
This paper is included in the Proceedings of the 
31st USENIX Security Symposium.

August 10–12, 2022 • Boston, MA, USA
978-1-939133-31-1

Open access to the Proceedings of the 
31st USENIX Security Symposium is 

sponsored by USENIX.

Targeted Deanonymization via the 
Cache Side Channel: Attacks and Defenses

Mojtaba Zaheri, Yossi Oren, and Reza Curtmola, 
New Jersey Institute of Technology

https://www.usenix.org/conference/usenixsecurity22/presentation/zaheri



Targeted Deanonymization via the Cache Side Channel: Attacks and Defenses
Mojtaba Zaheri, Yossi Oren, and Reza Curtmola

New Jersey Institute of Technology
{mojtaba.zaheri, yo43, crix}@njit.edu

Abstract
Targeted deanonymization attacks let a malicious website
discover whether a website visitor bears a certain public
identifier, such as an email address or a Twitter handle.
These attacks were previously considered to rely on several
assumptions, limiting their practical impact. In this work, we
challenge these assumptions and show the attack surface for
deanonymization attacks is drastically larger than previously
considered. We achieve this by using the cache side channel for
our attack, instead of relying on cross-site leaks. This makes
our attack oblivious to recently proposed software-based
isolation mechanisms, including cross-origin resource policies
(CORP), cross-origin opener policies (COOP) and SameSite
cookie attribute. We evaluate our attacks on multiple hardware
microarchitectures, multiple operating systems and multiple
browser versions, including the highly-secure Tor Browser,
and demonstrate practical targeted deanonymization attacks
on major sites, including Google, Twitter, LinkedIn, TikTok,
Facebook, Instagram and Reddit. Our attack runs in less
than 3 seconds in most cases, and can be scaled to target an
exponentially large amount of users.

To stop these attacks, we present a full-featured defense
deployed as a browser extension. To minimize the risk to
vulnerable individuals, our defense is already available on the
Chrome and Firefox app stores. We have also responsibly
disclosed our findings to multiple tech vendors, as well as
to the Electronic Frontier Foundation. Finally, we provide
guidance to websites and browser vendors, as well as to users
who cannot install the extension.

1 Introduction

On the Internet, everybody knows it is better to stay anony-
mous. For some types of users, however, anonymity is far more
than a mere luxury, and losing it can have critical consequences.
Individuals who organize and participate in political protest,
who work as journalists reporting on inconvenient topics,
network with fellow members of their minority group, or even
purchase embarrassing or potentially incriminating personal
items, may risk their life and liberty if their identity becomes
known to malicious actors. Targeted deanonymization
attacks [1, 2] are an important class of attacks which threaten
user anonymity. These attacks assume an attacker who has
complete or partial control over some website, and is interested
in learning whether a specific target is browsing the website.
The attacker knows this target only through a public identifier,
such as an email address or a Twitter handle.

Leaky resources have been leveraged for this purpose [1, 3]:
An attacker uses a resource-sharing service such as YouTube,

Google Drive, or Dropbox to privately share a resource with
the target. Next, the attacker embeds this shared resource into
the attack website. Finally, the attacker checks if visitors to
the website can access this embedded resource – successful
access indicates that the current visitor is the intended target.
Although the Same-Origin Policy (SoP) should normally
prevent the attacker from learning this information, a family
of mechanisms known as cross-site leaks (XS-leaks) [2] were
found effective at bypassing the SoP and enabling this attack.

Whereas targeted deanonymization attacks based on
leaky resource attacks were shown to be both practical and
widespread, they make several limiting assumptions which
cause them to be far less effective in practice. First, and most
significantly, they assume the existence of a cross-site leak
that allows the attacker to discover whether the embedded
resource was loaded successfully. This is done by attaching
error handlers, or alternative media handlers, to the embedded
resource, and by checking whether they are triggered, or by
otherwise exploiting behaviors which bypass the SoP, such
as status code leaks, page content leaks, header leaks and
other similar approaches [4]. As discussed by Staicu et al. [1],
this behavior can be blocked through proper browser design,
as well as by proper coding practices on the side of sharing
websites. Second, leaky resource attacks commonly assume
that the sharing website allows its resources to be embedded
inside the attacker’s website. However, many websites do not
allow their content to be embedded in third-party websites, by
using the X-Frame-Options header or the more modern and
refined Cross-Origin-Resource-Policy header. A third
limitation is that leaky resource attacks rely on the browser’s
support for third-party cookies, since the attacker’s website
must embed a resource from the sharing website. While the
commonly-used Chrome browser exposes third-party cookies,
several modern browsers, including Safari and Tor, disable
third-party cookies for embedded resources. To get over these
limitations, the attacker is forced to load the sharing website
in a pop-up window, severely limiting the range of available
cross-site exploitation methods.

In this work, we overcome these limitations by replacing
cross-site leaks with browser-based side-channel attacks.
Side-channel attacks are attacks that analyze the physical
implementation artifacts of a system in order to gain an insight
into its secret internal state. Of particular interest to our
setting are microarchitectural cache attacks, which allow a
spy process to observe the memory access patterns of a victim
process over time, and use these access patterns to discover
secrets about the victim. As shown by Gülmezoglu et al. [5],
the combination of cache attacks and a deep learning-based

USENIX Association 31st USENIX Security Symposium    1505



machine learning pipeline lets an attacker effectively discover
which video a user is viewing, what application he or she
is running, and even which website he or she is currently
browsing to. The cache occupancy attack is a variant of
the standard cache attack, designed to work in settings with
limited hardware access and limited timer resolution. As
shown by Shusterman et al. [6,7], cache occupancy attacks are
highly effective for privacy attacks, in particular for website
fingerprinting, and can be mounted from within the browser
through the use of untrusted JavaScript code or CSS directives,
making them practical even in severely restricted settings.

By combining the side-channel technique with the blocking
technique of Watanabe et al. [8, 9], we show that the attack
surface of targeted deanonymization attacks is much larger
than initially thought. In particular, we uncover a set of practi-
cal and scalable attacks that can deanonymize users in several
important settings for which prior attack methods are not
effective. This includes websites which use secure embedding
methods or prevent embedding altogether, websites which
do not allow private sharing of content between users, and
browsers which block third-party cookies. Our attacks run
in practical time (less than 3 seconds in most cases), and can
be scaled to target an exponentially large amount of users.

More importantly, we provide a comprehensive coun-
termeasure against all of the attacks we discovered. This
countermeasure is already available on the Chrome and
Firefox extension stores, and can be downloaded and installed
immediately by concerned users [10, 11]. As part of our
responsible disclosure process, we have reached out to the
Electronic Frontier Foundation (EFF) and to multiple browser
vendors and service operators, and provided guidance on how
to install and use this countermeasure.

Our paper makes the following contributions:
• We introduce the concept of cache-based targeted

deanonymization attacks, and show how they overcome the
limitations of existing targeted deanonymization attacks,
while remaining within the same threat model (Section 3).

• We experimentally demonstrate practical end-to-end
attacks on a diverse set of targets, including desktop and
mobile systems with multiple CPU microarchitectures,
multiple browsers, and multiple highly popular websites.
In particular, we present an attack on the Tor Browser which
can scale to thousands of GMail users. (Section 4).

• We investigate the root cause of the attack, and show
that it is caused both by a client-side and a server-side
side channel working in concert. We show that generic
countermeasures, such as adding random cache noise, are
not effective against the attack. We design Leakuidator+,
an open-source browser extension which successfully
blocks the attack (Section 5).

• Finally, we discuss the ethical and practical implications
of our findings, describe our responsible disclosure process,
and provide guidance to users who may not be able to install
the browser extension (Section 7).

1.1 Attacker Model

We assume the existence of one or more victims, which
are of interest to some adversary. The adversary has some
public information about the victims, for example, their
Twitter handle or their email address. We also assume that the
adversary has partial control over a website that the victims
browse, and can inject JavaScript code into this website. The
objective of the adversary is to discover whether the user
currently browsing the attacker-controlled website is one
of the victims. We note that the adversary does not need
to control the resource-sharing service that is leveraged to
execute the attack, only to be registered as a user of the service.

Motivating examples. Consider a state-sponsored adversary
who has purchased, at great expense, a zero-day exploit, which
it wishes to install on the computer of a journalist with a well-
known Twitter handle. The adversary has also compelled a lo-
cal website to include code that can install this exploit. If this ex-
ploit were to be installed on many devices, however, this would
increase the risk of the exploit being detected by white-hat se-
curity researchers. Therefore, the state adversary wishes to first
verify, using the well-known Twitter handle, that the user cur-
rently connecting to the website is the target journalist, and only
then to deploy its exploit. As another example, consider the
case where a law enforcement agency has covertly taken con-
trol of an underground extremist forum. The agency wishes to
identify the users of this forum, but these users use pseudonyms
to connect to the forum. The agency, however, has also gath-
ered a list of Facebook accounts who are suspected to be users
of this forum. The law enforcement agency would like to cross-
reference the pseudonyms with this list of potential suspects.

2 Background

2.1 Leaky Resource Attacks

Leaky resource attacks [1–4, 8] are targeted privacy attacks,
which can uniquely identify an individual browsing an
attacker-controlled webpage. These attacks leverage a media
resource (e.g., an image, video, or audio file) hosted by a
resource-sharing service. They assume that (1) the service
relies on cookies for user authentication, (2) users of this
service can either privately share resources with other users,
or block other users of the service, and (3) shared resources
can be referenced via a canonical URL. This URL is called
a state-dependent URL (SD-URL), since the site’s response
to a request for this URL depends on the user’s identity.

