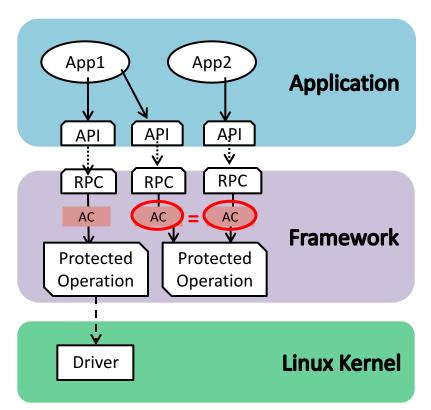
FReD: Identifying File Re-Delegation in Android System Services

Sigmund Albert Gorski III, Seaver Thorn, William Enck, Haining Chen* NC State, *Google

USENIX Security '22

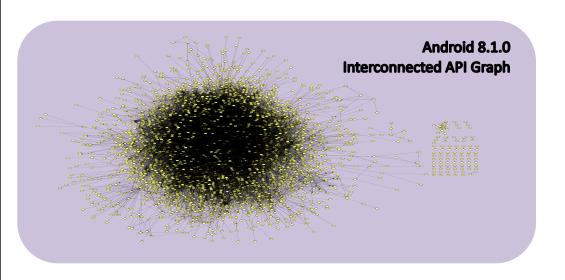
Mobile OSes: Apps are Security Principals

- Benefits
 - Changes ambient authority
 - Better privilege separation

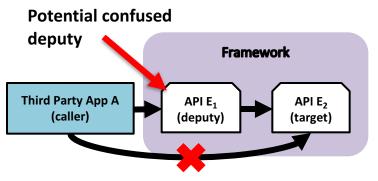

- OS now responsible for protecting high-level information and resources
- Complex access control policy needs to be enforced throughout the system

Android Framework

Mapping App APIs to Permissions:


- Stowaway
- PScout
- Arcade

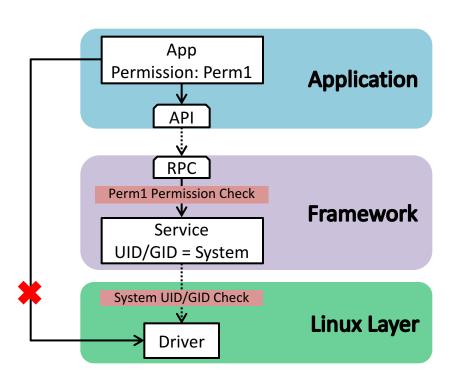
Evaluating correctness (consistency) of access control checks:


- Kratos
- ACEDroid
- ACMiner

The Framework is *Very* Interconnected

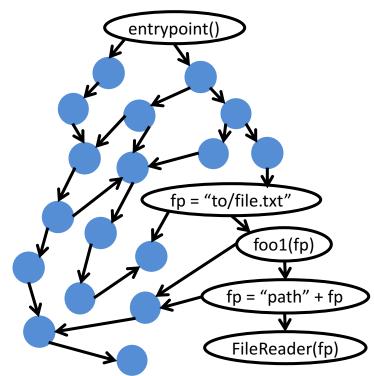
Evaluating re-delegation of permissions between APIs:

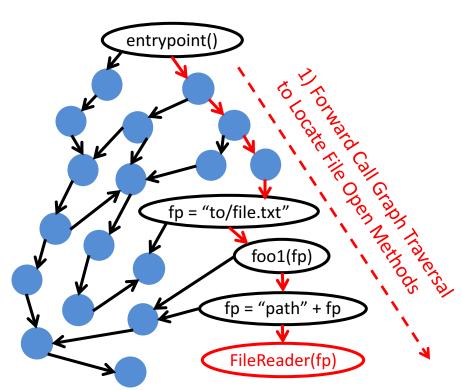
- ARF

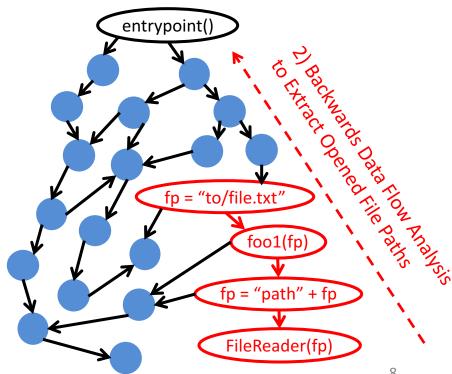


The problem is caused by the **changes in ambient authority** during execution.

