NC STATE UNIVERSITY

FReD: Identifying File Re-Delegation in
Android System Services

Sigmund Albert Gorski lll, Seaver Thorn,
William Enck, Haining Chen*
NC State, *Google

USENIX Security '22

NC STATE UNIVERSITY

Mobile OSes: Apps are Security Principals

« Benefits O S,

— Changes ambient authority
— Better privilege separation

« Challenges

— OS now responsible for protecting high-level information
and resources

— Complex access control policy needs to be enforced
throughout the system

NC STATE UNIVERSITY

Android Framework

Mapping App APIs to Appl @ .
Permissions: Application

Y
- Stowaway Lap | [ap] [Apr] Evaluating correctness

- PScout : v v (consistenc
y) of access
- Arcade (RPc] [Rec] [Rpc | control checks:

|
‘:ﬁ = Framework Kratos
L Protected h L Protected h - ACEDroid

Operation Operation - ACMiner

\'4
Driver Linux Kernel

NC STATE UNIVERSITY

The Framework is *Very* Interconnected

Evaluating re-delegation of
permissions between APIs:
- ARF

Android 8.1.0
Interconnected API Graph

Potential confused

deputy fra

Third Party App A API E, API E,
(caller) (deputy) (target)

The problem is caused by the changes in ambient authority during execution.

NC STATE UNIVERSITY

Is access to files also being re-delegated?

NC STATE UNIVERSITY

File Access Re-Delegation

App
Permission: Perm1

AP|

RPC
Perm1 Permission Check

\4

Service
UID/GID = System

System UID/GID Check
v

21 Driver

Application

Framework

Linux Layer

All traditional OSes require file re-
delegation to provide differentiated
access.

We want to find improper re-
delegation

Hypothesis: If you can find all file
re-delegation, most proper re-
delegation to sensitive files can be
programmatically filtered

NC STATE UNIVERSITY

File Re-Delegation Finder (FReD)

* Question: How can we find improper
re-delegation of files?

Which service APls open files?
What file paths are opened?
Which opened file paths are sensitive?

Which opened sensitive file paths are
re-delegated to callers?

* FReD: static program analysis of

— Android's Java system services and w
— associated native code to identify

these files. o = “path” JE

— Builds on ACMiner and ARF v
@eReader(@

fp = “to/file.txt”

NC STATE UNIVERSITY

Conceptual Approach

» ©

\ ’é&%
\\ %Cﬁ

\\ (}‘

fp = “to/file.txt” fp = “to/file.txt”

fp="“path” +fp D \\
v
@eReader(@

NC STATE UNIVERSITY

Identifying File Methods

Problem: backwards dataflow analysis from
generic file methods lack sufficient context

Solution: control flow analysis to the highest
level wrapper file method

— Start with JNI file methods set F

— |ldentify “public” Android APIs with control
flow to method in F

Manually confirm and add to F
Repeat until fixed point

2,316 File
Methods

-

File method identification for AOSP 10.0.0

360 JNI File
Methods

Java

[File path input as a String, File, or Path Object]

Java [com.android.server.net.
NetworkStatsFactory:

L [Flle path input as a Slrlng]

;
[ooen] fran] [-]

Libc File Methods

(a) JNI methods using file paths
defined in native code

Native L nativeReadNetworkStatsDetail

[ooen][] [-]

Libc File Methods

(b) INI methods using file paths
defined in Java code

[File path input as a String, File, or Path Object]

[File path input as a String, File, or Path Ob]ect

v v
[]ava.k).FIIeInputS(ream][java.io.FileWriter J@

pr—l— .m.,]é]

Java File Methods]4

H ;

lec Flle Methods

(¢) Java API File Methods

=]

Libc File Methods

[}
v

(d) Android API File Methods
9

NC STATE UNIVERSITY

Extracting File Paths (Java)

i
Backwards data flow analysis keeps track of Al _
. f . bles Constant Leaf A Java primitive or string constant value.
pOSSIble Values or varia Any Leaf Represgnts a value that could not be
Creates an intermediate representation determined.

Unknown Leaf Represents a unexpected outcome in the

based on the types of operations that occur .

U |t| mately generates PlaceHolder Leaf é\or:rllapcljetrgzjlder for a value that is currently being
reg u lar eXpreSSIOnS for Append Branch Concatenates the values of its children.
eaCh f| |e path Used Or Branch Represents the possibility that any one of its
in open etc y children is a valid value.

’ . . 4

Loop Branch Indicates the existence of a loop.

Used ang r tO fl nd ‘ .) Parent Branch The value is the parent path of its child’s value.

fl Ie pathS in native \N % Name Branch The value is the file name of its child’s value.
. .
code called via JNI b EnvVar Branch Represents a value retrieved from the

environment where its child is the key.

(see paper)

SysVar Branch Represents a value retrieved from the system
properties where its child is the key.