The attack consists of two phases. In the setup phase, the
attacker uploads a resource to the service, and then binds it
to the victim’s identity. There are two approaches to perform
this binding. In the sharing-based approach [1], the attacker
privately shares the resource with the target (e.g., by using
the victim’s email address or user ID with the service). In the
blocking-based approach [8], the attacker makes the resource
public, and then blocks the target from viewing any resources
owned by the attacker. Next, the attacker embeds an SD-URL

1506    31st USENIX Security Symposium USENIX Association



for this resource into an attacker-controlled webpage.

In the execution phase (Fig. 1), the attacker causes the target
to visit this page (steps 1 and 2). As the target’s browser renders
the page, it makes a cross-site request for the embedded
resource to the sharing service (steps 3 and 4), passing the
user’s authentication cookies. The response of the sharing
website to this request depends on the target’s identity. With
the sharing-based approach, the response to this cross-site
request contains the shared resource if the user is the target, and
an error otherwise (step 5). With the blocking-based approach,
the opposite happens – the response contains an error for the
blocked target, and the shared resource for other users.

In the final step of the leaky resource attack, the attacker
needs to discover whether the shared resource was loaded. The
Same-Origin policy prevents the attacker from directly reading
out the cross-origin response. The attacker can, however,
bypass this policy using a cross-site leak (XS-leak) [2] to learn
information about the response (step 6). Prior work [1] showed
that different events were triggered when loading an SD-URL,
allowing for a simple XS-leak. For example, when loading
an image, the JavaScript onload callback is triggered if the
image was loaded successfully, and the onerror callback is
triggered otherwise. More subtle XS-leaks, uncovered through
systematic analysis of websites and browser APIs [2, 4],
include cross-origin communication between Window objects,
the Performance API, and others. There are also script-less
XS-leaks, that do not rely on JavaScript and instead used
HTML tags that permit to load fallback content in case the
primary content fails to load [1, 3].

Many services were shown to enable leaky resource
attacks, including generic storage sites, media sharing sites,
code-hosting repositories and social media sites. We note
that it is quite common for users to remain logged into such
services for extended periods of time.

Mitigations. The main weakness of leaky resource attacks
lies in the final step, in which the attacker uses an XS-leak
to discover whether the shared resource was loaded. Guided
by recent academic research in the field, browser vendors are
limiting the ability of websites to access and exploit XS-leaks,
and sharing websites are redesigning their websites to reduce
the XS-leak attack surface [4, 12]. As a result, it has become
increasingly harder for an attacker to query the <iframe>
belonging to the sharing website and discover whether the
resource was loaded. The attack is even more challenging
in browsers which implement cross-origin resource policies
(CORP) [13] or SameSite cookies [14] which completely
block third-party cookies. In these settings, authentication
cookies are only sent to the sharing website if the site is loaded
in a top-level window of its own – any sharing website content
embedded in an <iframe> will be rendered without authen-
tication, making classical leaky resource attacks impossible.
In our work, we show how deanonymization can be performed
even in the presence of all of these countermeasures.

Figure 1: The leaky resource attack (sharing-based approach).

2.2 Cache-Based Side Channel Attacks

Modern computer systems prevent malicious code from
accessing data belonging to other applications, users, or
operating system services, by incorporating multiple trust
boundary mechanisms. Micro-architectural side-channel
attacks, defined by Aciiçmez as attacks which “exploit deeper
processor ingredients below the trust architecture boundary”,
can get around these boundaries and thus compromise the
confidentiality of the system [15]. Cache side-channel attacks
are one type of micro-architectural attack. They exploit
the high-speed cache memory, which is found in modern
processors and used to interface between the fast CPU and the
slower DRAM memory. This cache is typically divided into
multiple levels: The fastest L1 cache is assigned to individual
CPU cores, and the slowest, but largest, last-level cache (LLC)
is shared between all cores. Cache attacks make use of the fact
that all processes compete for the limited space available in
these CPU caches. An attacker can exploit this contention to
make inferences about the internal state of other processes,
regardless of any software-based isolation mechanisms.

There are several methods for performing cache attacks.
This work uses the Prime+Probe technique, originally
invented by Tromer et al. [16] and later adapted for use in the
LLC by Liu et al. [17]. The Prime+Probe attack has four steps.
First, the attacker creates one or multiple eviction sets. Each
eviction set is a list of memory addresses mapped by the CPU
into the same region of the cache, a region also used by the
victim for its own purposes. In the second step, the attacker
accesses the eviction set, bringing the cache into a known state
(prime step). Next, the attacker waits for the victim to use
the cache. Since the attacker and the victim share the same
region of the cache, this evicts some attacker data from the
cache. In the fourth and final step, the attacker accesses the

USENIX Association 31st USENIX Security Symposium    1507



eviction set again, and measures the access time (probe step).
A low access time means the eviction set is still in cache, while
a high access time means it was evicted and replaced by the
victim’s data. Thus, the attacker detects whether the victim
accessed a certain region of memory at a certain time, teaching
it about the victim’s internal state.

Prime+Probe attacks require a timer API with nanosecond-
level accuracy, a resolution not typically available through
JavaScript. The Cache Occupancy attack is a variation on
Prime+Probe designed for this setting [6]. In contrast to the
Prime+Probe attack, which monitors limited regions of the
cache, in the cache occupancy attack the attacker allocates a
large buffer covering the entire LLC. The attacker accesses
this buffer in the prime step, bringing the entire LLC into
a known state. Subsequent memory accesses by the victim
will necessarily evict some of the attacker’s memory from
the cache, resulting in a longer runtime for the probe step.
The use of a larger buffer allows the attack to be carried
out with coarser-grained timers, such as the ones found
within web browsers. The disadvantage of this attack is a
reduced temporal and spatial accuracy, which makes it less
appropriate for precise cryptanalytic attacks. Sweep counting
is a modified version of the cache occupancy attack designed
for even coarser-grained timers [7]. Instead of measuring the
time it takes to go over the eviction buffer once, it counts the
number of times the entire buffer can be accessed in a specified
time interval. This attack was shown effective even when
using the coarse timer found in the highly-secure Tor Browser.

3 Attack Techniques

In this section, we introduce several novel techniques to
execute targeted deanonymization attacks. Our techniques
significantly increase the potential impact of these attacks,
when compared to previous work. We do so both by
increasing the attack’s target population by applying it to
highly-popular services which have no currently-exploitable
XS-leaks, including GMail, Twitter and Facebook, and by
successfully executing it on browsers that have a strict policy
of not allowing cookies to be attached to cross-site requests,
including Safari and Tor. We also demonstrate the attack’s
scalability, by identifying concrete techniques to scale the
attack from one target user to a group of target users.

Our overarching approach is to use CPU cache-based
side channels, instead of XS-leaks, in order to determine
whether the leaky resource is successfully loaded. This has
the advantage of covering the novel scenarios introduced in
this work, for which known XS-leaks are not effective. At the
same time, we show that our approach is equally as effective
in previously known attack scenarios, thus offering a unified
framework for targeted deanonymization.

3.1 General Attack Methodology

Our attack has two phases, a training phase and an online
phase1. In the training phase, the attacker trains a machine
learning classifier to detect the cache signature associated with
successfully loading a leaky resource. The training phase can
be potentially repeated under a variety of combinations of
sharing service, browser, and device hardware.

Next, in the online phase, the victim visits the attacker-
controlled page, which loads the leaky resource. While
the leaky resource is loaded and rendered, the attack page
measures cache activity on the victim’s computer. Finally, the
attacker passes the collected cache measurements through the
trained classifier, allowing it to identify the victim. The key
advantage of our attack is that it needs no programmatic access
to the leaky resource, and does not assume the existence of any
XS-leak. This is because side-channel attacks take advantage
of hardware-level properties of the victim’s computer, and
therefore disregard any software-imposed boundaries such
as site, process and even VM isolation. In our particular case,
side-channel attacks make deanonymization possible as long
as content from the attacker’s website is rendered on the same
computer as content from the sharing website.

For the classifier to be able to differentiate between target
and non-target users, the attack page needs to measure the
cache for a certain attack duration, denoted as ta, which
depends on the attack setup, i.e., the combination of sharing
service, browser used by victim, and cache measurement
method. For most attack setups, ta is less than 3 seconds.

The techniques we present share a common structure:
First, the attacker allocates a buffer as large as the cache.
Next, the attacker causes the victim’s browser to load the
leaky resource. Then, for the attack duration ta, the attacker
repeatedly probes the buffer while the victim’s browser loads
and renders the leaky resource. Finally, the script uploads the
collected side-channel trace to the attacker’s server. Our cache
occupancy code is based on the PP0 repository [18].

3.2 Embedded Content

Several highly popular services such as YouTube, LinkedIn,
and TikTok present an ideal opportunity to maximize the
attack’s impact given their large user base. However, these
services prevent direct sharing of resource URLs, instead
requiring users to share embedded players, either as <iframe>
objects or as included scripts. The embedded player will then
attempt to load the shared resource, but would not indicate
any success or error conditions to the parent frame.

In general, cross-site embedding through an <iframe>
object minimizes the possibility of XS-leaks. This is because
cross-origin access to <iframe> elements is very limited [19].
Moreover, a sharing website can directly address any known
XS-leaks: For navigation leaks, the website can change the
behavior so the <iframe> has the same navigation events in

1For an online-only variant of our attack, please see Appendix C.