Is access to files also being re-delegated?

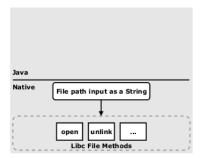

File Access Re-Delegation

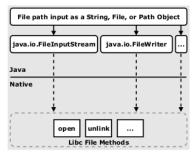

- All traditional OSes require file redelegation to provide differentiated access.
- We want to find improper redelegation
- Hypothesis: If you can find all file re-delegation, most proper redelegation to sensitive files can be programmatically filtered


File Re-Delegation Finder (FReD)

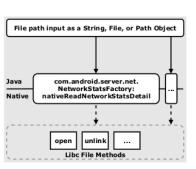
- Question: How can we find improper re-delegation of files?
 - Which service APIs open files?
 - What file paths are opened?
 - Which opened file paths are sensitive?
 - Which opened sensitive file paths are re-delegated to callers?
- FReD: static program analysis of
 - Android's Java system services and
 - associated *native code* to identify these files.
 - Builds on ACMiner and ARF

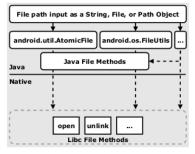
Conceptual Approach




Identifying File Methods

- Problem: backwards dataflow analysis from generic file methods lack sufficient context
- **Solution:** control flow analysis to the highest level wrapper file method
 - Start with JNI file methods set F
 - Identify "public" Android APIs with control flow to method in F
 - Manually confirm and add to F
 - Repeat until fixed point

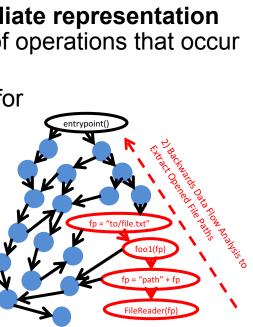



(a) JNI methods using file paths defined in native code

(c) Java API File Methods

(b) JNI methods using file paths defined in Java code

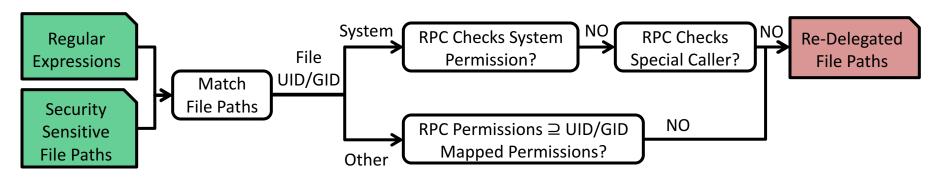
(d) Android API File Methods


Extracting File Paths (Java)

Backwards data flow analysis keeps track of possible values for variables

 Creates an intermediate representation based on the types of operations that occur

 Ultimately generates regular expressions for each file path used in open, etc.


 Used angr to find file paths in native code called via JNI (see paper)

Node Name	Type	Description
Constant	Leaf	A Java primitive or string constant value.
Any	Leaf	Represents a value that could not be determined.
Unknown	Leaf	Represents a unexpected outcome in the analysis.
PlaceHolder	Leaf	A placeholder for a value that is currently being computed.
Append	Branch	Concatenates the values of its children.
Or	Branch	Represents the possibility that any one of its children is a valid value.
Loop	Branch	Indicates the existence of a loop.
Parent	Branch	The value is the parent path of its child's value.
Name	Branch	The value is the file name of its child's value.
EnvVar	Branch	Represents a value retrieved from the environment where its child is the key.
SysVar	Branch	Represents a value retrieved from the system properties where its child is the key.

