
FReD: Identifying File Re-Delegation in 
Android System Services

Sigmund Albert Gorski III, Seaver Thorn, 
William Enck, Haining Chen*

NC State, *Google

USENIX Security '22

1



Mobile OSes: Apps are Security Principals

• Benefits
– Changes ambient authority
– Better privilege separation

• Challenges
– OS now responsible for protecting high-level information 

and resources 
– Complex access control policy needs to be enforced 

throughout the system

2



Android Framework
App1 App2

RPC RPC RPC

AC AC AC

Protected	
Operation

Protected	
Operation

Driver

3

Mapping	App	APIs	to	
Permissions:
- Stowaway
- PScout
- Arcade

Evaluating	correctness	
(consistency)	of	access	
control	checks:
- Kratos
- ACEDroid
- ACMiner

=

API API API



The Framework is *Very* Interconnected

4

API	E1
(deputy)

API	E2
(target)

Third	Party	App	A	
(caller)

Evaluating	re-delegation	of	
permissions	between	APIs:
- ARF

The	problem	is	caused	by	the	changes	in	ambient	authority during	execution.

Potential	confused	
deputy



Is	access	to	files	also	being	re-delegated?

5



File Access Re-Delegation

• All traditional OSes require file re-
delegation to provide differentiated 
access.

• We want to find improper re-
delegation

• Hypothesis: If you can find all file 
re-delegation, most proper re-
delegation to sensitive files can be 
programmatically filtered

6

Service
UID/GID	=	System

RPC
Perm1	Permission	Check

Driver

API

System	UID/GID	Check

App
Permission:	Perm1



File Re-Delegation Finder (FReD)
• Question: How can we find improper 

re-delegation of files?
– Which service APIs open files?
– What file paths are opened?
– Which opened file paths are sensitive?
– Which opened sensitive file paths are 

re-delegated to callers?
• FReD: static program analysis of 

– Android's Java system services and
– associated native code to identify 

these files.
– Builds on ACMiner and ARF

7

entrypoint()

fp =	“to/file.txt”

foo1(fp)

fp =	“path”	+	fp

FileReader(fp)



Conceptual Approach

8

entrypoint()

fp =	“to/file.txt”

foo1(fp)

fp =	“path”	+	fp

FileReader(fp)

1)	Forward	Call	Graph	Traversal	

to	Locate	File	Open	M
ethods

2)	Backwards	Data	Flow	Analysis	

to	Extract	Opened	File	Paths

entrypoint()

fp =	“to/file.txt”

foo1(fp)

fp =	“path”	+	fp

FileReader(fp)



Identifying File Methods
• Problem: backwards dataflow analysis from 

generic file methods lack sufficient context
• Solution: control flow analysis to the highest 

level wrapper file method
– Start with JNI file methods set F
– Identify “public” Android APIs with control 

flow to method in F
– Manually confirm and add to F
– Repeat until fixed point

2,316	File	
Methods

360	JNI	File	
Methods

File	method	identification	for	AOSP	10.0.0 9



Extracting File Paths (Java)

10

Node	Name Type Description
Constant Leaf A	Java primitive	or	string	constant	value.
Any Leaf Represents	a	value	that	could	not	be	

determined.
Unknown Leaf Represents a	unexpected	outcome	in	the	

analysis.
PlaceHolder Leaf A	placeholder	for	a	value	that	is	currently	being	

computed.
Append Branch Concatenates	the	values	of	its	children.
Or Branch Represents	the	possibility	that	any	one	of	its	

children	is	a	valid	value.
Loop Branch Indicates	the	existence	of	a	loop.
Parent Branch The	value	is	the	parent	path	of	its	child’s	value.
Name Branch The	value	is	the	file	name	of	its	child’s	value.
EnvVar Branch Represents	a	value	retrieved	from	the	

environment	where its	child	is	the	key.
SysVar Branch Represents	a	value	retrieved	from	the	system	

properties	where	its	child	is	the	key.

entrypoint()

fp =	“to/file.txt”

foo1(fp)

fp =	“path”	+	fp

FileReader(fp)
2)	Backwards	Data	Flow	Analysis	to	

Extract	Opened	File	Paths

• Backwards data flow analysis keeps track of 
possible values for variables

• Creates an intermediate representation
based on the types of operations that occur

• Ultimately generates 
regular expressions for 
each file path used 
in open, etc.