1508    31st USENIX Security Symposium USENIX Association



1 startCacheAttack();
2 i = document.createElement("iframe");
3 i.src = "SD-URL";
4 document.body.appendChild(i);
5 waitForPageToLoad(t_a);
6 i.remove();
7 uploadTraceData();

Figure 2: Embedding method: <iframe> tag.

different states (the CSPViolation patch in LinkedIn [2]); for
event-based leaks, the website can ensure that the same event
is returned in different states (the EF_StatusError patch
in Imgur and HotCRP [2, 20, 21]); and for frame-counting
leaks, the same number of frames can be returned (the
OP_FrameCount patch in LinkedIn [2]).
Our Approach: Instead of using XS-leaks, we measure
the cache activity of the victim’s computer while it loads
and renders content from the resource-sharing website. As
described by the code snippet in Fig. 2, the attack web
page initiates the cache activity measurement (line 1), uses
JavaScript to insert an <iframe> tag and load the leaky
resource inside it (lines 2-4), takes cache measurements for the
duration ta (line 5), and finally removes the <iframe> (line
6) and uploads the traces to the server (line 7).

3.3 Pop-Unders and Tab-Unders

Up until the findings in this work, some scenarios were
considered safe from the reach of deanonymization attacks.
First, web browsers such as Safari, Tor, and Brave, have
a strict policy to disable cookies by default when making
cross-site requests. As such, users of these browsers may
believe they are shielded from targeted deanonymization
attacks via leaky resources. Second, popular services such
as Twitter and Facebook explicitly prevent their content
from being embedded inside other websites, either by using
the X-Frame-Options or the Content-Security-Policy
frame-ancestors headers to prevent cross-site embedding
of their resources, or by using the SameSite cookie policy,
which causes embedded content to be loaded without
identifying cookies. Knittel et al. identified some cross-site
leaks which can be applied even when the sharing website is
loaded through a pop-up window, thereby bypassing framing
and cookie restrictions [4]. This selection of leaks is, however,
very limited, and still requires programmatic access to the new
pop-up window, an ability which can be blocked in modern
browsers by the cross-origin opener policy (COOP) [22].
Our Approach: We surreptitiously load the shared resource
in a new browser window (pop-under variant) or in a browser
tab (tab-under variant). In contrast to prior work on pop-up
attacks [23, 24], we need no programmatic access to the
newly-created window. Using a CPU cache side channel, the
attacker indirectly learns private information cross-window
or cross-tab, without necessarily needing a handle to the
related tab or window. Also, unlike other work in which the
pop-up window or the new tab remain in the foreground, our

1 function go() {
2 startCacheAttack();
3 pu = window.open("SD-URL", ... );
4 ghost = window.open("about:blank");
5 ghost.focus(); ghost.close();
6 waitForPageToLoad(t_a);
7 pu.close();
8 uploadTraceData(); }

Figure 3: Embedding method: pop-under.

1 function go() {
2 ownurl = document.URL + "?run=1";
3 window.open(ownurl , ... );
4 window.location.href = "SD-URL"; }
5 if(URLparams["run"] == 1) {
6 startCacheAttack();
7 waitForPageToLoad(t_a);
8 uploadTraceData(); }

Figure 4: Embedding method: tab-under.

attack includes specific steps to put the new window/tab in
the background, making the attack less noticeable by the user.

To launch the attack, the attacker’s page first lures the victim
to click on the page. The click event allows the attack page to
open another window or tab. Instead, however, of launching a
pop-up window on top of the existing page, the attacker opens
a page which loads in the background. As a result, the user
still sees the original attack page.There are two variants to our
method: In the pop-under variant, we load the sharing website
inside a pop-up window, and then abuse the victim browser’s
window ordering logic to force the attacker’s webpage back
into focus. In the tab-under variant, we load a copy of the
attacker’s webpage in a new tab, and then replace the attacker’s
old tab with the sharing website using the standard navigation
API. The main difference between the two methods is in the
programmatic access to the window containing the sharing
website content – in the pop-up variant, the attacker has a
reference to the sharing website window (as long as COOP
does not prevent this), while in the tab-under variant, the
attacker and sharing website are completely isolated from a
programmatic standpoint.

Fig. 3 describes the pop-under attack variant. The
go() function, executed on user click, starts cache activity
measurement (line 2), and then opens a new pop-under
window to load the leaky resource (line 3). Because the
pop-under window loads in the background, the user does
not notice the attack. The attack page, which is in focus, takes
cache measurements while the leaky resource is loaded in
the pop-under window (line 6). Once the measurements are
collected, the pop-under window is closed (line 7). Because
the content is loaded in a new window, and not in an <iframe>,
requests to the sharing website are not subjected to cross-site
embedding restrictions employed by these services, and
browser third-party cookie-disabling policies do not trigger.

Causing a pop-under window to load behind the active page
requires abusing the victim browser’s window-ordering logic.

USENIX Association 31st USENIX Security Symposium    1509



0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

Time (sec)A
ve

ra
ge

B
uf

fe
rA

cc
es

sT
im

e
(m

s)

Target
Non-Target

(a) Cache Side-Channel Traces for Targeted and Non-Targeted Users.

0 0.2 0.4 0.6 0.8 1
0

20

40

60

80

100

Time (sec)

C
la

ss
ifi

ca
tio

n
A

cc
ur

ac
y

(%
)

(b) Classifier Accuracy vs. Time.

Figure 5: A Proof-of-Concept Attack.

Advertisers are actively looking for these pop-under tricks, and
browser vendors are constantly patching them [25, 26]. For
the purpose of this paper, we identified a pop-under technique
for Safari: Immediately after opening the pop-under window,
the attack page opens a second window (ghost), brings focus
to it, and then closes it (lines 4-5). In Safari 15.2, closing the
ghost window returns focus to the attack page, placing the
pop-under window in the background. This happens very
quickly and, as a result, the victim does not notice anything
unusual happening in the attack page.

Fig. 4 describes the tab-under attack variant, which can be
used if a pop-under exploit cannot currently be found for the
victim’s browser. As described in the figure, the go() function,
which runs upon user click, opens a second instance of the
attack page, with an added URL parameter (lines 2-3). The
focus is now on this second instance, which looks identical to
the first instance, so this action is barely noticeable by the user.
The second instance of the attack page now starts collecting
cache measurements (lines 5-8). Meanwhile, after opening the
new tab, the first instance of the attack page, which is now in the
background, navigates to the SD-URL of the shared resource
(line 4). Since the first tab is not in focus, the victim does not
notice the leaky resource being loaded in this tab. In contrast to
the pop-under variant, this variant does not abuse any window
ordering APIs, and as such is supported by all of the browsers
we evaluated. As a downside, this method does not grant the
attacker programmatic access to the tab-under window, making
it impossible to close the window after the attack concludes, or
to cause it to navigate to another address. Using the tab-under
variant, we executed the leaky resource attack successfully in
all the browsers we tested, including Safari, Tor, and Chrome.

3.4 Playlists

Conventional deanonymization methods can be scaled to
multiple users by loading multiple resources in a row [1, 8].
The tab-under attack variant can only load a single URL, since
it lacks programmatic access to the new window. As a result,
it is not clear how tab-under attacks can be scaled to target
multiple users.

Our Approach: Despite this constraint, we were able to effi-
ciently scale the attack in this setting to a group of target users,
when the target users have accounts on a particularly important
service – Google/Youtube. This feat is made possible by a
unique property of YouTube, related to the way it processes
playlists. In YouTube, a user can create a playlist containing
multiple videos and share this playlist with viewers through a
public URL. If there are private videos in this playlist, and the
user currently viewing the playlist is not authorized to view
some of them, the YouTube player simply skips the unautho-
rized videos and plays the rest. Different users, therefore, will
each view a different sequence of movies when they view a
shared playlist. To exploit this, the attacker shares YouTube
videos with target users according to a certain sharing pattern,
described in Sec. 4.4, creates a public YouTube playlist that
includes these shared videos, and mounts a tab-under attack
pointing to the URL of this playlist. The cache trace resulting
from playing back this playlist lets the attacker deanonymize
an amount of users exponential in the playlist’s length.

4 Attacks

Proof of concept. Figure 5 illustrates the concept of our
attack. In the experiment illustrated in the figure, the attacker
causes the victim to load a resource from a sharing website, in
this particular case YouTube, while capturing the side-channel
trace using a cache occupancy attack. Sub-figure 5 (a) shows
the side-channel trace as a function of time, measured as the
average time required to access the attacker’s eviction buffer.
The two traces show averages made over 100 measurements
each of target and non-target states, captured on a machine
running Chrome for Windows. As the figure shows, the two
traces start identically, but quickly diverge around the 200
ms point. The cache occupancy of the non-target state rises
earlier and then returns to an idle state at around 500 ms, while
for the target state the occupancy rises slightly later and then
remains high. As possible interpretation of these two traces,
we hypothesize that the server was slightly faster to respond in
the case of a non-target, as previously identified by Watanabe
et al. [9], but the non-target content returned by the server

1510    31st USENIX Security Symposium USENIX Association



did not include video content. For the target, on the other
hand, content took slightly longer to serve, but it included
video content, which generated constant pressure on the cache.
This difference in cache occupancy can be quickly captured
through a machine learning classifier.

Sub-figure 5 (b) shows the accuracy of a logistic regression
classifier, which is provided with increasingly large subsets
of the side-channel trace. For each point t in the graph, the
classifier is given the side-channel data for the time range
{0...t}, and then its accuracy is measured using 10-fold cross
validation. The bold line represents the mean accuracy over the
folds, while the light area surrounding it indicates the standard
deviation. We see that the accuracy of the classifier starts close
to a random guess, rises significantly starting at the 200ms
mark, and approaches perfect accuracy after 600ms. As this
proof-of-concept experiment shows, an attacker observing the
side-channel trace can quickly and effectively tell apart target
and non-target states through the cache side channel, without
relying on any cross-site leaks. In the following section, we
systematically investigate this attack on a variety of websites,
browsers, and target hardware microarchitectures.