File Access Re-Delegation Detection

- What is a security sensitive file path?
 - Any file assigned the system UID/GID
 - Any file assigned a UID/GID from the XML configuration files in /system/etc/permissions/
- Requires a real device to extract (many files in /data)

Firmware Analysis

- AOSP Pixel 3a
 - Android 10 r1
- Google Pixel 3a
 - Android 10 build QQ3A.200805.001
- Samsung S20
 - Android 10 build QP1A.19071.020

	AOSP Pixel 3 (9.0.0)	AOSP Pixel 3a (10.0.0)	Google Pixel 3a (10.0.0)	Samsung S20 (10.0.0)
# API Methods	65,508	73,073	73,461	83,346
# JNI Methods	5,176	5,416	5,419	7,023
# JNI File Methods	368	360	360	360
# Java API File Methods	907	888	888	888
# Android API File Methods	962	1,068	1,087	1,155
# Total File Methods	2,237	2,316	2,335	2,403
# Total RPC Entry Points	5,337	6,287	6,304	12,169
# RPCs with File Methods	1,966	2,927	2,985	4,163
# File Methods in RPCs	661	602	717	766
# JNI Methods in RPCs	365	387	390	860
# Sec. Sensitive File Paths	139,463	157,074	56,434	56,559

Automated exclusion criteria reduced most RPC Entry points

Candidate RPC Entry Points Requiring Manual Inspection						
# Intermediate Exprs.	23	42	113			
# Regexes	7	10	36			
# RPC Entry Points	23	31	60			
# Files	51	44	143			

Findings Overview

Deputy (RPC Service)	Impact	Firmware
removeSharedAccountAsUser (AccountManagerService)	Moderate (CVE-2020-0208)	AOSP
renameSharedAccountAsUser (AccountManagerService)	Moderate (CVE-2020-0209)	AOSP
invalidateAuthToken (AccountManagerService)	Minor	AOSP
updateCredentials (AccountManagerService)	Minor	AOSP
add (DropBoxManagerService)	Minor	AOSP
getSharedAccountsAsUser (AccountManagerService)	Moderate (CVE-2020-0210)	AOSP
getPreviousName (AccountManagerService)	Minor	AOSP
isCredentialsUpdateSuggested (AccountManagerService)	Minor	AOSP
getTotalBytes (StorageStatsService)	Minor	AOSP
isStorageLow (PackageManagerService)	Minor	AOSP
sspInit (BlockchainTZService)	Moderate (CVE-2021-25459)	Samsung
sspExit (BlockchainTZService)	Moderate (CVE-2021-25460)	Samsung

Data Manipulation

> Data Leaks

Denial of Service 13

Example File Access Re-Delegation

- Impact: Allows any app to removed shared accounts they do not manage
- Problem: Missing check isAccountManagedByCaller
- RPC renameSharedAccountAsUser has a similar problem and impact
- CVE-2020-0208 and CVE-2020-0209

```
boolean removeSharedAccountAsUser(Account ac, int userId) {
   int uid = getCallingUid();
   userId = handleIncomingUser(uid);
   UserAccounts acs = getUserAccounts(userId);
   boolean deleted = acs.accountsDb.deleteSharedAccount(ac);
   if (deleted)
       removeAccountInternal(acs, ac, uid);
   return deleted;
}
Files: /data/system_ce/O/accounts_ce.db
and /data/system_de/O/accounts_de.db
Access: Only system can RWX
```

Limitations

- Requires files from a real device (files in /data cannot be extracted from a firmware image, e.g., via BigMAC)
 - Re-delegated files must be in this FS dump
- Only considers Java services and associated JNI
- Inherits ACMiner limitations

Thank you!

- Treating apps as security principals significantly improves security,
 - but it also puts significant burden on the OS.
- FReD uses static analysis to identify when functionality related to files can be abused by third-party applications.
- Source Code:
 - https://github.com/wspr-ncsu/fred

William Enck

Director, WSPR Lab co-Director, Secure Computing Institute Professor, Computer Science North Carolina State University

W: https://enck.org E: whenck@ncsu.edu

In collaboration with
Sigmund Albert Gorski III (NCSU),
Seaver Thorn (NCSU), and
Haining Chen (Google)

Support from: Google ASPIRE award and Army Research Office grant W911NF-16-1-0299