10

NC STATE UNIVERSITY

File Access Re-Delegation Detection

« What is a security sensitive file path?

— Any file assigned the system UID/GID

— Any file assigned a UID/GID from the XML configuration files in
/system/etc/permissions/

* Requires a real device to extract (many files in /data)

Regular
Expressions

N

Security
Sensitive
File Paths

\;

Match
File Paths

File
UID/GID

System
—>

RPC Checks System NOE RPC Checks
Permission? Special Caller?

Other [

RPC Permissions 2 UID/GID)

> Re-Delegated

File Paths

W

Mapped Permissions?

NC STATE UNIVERSITY

Firmware Analysis

AOSP Pixel 3a
— Android 10 r1

Google Pixel 3a

— Android 10 build
QQ3A.200805.001
Samsung S20

— Android 10 build
QP1A.19071.020

AOSP
Pixel 3
(9.0.0)

AOSP
Pixel 3a
(10.0.0)

Google
Pixel 3a
(10.0.0)

Samsung
S20
(10.0.0)

API Methods

JNI Methods

JNI File Methods

Java API File Methods
Android API File Methods
Total File Methods

Total RPC Entry Points
RPCs with File Methods
File Methods in RPCs

JNI Methods in RPCs

Sec. Sensitive File Paths

65,508
5,176
368
907
962
2,237
5.337
1,966
661
365
139,463

73,073
5416
360
888
1,068
2,316
6,287
2,927
602
387
157,074

73,461
5,419
360
388
1,087
2,335
6,304
2,985
717
390
56,434

83,346
7,023
360
888
1,155
2,403
12,169
4,163
766
860
56,559

Candidate RPC Entry Points Requiring Manual In

spection

42

113

Intermediate Exprs. 23
Regexes 7 10 36
RPC Entry Points 23 31 60
Files 51 44 143

Automated exclusion
criteria reduced most
RPC Entry points

NC STATE UNIVERSITY

Findings Overview
| Deputy(RPCSevice) | mpact | Firmware |

removeSharedAccountAsUser (AccountManagerService) Moderate (CVE-2020-0208) AQOSP

renameSharedAccountAsUser (AccountManagerService) Moderate (CVE-2020-0209) AOSP Data

Manipulation
invalidateAuthToken (AccountManagerService) Minor AOSP
updateCredentials (AccountManagerService) Minor AQOSP

add (DropBoxManagerService) Minor AQSP

getSharedAccountsAsUser (AccountManagerService) Moderate (CVE-2020-0210) AOSP
getPreviousName (AccountManagerService) Minor AOSP
isCredentialsUpdateSuggested (AccountManagerService) Minor AQOSP
getTotalBytes (StorageStatsService) Minor AQSP
isStorageLow (PackageManagerService) Minor AQSP

ssplnit (BlockchainTZService) Moderate (CVE-2021-25459) Samsung Denial of

Service
sspExit (BlockchainTZService) Moderate (CVE-2021-25460) Samsung 13

NC STATE UNIVERSITY

Example File Access Re-Delegation

Impact: Allows any app to removed shared accounts they do not
manage

Problem: Missing check isAccountManagedByCaller
RPC renameSharedAccountAsUser has a similar problem and impact
CVE-2020-0208 and CVE-2020-0209

boolean removeSharedAccountAsUser (Account ac, int userId) {
int uid = getCallingUid ();
userld = handleIncomingUser (uid);
UserAccounts acs = getUserAccounts(userld);
boolean deleted = Jacs.accountsDb.deleteSharedAccount (ac);

Should be calling isAccountManagedByCaller

if (deleted)
removeAccountInternal (acs, ac, uid); \ Files: /data/system_ce/0/accounts_ce.db

return deleted; and /data/system_de/0/accounts_de.db

Access: Only system can RWX

NC STATE UNIVERSITY

Limitations

* Requires files from a real device (files in /data cannot be
extracted from a firmware image, e.g., via BigMAC)

— Re-delegated files must be in this FS dump
« Only considers Java services and associated JNI
* Inherits ACMiner limitations

NC STATE UNIVERSITY

Thank youl!

Treating apps as security principals
significantly improves security,

— ... but it also puts significant burden

on the OS.

FReD uses static analysis to identify
when functionality related to files can
be abused by third-party applications.
Source Code:

— https://github.com/wspr-ncsu/fred

William Enck

Director, WSPR Lab
co-Director, Secure Computing Institute
Professor, Computer Science
North Carolina State University

W: https://enck.org E: whenck@ncsu.edu

In collaboration with

Sigmund Albert Gorski lll (NCSU),
Seaver Thorn (NCSU), and
Haining Chen (Google)

Support from: Google ASPIRE award
and Army Research Office grant
W911NF-16-1-0299

https://enck.org/
mailto:whenck@ncsu.edu
https://github.com/wspr-ncsu/fred