4.1 Experimental setup

We examined three browsers, each with different default
privacy policies and distinct browser engines. The Chrome
browser (based on the Blink engine) allows third-party
cookies, whereas Safari (based on the Webkit engine) and Tor
(based on the Gecko engine) browsers do not allow third-party
cookies. We conducted experiments using five system
configurations, suggestively named using the combination
of OS and browser: Win-Chrome, Win-Tor, Mac-Intel-Safari,
Mac-M1-Chrome, Android-Chrome. A detailed specification
of these configurations is provided in Table 4 of Appendix A.
Selected Services. We selected the following popular
sharing websites to demonstrate the impact of our attacks:
Google (including all Google properties such as YouTube,
GDrive, Google Photos, GMail, etc.), Twitter, Facebook,
Instagram, LinkedIn, Reddit, and TikTok. Together, their user
base covers a vast majority of Internet users. The choice of
services, browsers, and devices can be further expanded. We
made these choices to cover a set of affected users as diverse,
as large and as inclusive as possible in a limited amount of time.
For YouTube and Reddit, we used the private sharing-based
approach, whereas for Twitter, LinkedIn, TikTok, Facebook,
and Instagram, we used the blocking-based approach. We
alternated between the <iframe> embedding method, the
tab-under method and the pop-under method, depending on
whether the browser allows cookies with cross-site requests,
and on whether the service allows cross-site embedding of
its authenticated resources. Additional embedding details for
each sharing service are provided in Appendix B.

The attack page. We prepared two attacker accounts on
each sharing website, and uploaded a resource to each of the
accounts. For the private sharing-based approach, the resource

in the first attacker account (Resource A) was privately shared
with the victim, and the resource in the second attacker
account (Resource B) is not shared with the victim. For the
blocking-based approach, both Resource A and Resource B
were publicly shared, but the first attacker account blocks the
victim, while the second account does not.We then prepared
two attack pages: Page A embeds Resource A, and Page
B embeds Resource B. Loading Page A simulates a target
user, whereas loading Page B simulates a non-target user.
We interleaved loading Page A and Page B, to make sure the
classifier is trained on the difference between states, and not
on the global state of the system. To automate the experiments,
we used Selenium (for Windows-based systems), AppleScript
(for MacOS-based systems), and Samsung Remote Test Lab
(for mobiles). The attack pages were hosted on a Windows
Server 2019 running on Amazon AWS EC2.

Data analysis methodology. We use supervised machine
learning to analyze the cache measurement data. To build our
data sets, we collect cache occupancy samples while a target
and a non-target user load the attack page. For single-target
attacks, we chose logistic regression after a pilot experiment
with multiple classifiers. For multi-target attacks, we chose
a long short-term memory (LSTM) neural network model
which was shown to be effective for multiclass classification
when used for website fingerprinting attacks using cache side
channels [7]. The parameters used for these classifiers are
provided in Appendix A.

For each attack setting, a subset of the samples is used to
train a classifier, which is then used to predict whether a user
loading the attack page is the targeted victim. We determined
experimentally that a dataset of 200 samples (100 target
samples and 100 non-target samples) is sufficient to yield high
attack accuracy. To prevent over-fitting the classifier to the data
set, we apply 10-fold cross validation. The per-fold accuracies
are then combined to produce a single estimate for the mean
and standard deviation of the attack accuracy. Analysis was
performed using Scikit-Learn v1.0.1 [27] and TensorFlow
v2.7.0 [28] with Python v2.7.12 in Google Colaboratory [29].

4.2 Experimental Results

Table 1 shows the attack accuracy for the various system con-
figurations we considered. The table also includes results with
the Leakuidator+ defense enabled, which will be introduced
in Sec. 5. Overall, the attacks have over 90% accuracy for a
majority of the 28 attack setups considered, indicating that
cache-based deanonymization attacks are effective across a
variety of services, browsers, and microarchitectures.

Several factors affected the value of ta. The primary factor
was the precision of the browser’s time measurement API.
Due to the high precision of the time API on Chrome and
Safari, ta was generally under 3 seconds for the Win-Chrome
and the Mac-Intel-Safari system. The Tor Browser has a
lower-precision time API, and the Tor network has higher
latency. As a result, the Win-Tor system had a higher ta of 5 to

USENIX Association 31st USENIX Security Symposium    1511



System Win-Chrome Win-Tor Mac-Intel-Safari Mac-M1-Chrome
Service ta Base +Defense ta Base +Defense ta Base ta Base +Defense
Google 1 98±2.5 51±8.6 5 92±8.1 47±6.8 1 100±0 1 100±0 45±7.4
Twitter 2 97.5±3.4 46.5±9.5 5 94.5±4.2 47.5±9.3 2 100±0 1 98.5±3.2 49±9.2
LinkedIn 2 100±0 55±7.8 5 84.5±6.1 44.5±10.1 1 86.5±6.3 1 98.5±2.3 53.5±14.5
TikTok 3 84.5±5.7 51.5±5.5 5 93±6 51±12.8 3 91.5±5 2 98±3.3 55.5±8.5
Facebook 2 100±0 41±10.4 5 96.5±5 44±10.4 5 84±7 1 97.5±3.4 44±7
Instagram 1 88.5±7.1 51±8.3 10 76.5±8.4 54±8.3 2 92.5±3.4 1 95.5±4.7 45±10.5
Reddit 3 89.5±8.5 45±11 8 70.5±12.5 48±9.3 3 88±5.6 3 81±7 51±11.6

Table 1: Summary of experimental results. Attack accuracy (%) is shown both before and after applying Leakuidator+. ta is
the attack duration in seconds. Average and standard deviation are obtained using 10-fold cross-validation as described in Sec. 4.1.

10 seconds. An additional factor is the way website behavior
impacts exposing differences in user states. For example,
YouTube initially loads a player and then, depending on user
state, either plays the privately shared video automatically, or
does not load the video at all. As a result, the initial part of
the side-channel trace, in which the player is loaded, does not
contribute to accuracy. Similarly, some websites, in particular
Instagram, TikTok and Reddit, expose smaller but continuous
differences between user states. For these websites, the
classifier needs a longer ta to reach peak accuracy.

The attack on the Mac-M1-Chrome system required
additional fine-tuning. Although Chrome has sub-millisecond
time API precision, using the Cache Occupancy measurement
method was not enough to capture cache activity patterns,
due to the high speed of the M1’s cache. To overcome this
limitation, we used the Sweep Counting method with a 10
millisecond measurement interval. This yielded a high attack
accuracy for all sharing websites.

In general, we experimented with videos of various sizes
and durations, all resulting in successful attacks; the smallest
video was 3.84KB with 1s duration. Since the videos are
streamed by an embedded video player from the sharing
service, the attacker is less concerned about their size or
duration, as long as they play long enough for the attack.

4.3 Attacking Mobile Phones

The attacks described so far are desktop-centric. Most
significantly, they assume the victim is logging in to the
sharing website through a web browser. Many users, however,
access sharing websites through their mobile phones. In
contrast to desktop users, mobile phone users do not tend to
use the web browser installed on the mobile phone to access
services such as Twitter, GMail and Instagram, relying instead
on dedicated apps. As a result, the mobile browser does not
typically have cookies for the targeted websites.

There is one case, however, in which the mobile browser
is almost universally logged in: The Chrome browser, which
is installed on Android phones, is tightly integrated with
Google services. The browser encourages users to “Sign into
Chrome”, an action that effectively causes the browser to log
into all Google services. Due to this feature, it is possible

to deanonymize Android users based on their GMail email
addresses, as we show next.

We carried out a limited evaluation of our attack on the
Android-Chrome system, an ARM-based Samsung Galaxy S21
device described in more detail in Table 4. We first opened
the Android Chrome browser and followed the prompts to
log in to Google services. Next, we browsed to a web page
containing an embedded Google Drive video shared only with
the target user, and collected side-channel traces using the
sweep counting method. We collected 100 traces each for the
target and non-target state, and evaluated the performance of
our classifier, using the methodology described in Section 4.1.
This yielded an attack accuracy of 91%, indicating that our
deanonymization attack is effective in a mobile setting as well.

One concerning aspect of our mobile phone attack is the
issue of mobile browser extensions. Whereas the desktop
version of Chrome allows its behavior to be modified by
third-party browser extensions, the mobile version of Chrome
has no extension support. Thus, it is not possible to install our
defense on this target, as we discuss in more detail in Sec. 7.

4.4 Scaling to Multiple Targets

In some situations, an attacker may want to target a group
of users instead of a single user. The goal of the attacker is
to identify which specific user among a list of n target users
is visiting a particular website. Staicu et al. [1] showed this
can be done efficiently in the context of previously known
XS-leaks, by using log(n) leaky resources.

A question then arises: “How can we scale the attack
to target a group of users under the new attack scenarios
introduced in this work?” In this section, we provide concrete
techniques to scale the attacks under these new scenarios.

Staicu et al. [1] proposed to scale the attack by privately
sharing each of the log(n) resources with a subset of the n
users, such that the specific subset of resources loaded by
the attacker webpage will reveal the identity of the user. This
basic pattern also works with the blocking-based approach,
except that the attacker uses log(n) attacker accounts, each
of which owns one of the log(n) resources [8].