• Used angr to find
file paths in native
code called via JNI
(see paper)



File Access Re-Delegation Detection
• What is a security sensitive file path?

– Any file assigned the system UID/GID
– Any file assigned a UID/GID from the XML configuration files in 

/system/etc/permissions/
• Requires a real device to extract (many files in /data)

11

Regular	
Expressions

Security	
Sensitive	
File	Paths

Match	
File	Paths

RPC	Checks	System	
Permission?

RPC	Checks	
Special	Caller?

Re-Delegated	
File	Paths

RPC	Permissions	⊇ UID/GID	
Mapped	Permissions?

NO NO
File	

UID/GID

System

Other

NO



Firmware Analysis

• AOSP Pixel 3a
– Android 10 r1

• Google Pixel 3a
– Android 10 build 

QQ3A.200805.001
• Samsung S20

– Android 10 build 
QP1A.19071.020

12

Automated	exclusion	
criteria	reduced	most	
RPC	Entry	points



Findings Overview

13

Deputy	(RPC	Service) Impact Firmware

removeSharedAccountAsUser (AccountManagerService) Moderate	(CVE-2020-0208) AOSP

renameSharedAccountAsUser (AccountManagerService) Moderate	(CVE-2020-0209) AOSP

invalidateAuthToken (AccountManagerService) Minor AOSP

updateCredentials (AccountManagerService) Minor AOSP

add	(DropBoxManagerService) Minor AOSP

getSharedAccountsAsUser (AccountManagerService) Moderate	(CVE-2020-0210) AOSP

getPreviousName (AccountManagerService) Minor AOSP

isCredentialsUpdateSuggested (AccountManagerService) Minor AOSP

getTotalBytes (StorageStatsService) Minor AOSP

isStorageLow (PackageManagerService) Minor AOSP

sspInit (BlockchainTZService) Moderate	(CVE-2021-25459) Samsung

sspExit (BlockchainTZService) Moderate	(CVE-2021-25460) Samsung

Data	
Manipulation

Data
Leaks

Denial	of
Service



Example File Access Re-Delegation
• Impact: Allows any app to removed shared accounts they do not 

manage
• Problem: Missing check isAccountManagedByCaller
• RPC renameSharedAccountAsUser has a similar problem and impact
• CVE-2020-0208 and CVE-2020-0209

14

Files:	/data/system_ce/0/accounts_ce.db
and	/data/system_de/0/accounts_de.db
Access:	Only	system	can	RWX

Should	be	calling	isAccountManagedByCaller



Limitations

• Requires files from a real device (files in /data cannot be 
extracted from a firmware image, e.g., via BigMAC)
– Re-delegated files must be in this FS dump

• Only considers Java services and associated JNI
• Inherits ACMiner limitations

15



Thank you!

William	Enck
Director,	WSPR	Lab

co-Director,	Secure	Computing	Institute
Professor,	Computer	Science

North	Carolina	State	University
W:	https://enck.org E:	whenck@ncsu.edu

Support	from:	Google	ASPIRE	award	
and	Army	Research	Office	grant	
W911NF-16-1-0299

• Treating apps as security principals 
significantly improves security,
– … but it also puts significant burden 

on the OS.
• FReD uses static analysis to identify 

when functionality related to files can 
be abused by third-party applications.

• Source Code:
– https://github.com/wspr-ncsu/fred

16

In collaboration with 
Sigmund Albert Gorski III (NCSU), 
Seaver Thorn (NCSU), and 
Haining Chen (Google)

https://enck.org/
mailto:whenck@ncsu.edu
https://github.com/wspr-ncsu/fred

