

	Summary
	Dataset description