The attack: In the training phase, the attacker takes cache
measurements and builds a cache profile for each of n states,

1512    31st USENIX Security Symposium USENIX Association



Service System ta Base +Defense
LinkedIn x 8 Win-Chrome 6 99.12±0.8 15.63±3.55

Twitter x 8 Mac-Intel-Safari 6 97±1.9 N/A

YouTube x 8 Win-Tor 45 78.88±3.33 11.75±3.07

Table 2: Scalable attack results for 8 user states. Attack
accuracy (%) is shown both before and after applying the
Leakuidator+ defense. ta is the attack duration in seconds.

corresponding for the target users. These measurements are
used to train a machine learning classifier. As a prerequisite to
scale up the attack, the attacker must be able to load multiple
shared resources during a single visit of the victim to the
attacker’s website. If the browser allows third-party cookies,
and if the sharing service allows cross-site embedding, we
load multiple <iframe> elements, each containing a different
shared resource. This method will not work, however, for
sharing websites which do not provide an embedding option,
or for browsers such as Safari or Tor which restrict third-party
cookies in cross-site requests. In these settings, like in the
single-user attack, we use the pop-under and tab-under meth-
ods, as described in Sec. 3.3: For Safari, we use a pop-under
technique which allows us to load different shared resources
sequentially in the pop-under window by changing the pop-
under window’s window.location field. For the Tor Browser,
we use the tab-under technique, loading the URL of a YouTube
playlist containing multiple shared videos in a background tab.
We note that this approach works only for Google/YouTube.

A sharing pattern for playlists: The basic sharing pattern is
not effective for Tor, because if one video in the playlist does
not load, the playlist goes to play the next video and we cannot
determine if the previous video was loaded or not. Instead,
we leverage the fact that the duration of a video and the time
the player switches between videos in the list is a source
of difference in cache profiles. The playlist contains log(n)
pairs of videos, where each pair has two videos of different
duration: one short (s) and one long (`). Thus, the playlist
contains videos V s

1 ,V
`
1 ,V

s
2 ,V

`
2 ,...,V

s
log(n),V

`
log(n). For each user

i (with 1≤ i≤ n), consider the binary representation of i as
b1b2...blog(n). We associate each of the log(n) pairs of videos
with a bit in this binary representation. For 1≤ j≤ log(n), if
b j is 0, then the attacker shares privately with user i the video
V s

j , otherwise the attacker shares the video V `
j . As a result, the

playlist plays log(n) videos, and the specific combination of
videos will be used to identify the user.
Scaling Evaluation: Since the attack requires only a
logarithmic number of leaky resources relative to the number
of targeted users, the attack can be scaled to track thousands
of users while still requiring a reasonable amount of time. As a
proof of concept, we evaluated the effectiveness of the scaled
multi-user attack with 8 states (seven states for the targeted
users, plus one state for non-target users). We considered three
settings: 1) LinkedIn under Chrome for Windows is a setting
where third-party cookies are supported by the browser; 2)

Twitter under Safari for Mac is a setting where third-party
cookies are not supported by the browser, but there exists
a pop-under method allowing post-popup navigation. 3)
Google/Youtube under Tor for Windows is the most extreme
setting, where third-party cookies are not supported by the
browser, and there is no pop-under method which allows post-
popup navigation. The attack could tell the victims apart with
high accuracies in all three settings, as indicated in Table 2.

5 Defenses

We now turn to the design of a countermeasure against
the attacks we discovered. Our attack operates at the
microarchitectural level, learning about the victim’s state by
observing the CPU cache. As such, it cannot be obstructed
neither by software-based isolation mechanisms such as
SameSite cookies, cross-origin read blocking or cross-origin
opener policies, nor by server-side isolation mechanisms
such as self-reloading landing pages [12]. Instead, we turn
to techniques from the field of side-channel defenses.

As stated by Mangard et al. [30], there are two general
defense approaches against side-channel attacks. The first is
mitigation, or hiding, which tries to make attacks impractical
by reducing the signal-to-noise ratio of the side-channel trace.
The second is prevention, or masking, which tries to make
attacks theoretically impossible by removing all dependencies
between the side-channel trace and any secret-bearing
computation. We first evaluate a mitigation-type defense,
which is simpler to design and implement. Specifically, we
ran external code that generated artificial cache noise while
the cache trace was collected, as well as playing videos or
loading websites in other tabs of the browser. We found that
a noise-based defense is not effective against a well-prepared
attacker. As a result, we focused on a more systematic
approach based on side-channel leakage prevention.

5.1 A First Approach: Adding Artificial Noise

The first defense we evaluated was a simple noise-based hiding
defense. Specifically, we ran external code that generated
artificial cache noise while the cache trace was collected, and
checked whether this added noise can prevent the detection
of the cache signatures required by our attacks.

We considered two sources for cache noise: CPU stress tests
and web browsing activity. For stress-test noise, we evaluated
four CPU cache-focused stress-ng tests [31]: binary search
(bsearch), heap-sort (heap), wide-spread memory reads and
writes (cache), CPU-intensive operations (cpu) 2.

For web-browsing noise, we evaluated two web-browsing
activities: a YouTube video player (play), and a Wikipedia
webpage which was reloaded once per second (wiki). These

2Exact command line parameters were as follows:
bsearch: stress-ng –bsearch 0
heap: stress-ng –heapsort 0
cache: stress-ng –cache 0 –cache-level 3 –cache-ways 16
cpu: stress-ng –cpu 8

USENIX Association 31st USENIX Security Symposium    1513



bsearch heap cache cpu play wiki

No-Noise 47.5% 50% 50% 49% 50% 99%

Known-Noise 87% 87.5% 84% 79% 99% 99%

Unknown-Noise N/A N/A 83% 84% 95% 98%

Table 3: Attack accuracy under various types of noise.
Stress tests: binary search (bsearch), heapsort (heap), wide
spread memory reads and writes (cache), and CPU intensive
operations (cpu). Web browsing: YouTube player (play) and
Wikipedia page (wiki).

activities were performed in a second browser tab loaded
together with the attack page.

We considered three attack scenarios, which simulate
different amounts of information the adversary has about the
defenses employed by the victim. In the No-Noise Scenario,
training was done in the absence of noise, while testing was
done in the presence of noise. In the Known-Noise Scenario,
the traces used both for training and for testing were gathered
in the presence of the same type of noise. Finally, in the
Unknown-Noise, training was done on data gathered under
four types of noise (no noise, bsearch, heapsort, play), and
testing was done on data gathered under the four other types
of noise (cache, cpu, play, wiki). All three scenarios were
evaluated with an attack page that embeds a YouTube video
in an <iframe> in the Chrome browser under Windows, and
that uses a regular cache occupancy method.

Table 3 shows the results of this noise-based defense. We
observe that under the No-Noise scenario, the attack accuracy
remains around 50% for all noise sources other than wiki,
suggesting the noise-based approach may be effective against
an unprepared adversary. Unfortunately, this is not the case
when the adversary has prior awareness of this noise-based
defense: Under the Known-Noise scenario, the attack accuracy
varies between 79% and 87.5%, which is somewhat lower than
the 98% accuracy observed in the absence of all defenses, but
still significantly higher than the base rate of 50%. To make
things worse, as the Unknown-Noise scenario shows, attacks
are still possible even when the attacker does not know the
type of noise the victim plans to use as a defense. We therefore
conclude that a simple noise-based defense is not an effective
countermeasure against our attacks.

5.2 Leakuidator+

We now describe the design and implementation of our
main defense proposed in this work, Leakuidator+. The
countermeasure is compatible with the desktop versions of
Chrome, Firefox and Tor Browser, and is already available
on the Chrome and Firefox extension stores [10, 11].
Leakuidator+ is based on Leakuidator [3], a previously-

proposed client-side defense designed to protect against XS-
leak-based targeted deanonymization. We first describe the
original Leakuidator defense, highlight the changes made to

Web
Browser

Leakuidator+

Extension
Sharing
Website

Req Req

RespResp

(Delay td)
Req∗

Resp∗

Figure 6: Interaction Diagram for Leakuidator+.

this countermeasure to make it effective against the novel at-
tacks described in this paper, and finally show an experimental
validation of the effectiveness of the proposed defense.

Figure 6 shows the exchange of messages between the
browser, the extension, and ultimately the sharing website.
As the figure shows, the process starts when the browser
sends a web request Req, together with cookies, to the sharing
website. When the extension intercepts this request, it
classifies the request as potentially risky if the request contains
cookies and is cross-site. In that case, the extension strips the
authentication cookies from the request, and only then passes
it on to the sharing website. Since the sharing website does not
have access to the authentication cookies, its response Resp
trivially contains no identifying information about the user.
When the extension receives the response Resp, it passes it
directly to the browser for rendering.

This mechanism can be used to block all third-party cookies.
Such behavior, however, is not appropriate in many cases –
cookies are important for many existing web functionalities,
including analytics and tracking. To remain compatible
with these use-cases, the extension generates a fresh request,
labeled Req∗, containing the cookies stripped from Req. The
extension then sends Req∗ to the sharing website in the form
of a HEAD request. The additional delay td between the
transmission of Req and the transmission of Req∗ is unique
for Leakuidator+, and the reason for its inclusion will be
described below. The personalized response that the sharing
website sends back, labeled Resp∗, is never forwarded to the
browser for rendering – it is only analyzed by the browser
extension. As long as the browser’s extension API prevents
the webpage from accessing the fields of Resp∗, the user is
again protected from XS-leak-based deanonymization. The
extension finally compares Resp and Resp∗. If there are
any observable differences between the two, the extension
indicates this to the user through the browser toolbar.

We made a series of changes to Leakuidator so that it
protects against the new attacks proposed in this paper.
Protecting against pop-unders and tab-unders. The orig-

1514    31st USENIX Security Symposium USENIX Association



inal Leakuidator was only configured to offer protection in
cases of cross-origin web requests. This covers the existing
class of XS-leak-based attacks, but specifically excludes any
first-party requests from protection. Hence, no protection is
provided against the pop-under and tab-under embedding meth-
ods used by our attacks. Since wholesale blocking of all first-
party cookies would immediately break the functionality of
many web pages, we selected a more refined approach to decide
when to activate our protection. Specifically, Leakuidator+
keeps track of which browser tabs and windows were created by
which webpage, creating groups of related tabs and windows.
This is done by monitoring the webNavigation API to detect
when a new tab or window is opened, and recording the rela-
tions between parent and child. When a request is made in ei-
ther a parent or a child window/tab, the extension detects if the
request’s domain is different from the top-level domain in the
related window/tab, and applies the defense. Leakuidator+
excludes from the defense any tabs that are manually created
by the user (e.g.. by clicking on the “+” or “New Tab” button).

Removing residual side-channel leaks. As Leakuidator
was shown to be effective at preventing leaky resource attacks
based on known XS-leaks, we expected it to be immediately ef-
fective against the side channel-based leaks investigated in this
work. We were instead surprised to find that it is ineffective. For
example, when we launched an attack using an image hosted
on Google Drive in the Chrome browser, we could visually ob-
serve differences in the CPU cache side-channel measurements
between target and non-target users, even when Leakuidator
was enabled. These differences were also exploitable by our
machine learning classifier. As a result, our attack remained
highly effective despite the presence of Leakuidator, achiev-
ing a 86% attack accuracy instead of the expected base-rate of
50%. This finding is counter-intuitive – when Leakuidator
is installed, the server does not respond with the image content,
and the browser does not render any leaky resources.

We performed a detailed analysis to understand this finding,
and uncovered two subtle reasons that cause observable
differences in the side-channel measurements. First, there
is a server side channel related to Resp∗, (i.e., the response
to Req∗, the second request initiated by Leakuidator). In
particular, we noticed that the server takes a different time
to respond, if a user is allowed or not to access the shared
resource. This timing side channel was originally used by
Watanabe et al. to launch deanonymization attacks on several
popular services using XS-leaks [8, 9]. In our case, even
though Resp∗ is not forwarded to the browser, and therefore
not available to an attacker using XS-leaks, the mere fact
that it is processed by the browser’s extension framework is
enough to cause an exploitable side-channel difference.

Second, we discovered a client side channel in the extension
itself. The extension performs various operations on Req and
Resp, including recording header names and values, using
them to prepare Req∗, and finally comparing the fields of
Resp∗ and Resp. Thus, the extension itself amplified the

differences between the target and non-target user states,
resulting in observable differences.

To mitigate the server side channel, Leakuidator+ adds
a small random delay td before sending the second request,
Req∗. This delay also randomizes the arrival time of the
server response Resp∗, making it impractical for an attacker to
perform an attack based on this signal. Since the largest value
we observed for the timing side channel was on the order of
100 ms, we chose td uniformly between 0 and 1 second. We
note that since Resp∗ is not sent to the browser for rendering,
the only user-noticeable side-effect of this added delay is a
slightly delayed notification in the browser toolbar.

To mitigate the client side channel, Leakuidator+ mini-
mizes the operations performed while analyzing the request
and response headers, limiting itself to only inspect and record
the headers that are strictly necessary. Instead of recording
and using the headers from Req, Leakuidator+ relies on the
browser to prepare Req∗ headers. Also, Leakuidator+ only
records the Resp headers used for comparison with Resp∗,
instead of recording all Resp headers.

Preserving legitimate functionality. It is natural to analyze
the impact of our defense on legitimate website functionality.
We note that Leakuidator+ is built on top of Leakuidator,
which was designed to preserve functionality such as user
tracking and analytics. In legitimate scenarios such as third-
party authentication requests, Leakuidator+ notifies the user
about the request, requiring them to interact with the extension
and complete the process after marking the request as safe.

Extending support to additional browsers. The original
Leakuidator extension was only usable on Google Chrome
and other Chromium-based browsers such as Microsoft Edge,
Brave, Opera and Yandex. Since additional browsers now
support the same WebExtension API offered by Chrome, we
ported the extension to the Firefox and Tor browsers as well.

Evaluation. We performed a comprehensive set of exper-
iments to validate Leakuidator+’s effectiveness. As summa-
rized in Table 1, when Leakuidator+ is enabled, the attack
accuracy becomes equivalent to that of a random guess. Our
countermeasure was able to prevent the attacks we discovered
on multiple websites, multiple browsers, and multiple hard-
ware microarchitectures, all while remaining compatible with
existing uses for cookies in navigation, tracking and analytics.

We also evaluated Leakuidator+’s effectiveness against
attacks targeting a group of users. Table 2 shows the attack’s
accuracy drops near the baseline level of 12.5%, which is
equivalent to a random guess for the considered 8-state setup.
Leakuidator [3] was shown to incur a small perfor-

mance overhead, thus minimally impacting user experience.
Leakuidator+ does not make changes that would signifi-
cantly affect those overheads, including load time, number
of requests, and data transferred.

Security Analysis. Leakuidator+ provides by design pro-
tection against the main known XS-leak types, such as those

USENIX Association 31st USENIX Security Symposium    1515



described in Sec. 2.1. We have also shown experimentally that
the defense renders cache-based attacks impractical.

Recently, Knittel et al. [4] introduced a formal model for
XS-leaks, building on work of Sudhodanan et al. [2]. The
authors systematically search for XS-leaks and find 14 new
attack types grouped in four categories. In the remainder
of this section, we describe how Leakuidator+ protects
against these. Although our analysis does not necessarily
guarantee protection against new unknown XS-leaks, we view
it as compelling evidence that Leakuidator+ is an effective
defense mechanism against targeted deanonymization attacks.

Leak Technique: Global Limits exploits browser limits. The
limit on number of WebSocket connections allows an attacker
to differentiate user states by detecting a webpage’s number
of WebSocket connections [32]. Leakuidator+ removes
cookies from the initial GET request, resulting in same number
of connections in different user states. The response to the
HEAD request initiated by Leakuidator+ is not rendered by
the browser, thus no connections are established.

The limit on the number of UI elements for the Payment
API allows an advertiser to learn whether a user attempted to
purchase an advertised item after clicking on an affiliate link,
and is not a deanonymization attack.

Leak Technique: Performance API allows an attacker to dif-
ferentiate user states by inspecting the browser’s Performance
entries. It was previously used to detect the X-Frame-Options
header in Google Chrome [33]. When Leakuidator+
is enabled, Resp has same effect on these entries in both
target and non-target states. To eliminate any potential leak
that could arise from Performance entries related to Resp∗,
Leakuidator+ removes these entries when Resp∗ arrives.

Leak Technique: Error Messages allow an attacker to learn
the target of a redirect. In Webkit-based browsers, primarily
Safari, if a CORS-enabled request fails, it is possible to access
CORS error messages, including the full URL of the redirect
target; in addition, the Subresource Integrity error message
can leak the response size. These XS-leaks could possibly
be used for targeted deanonymization if the errors rely on
authentication cookies sent along with cross-site requests.
However, Safari blocks third-party cookies by default.

Leak Technique: Readable Attributes. Web apps can use
the Cross-Origin Opener Policy (COOP) to prevent other
websites from gaining arbitrary window references to the
application, e.g., through pop-up windows. Reading the
value of the contentWindow attribute may allow an attacker
to learn if COOP is enabled and thus potentially differentiate
between user states. Leakuidator+ protects against this by
applying the defense to groups of related tabs/windows that
have different top-level domains.

6 Related Work

XS-leaks usually exploit cross-site information in a binary
form: questions with YES or NO answers, where the response
is visible to the attacker. xsleaks.dev is a community-driven

website dedicated to collecting knowledge about APIs that
can be used for such cross-site leaks. These include window
references, frame counting, error events, navigation, response
cache probing, ID attribute, postMessage broadcasts, CORB
and CORP leaks, and timing attacks [1, 2, 23, 24, 34–55].

There has been academic effort to give a structure to XS-
leaks by classification. Recently, Knittel et al. [4] introduced
a formal model for XS-leaks, building on work of Sudhodanan
et al. [2], and systematically searched for new XS-leak attack
classes. On the defense side, they argue that if at least one
browser is immune to a certain leak technique, this technique
can be fixed in other browsers as well, by changing their
implementation. Our client-side defense, in contrast, does
not depend on browser vendors and website owners, and can
be used immediately. We observe that many of the defenses
proposed to mitigate XS-leaks were not designed to protect
against side channels. As our work shows, attacks based on
side channels bypass these software-imposed boundaries.

Targeted deanonymization is an example of privacy leakage
through XS-leaks [1, 3]. In response to XS-leaks, a number
of defense mechanisms were proposed, including response
cache protections, subresource protections, fetch metadata,
cross-origin opener and resource policies, framing protections,
SameSite cookies, isolation policies, cross-origin read
blocking, and the partitioned HTTP cache [13, 14, 22, 56–67].

Cache attacks were proposed simultaneously by Percival
and by Osvik et al. [16, 68], and first demonstrated on the
last-level cache by Liu et al. [17]. Oren et al. presented a
JavaScript implementation of the last-level cache attack [69],
and Shusterman et al. presented the cache occupancy and
sweep counting variants, which can be run in more restricted
browser environments [6, 70]. Several works have explored
the use of micro-architectural side-channel attacks for attacks
on privacy. Jana et al. introduced the memory footprint side
channel, and showed how a malicious Android app can infer
fine-grained web-related information about a user, including
personal interests and login status [71]. Gülmezoglu et al.
showed how cache attacks can learn about running applications
in a cloud scenario [72]. Gülmezoglu et al. also showed how
a native Android app can use the cache to discover running
applications, website activity and even which videos the
victim was streaming [5]. To the best of our knowledge, we
are the first to introduce targeted deanonymization on the web
using the CPU cache side channel.

Many works have tried using different side-channel attack
methods to infer browsing activity, including power consump-
tion, GPU leaks, data statistics, performance counters, and
event loops [46, 73–80]. In contrast with the deanonymization
scenario, in which the attacker actively induces the victim to
load a resource, most of these works assume that the attacker
passively observes the victim. It is interesting to consider
how these additional methods could be applied to targeted
deanonymization, but we believe our defense should be
effective regardless of the method used by the attacker.

1516    31st USENIX Security Symposium USENIX Association

https://xsleaks.dev


7 Ethics, Disclosure and Guidance

The deanonymization attacks described in this paper are
both practical and dangerous, and can impact the privacy
of journalists, activists, and other vulnerable populations.
While we provide a browser extension that serves as a
countermeasure against these attacks, and experimentally
verify its effectiveness, there are several scenarios in which this
countermeasure is impossible to deploy. Most significantly,
the current implementation of the WebExtension API on
Apple’s Safari browser is not compatible with our extension,
and the official mobile version of Chrome provided by Google
does not support extensions at all. Users of these browsers
will thus be unable to defend themselves against the attacks
described in this paper, until content sharing sites make
non-trivial changes to the way they allow content to be shared.

It is our ethical responsibility to minimize the risk to these
users. We have opened bug reports with browser vendors
(Chromium [81], Firefox [82], Edge, Safari, WebKit, the Tor
Project), and are sharing a draft of this paper with affected
services including Google, Twitter, Meta, Microsoft, TikTok,
Reddit, and Apple. We also consider journalists and activists
part of the disclosure process, and have reached out to the or-
ganizations who advocate for them through the EFF. Until the
responsible disclosure process concludes, we plan to embargo
the results. Our countermeasure is already available in the
Chrome and Firefox extension stores, and can be immediately
installed even before the attacks are publicized. When the
disclosure process is over, we plan to publicize an easy-to-
understand description of the attack and how to mitigate it,
and to work with relevant stakeholders to make sure potential
victims know how to protect themselves. Below we provide
additional advice on ways to limit the attack’s effectiveness.

The attack works on websites even when using VPN,
since it targets the browser’s rendering process and not the
network stack. The attack will not work on websites opened
in incognito mode, unless the user explicitly logs in to the
website from the incognito session.

Guidance to Website Owners. As discussed in section 5.2,
there are two main causes for differences in the observed side-
channel leakages between targeted and non-targeted users – a
server-side timing difference and a client-side rendering dif-
ference. These differences can be mitigated through careful
design by website owners. As a positive example, we note that
Apple’s iCloud service applies most of these design principles,
and, as a result, we were not able to attack it using our technique.
Web servers typically have an authorization module, which
checks if a user is allowed to access a resource, followed by a
content delivery module, which actually makes the resource
available to the client. If an authorized user loads the resource,
both authorization and content delivery modules need to run.
For non-authorized users, on the other hand, content delivery
is not invoked at all, resulting in a faster response time which
can be observed. While we measured this faster response time

using a cache side channel, any other side channel that can
monitor traffic can also detect this difference, for example
the congestion-based method used by Schuster et al. [83].
To mitigate the timing side channel, web servers should thus
be designed to return their responses in constant time, re-
gardless of the authorization status of the user. To mitigate
client-side rendering side channels, web servers should make
their error pages as similar as possible to their content
pages. This will make it more difficult for a side-channel at-
tacker to distinguish between the two. As an example, if an au-
thorized user was going to be shown a video, the error page for
the non-targeted user should also be made to show a video. In
general, website owners should minimize any kind of attacker-
observable difference in responses they send between the two
states. In addition, websites should require user interaction
before rendering content: The scalable attack we showed on
Tor, as well as several of the video-based attacks, relied on the
fact that browsers automatically play shared videos, even if
they are loaded in a background page. The added cache activity
resulting from this video playback makes it very easy for the
classifier to tell apart users. To prevent this, website owners can
make sure that videos shared with only a subset of users require
some sort of user interaction before they are played. In general,
if there are any operations which cause an unavoidable differ-
ence in cache activity (for example playing a video or decom-
pressing a file), we recommend that the website first asks the
user to confirm this activity. Websites should also consider re-
placing blocking with “shadow-banning”. Blocking public
content from a particular user is arguably an exercise in incon-
venience – all the blocked user needs to do to access this con-
tent is simply open a private browsing window. The shadow-
banning technique applies a different approach to blocking. A
shadow-banned user is apparently able to interact with the web-
site, including viewing content, creating posts and posting com-
ments. All of the user’s comments and posts, however, are in-
visible to other users. In this approach, the public posts of users
are always accessible to other users, including those whom
they ban. As a result, it is not possible to use selective shadow-
banning to apply targeted deanonymization. On the other hand,
since other users are not exposed to the shadow-banned user’s
content, the website operators can achieve their goal of con-
trolling the discourse on the website. Finally, websites should
notify users upon sharing or blocking. Google Drive and
other sharing websites allow content to be shared without no-
tifying the recipient. Similarly, many sites do not provide any
way for a user to know when, or by whom, they are blocked.
This behavior increases the risk of the attacks we described,
since the target user has no way of knowing he or she is targeted.
To reduce this risk, website owners should always notify users
when they have content shared with them, or when they are
blocked by another user. To minimize cognitive and emotional
discomfort, websites can consider how to selectively suppress
some of these notifications without sacrificing security.

Guidance to Browser Vendors. The browser serves as host

USENIX Association 31st USENIX Security Symposium    1517



both for the attacker and for the victim. A browser which
can isolate the cache activity of the victim from the spying
eyes of the attacker, or which can prevent the attacker’s code
from performing cache occupancy measurements, would
be the ideal countermeasure. This is, unfortunately, a task
which may be impossible to carry out without redesigning
the browser, the operating system or even the CPU [84]. Even
before this protected browser becomes available, several
engineering fixes to current browsers can raise the bar for
the attackers. First, browsers should consider pop-unders
as a security threat. Pop-under windows and tabs are truly
annoying. Advertisers are always looking for new methods
for launching these pop-unders, and browser vendors are
constantly tweaking the browser’s window management logic
to prevent them [25, 26]. Going forward from the results in
this work, we argue that browser vendors should no longer
consider pop-unders as a mere annoyance, but instead consider
them as security risks. This includes both actively blocking
this browsing pattern, and applying cross-site protections to
content loaded into pop-ups. Browser vendors should also
allow browser extensions to modify request headers. The
defense we presented works by carefully processing the header
fields of the requests sent out by the browser – inspecting fields
in the request headers, comparing two responses to search for
privacy leaks, and ultimately changing or removing fields –
removing cookie headers from requests and set-cookie headers
from responses. All of these stateful processing steps are made
possible by an extension API named webRequestBlocking,
which allows extensions to intercept, block, or modify
requests in-flight. Unfortunately, Google has announced that
this API is being phased out [85]. Firefox did not currently
announce plans to remove support for webRequestBlocking,
and the Safari extension API does not support it at all. The
API designed to replace webRequestBlocking, named
declarativeNetRequest, may be appropriate for list-based
ad blockers, but is not usable for our browser extension. Our
work shows the importance of allowing browser extensions to
statefully intercept and modify web requests. We urge browser
vendors to keep the webRequestBlocking option available
for extensions, and urge vendors who do not currently support
it to make this feature a priority.

Guidance to Standards Bodies. The WWW specification
already includes a set of standards designed to isolate web
content from malicious third parties. These include resource
policies, opener policies, cookie isolation, and similar
defenses. Common to all of these defenses is the assumption
that two pages programmatically isolated from each other are
not able to interact. The attacks presented in this work show
that this assumption must be reconsidered. In particular, the
cross-origin read blocking (CORB) feature was already shown
to be less effective in the presence of side channels [52]. We
suggest that the CORB feature be extended to pop-under and
tab-under contexts, similar to the way in which we extended
Leakuidator: Any web page opened by another web page

should also be subjected to CORB restrictions, even if it is
opened in a separate window.
Guidance to Users. Users who are at increased risk of being
targeted online, such as journalists, activists, and religious
leaders, are already instructed to be more careful online
than other users, for instance when opening attachments,
responding to friend requests, clicking on unknown links,
and so on. We provide here some guidance specific to the
cache-based targeted deanonymization attack, and will be
cooperating with advocacy groups to bring this guidance to the
knowledge of relevant users as part of the disclosure process.
The best suggestion we can provide is to install our browser
extension, Leakuidator+, which is already available
on both the Google Play Store and the Firefox Add-ons
website [10, 11]. As Sec. 5 describes in detail, the extension
protects against all of the attacks we described in the paper,
with a minimal impact on functionality and compatibility. It
should be noted that the current Android version of Chrome
does not support extensions. Firefox for Android, as well as
several third-party Android browsers based on the open-source
Chromium code (notably Kiwi and Yandex), do support
extensions, but testing the compatibility of our extension with
these browsers remains a task for future work. Users should
also avoid unnecessary logins. Websites such as GMail,
Twitter, Facebook and Instagram make it useful and convenient
to be constantly logged in. This behavior pattern is especially
enforced by Google, through their control over the browser,
the website, and in some cases the device itself. This behavior
also unfortunately increases the risk of deanonymization
attacks. To protect themselves, privacy-conscious users should
only log in to websites when they plan to actively use them,
and make sure to log out when they are done. It should be
noted that the Tor Browser keeps cookies stored in memory
as long as the browser is running – if a user opens GMail, and
then closes the tab, the Google cookie remains present on the
browser until the user manually logs out, deletes cookies or
quits the browser. Users should also consider using multiple
devices: The best way to prevent side-channel attacks is to
isolate the source from the receiver. A reasonable and practical
way to achieve this for sensitive users would be to invest in
multiple cheap devices, each dedicated to a single online
service. As a moderate alternative to above, users can use
multiple sessions in their browser, for example by using the
Multi-Account Containers add-on in Firefox, the Add Profile
feature in Edge, or the Multiple People feature in Chrome. Tor
Browser also has a (very prominent) “New Identity” button
that closes and reopens the browser with a click of a button.
An Alternative Defense Approach: A new potential
defense strategy against the popunder and tabunder attack
variants emerged from our discussions with the affected
services and the browser vendors. Instead of relying on users
to install a browser extension, a similar functionality can
be achieved by dividing the responsibility for detecting and
reacting to potentially suspicious requests between browser

1518    31st USENIX Security Symposium USENIX Association



vendors and sharing service operators: The browser provides
additional information about the context in which a request
is made (through the request headers), and the sharing service
uses this information to decide how to respond to potentially
suspicious requests. We initiated a proposal to extend the
W3C standard for fetch metadata HTTP request headers [86].

8 Concluding Remarks

In this paper, we have introduced novel attack techniques for
targeted deanonymization on the web, which can uniquely
identify a target user when leaky resources are rendered in the
user’s browser. The attacks leverage CPU cache side channels
to bypass software-imposed boundaries and are shown to be
effective across multiple architectures. Our work reveals that
the attack surface for targeted deanonymization attacks is dras-
tically larger than previously considered. We experimentally
show that several popular resource sharing services can be
leveraged to conduct the attack. When considering together
the collection of users of these services, we conclude that a
large majority of Internet users are vulnerable.

To defend against this threat, we provide a comprehensive
countermeasure against all of the attacks we discovered.
Leakuidator+ is a client-side defense that can be deployed
right away as a browser extension, without depending on
browser vendors and website owners. We also provide
guidance to websites and browser vendors, as well as to
individuals who are unable to install our browser extension.

Future Work. Targeted deanonymization via the cache side
channel is a powerful attack mechanism. Whereas we showed
multiple avenues that are readily available to attackers, it
would be desirable to further improve the protection landscape.
As future work, we plan to further explore and improve
usability aspects of the proposed Leakuidator+ defense. In
addition, we believe it is crucial to work with browser vendors
and standards bodies to explore comprehensive mechanisms
that can start addressing the fundamental underlying causes of
cache side channel-based targeted deanonymization attacks.

Artifact Availability. We provide a dataset of cache traces for
single and multi-target attacks, together with a Google Colab
document showing how to use classifiers on these datasets,
as well as sample attack pages for the <iframe>, pop-under
and tab-under embedding methods. In addition, we provide
an online-only attack page (as described in Appendix C). The
artifact repository can be accessed using: git clone https:
//github.com/leakuidatorplusteam/artifacts.git.

The complete source code for Leakuidator+ is available
through the Firefox and Chrome extension stores [10, 11].

Acknowledgments. We would like to thank the USENIX
Security reviewers and Giancarlo Pellegrino for reviewing this
paper. This research was supported by the US NSF (National
Science Foundation) under Grants No. CNS 1801430, DGE
1565478, and DGE 2043104.

References

[1] Cristian-Alexandru Staicu and Michael Pradel. Leaky Images:
Targeted Privacy Attacks in the Web. In USENIX Security
Symposium, pages 923–939. USENIX Association, 2019.

[2] Avinash Sudhodanan, Soheil Khodayari, and Juan Caballero.
Cross-Origin State Inference (COSI) Attacks: Leaking Web
Site States through XS-Leaks. In NDSS, 2020.

[3] Mojtaba Zaheri and Reza Curtmola. Leakuidator: Leaky
resource attacks and countermeasures. In Proc. of the 7th EAI
SecureComm, 2021.

[4] Lukas Knittel, Christian Mainka, Marcus Niemietz, Do-
minik Trevor Noß, and Jörg Schwenk. XSinator.com: From a
Formal Model to the Automatic Evaluation of Cross-Site Leaks
in Web Browsers. In ACM CCS, pages 1771–1788, 2021.

[5] Berk Gülmezoglu, Andreas Zankl, M. Caner Tol, Saad Islam,
Thomas Eisenbarth, and Berk Sunar. Undermining User
Privacy on Mobile Devices Using AI. In AsiaCCS, pages
214–227. ACM, 2019.

[6] Anatoly Shusterman, Lachlan Kang, Yarden Haskal, Yosef
Meltser, Prateek Mittal, Yossi Oren, and Yuval Yarom. Robust
Website Fingerprinting Through the Cache Occupancy
Channel. In USENIX Security Symposium, 2019.

[7] Anatoly Shusterman, Ayush Agarwal, Sioli O’Connell, Daniel
Genkin, Yossi Oren, and Yuval Yarom. Prime+Probe 1,
JavaScript 0: Overcoming Browser-based Side-Channel
Defenses. In USENIX Security Symposium, 2021.

[8] Takuya Watanabe, Eitaro Shioji, Mitsuaki Akiyama, Keito
Sasaoka, Takeshi Yagi, and Tatsuya Mori. User Blocking
Considered Harmful? An Attacker-Controllable Side Channel
to Identify Social Accounts. In EuroS&P. IEEE, 2018.

[9] Takuya Watanabe, Eitaro Shioji, Mitsuaki Akiyama, Keito
Sasaoka, Takeshi Yagi, and Tatsuya Mori. Follow Your
Silhouette: Identifying the Social Account of Website Visitors
through User-Blocking Side Channel. IEICE Trans. Inf. Syst.,
103-D(2):239–255, 2020.

[10] Leaquidator+ Team. Leakuidator+ for Firefox.
https://addons.mozilla.org/en-US/firefox/, 2021.

[11] Leaquidator+ Team. Leakuidator+ for Chrome.
https://chrome.google.com/webstore/, 2021.

[12] Kenneth Kufluk and Gregory Baker. Protecting user
identity against Silhouette. https://blog.twitter.com/
engineering/en_us/topics/insights/2018/twitter_
silhouette.

[13] MDN Web Docs. Cross-Origin Resource Policy (CORP).
https://developer.mozilla.org/en-US/docs/Web/
HTTP/Cross-Origin_Resource_Policy_(CORP).

[14] The Chromium Projects. SameSite Updates.
https://www.chromium.org/updates/same-site.

[15] Onur Aciiçmez. Yet another MicroArchitectural Attack:
exploiting I-Cache. In CSAW, pages 11–18. ACM, 2007.

[16] Dag Arne Osvik, Adi Shamir, and Eran Tromer. Cache Attacks
and Countermeasures: The Case of AES. In CT-RSA, volume
3860 of LNCS, pages 1–20. Springer, 2006.

[17] Fangfei Liu, Yuval Yarom, Qian Ge, Gernot Heiser, and
Ruby B. Lee. Last-Level Cache Side-Channel Attacks are
Practical. In IEEE S&P, pages 605–622, 2015.

[18] Yossi Oren. PP0 GitHub Repository. https:

USENIX Association 31st USENIX Security Symposium    1519

https://github.com/leakuidatorplusteam/artifacts.git
https://github.com/leakuidatorplusteam/artifacts.git
https://addons.mozilla.org/en-US/firefox/
https://chrome.google.com/webstore/
https://blog.twitter.com/engineering/en_us/topics/insights/2018/twitter_silhouette
https://blog.twitter.com/engineering/en_us/topics/insights/2018/twitter_silhouette
https://blog.twitter.com/engineering/en_us/topics/insights/2018/twitter_silhouette
https://developer.mozilla.org/en-US/docs/Web/HTTP/Cross-Origin_Resource_Policy_(CORP)
https://developer.mozilla.org/en-US/docs/Web/HTTP/Cross-Origin_Resource_Policy_(CORP)
https://www.chromium.org/updates/same-site
https://github.com/Yossioren/pp0


//github.com/Yossioren/pp0, 2021.
[19] MDN Web Docs. Same-origin policy: Cross-origin script API

access. https://developer.mozilla.org/en-US/docs/
Web/Security/Same-origin_policy#cross-origin_
script_api_access.

[20] Soheil Khodayari. De-anonymization attack: Cross site
information leakage. https://hackerone.com/reports/
723175, 2019.

[21] Avinash Sudhodanan. HotCRP: Attempt to
plug an information leak represented by http sta-
tus. https://github.com/kohler/hotcrp/commit/
406a966aad00a762460fbc62cfb04a7532fc9fbd, 2019.

[22] MDN Web Docs. Cross-Origin-Opener-Policy.
https://developer.mozilla.org/en-US/docs/Web/
HTTP/Headers/Cross-Origin-Opener-Policy.

[23] Ron Masas. Patched Facebook Vulnerability Could Have Ex-
posed Private Information About You and Your Friends. https:
//www.imperva.com/blog/facebook-privacy-bug/.

[24] XS-leaks Wiki: Window References. https://xsleaks.
dev/docs/attacks/window-references/, October 2020.

[25] Avi Drissman. WebUSB dialog allows popunders.
https://bugs.chromium.org/p/chromium/issues/
detail?id=838314.

[26] Masato Kinugawa. Popunder restriction bypass with Presen-
tation API. https://bugs.chromium.org/p/chromium/
issues/detail?id=768900.

[27] Scikit-learn: Machine Learning in Python. https:
//scikit-learn.org/, 2021.

[28] TensorFlow: An end-to-end open source machine learning
platform. https://www.tensorflow.org, 2021.

[29] Google Research. Colaboratory. https://colab.research.
google.com/, 2021.

[30] Stefan Mangard, Elisabeth Oswald, and Thomas Popp. Power
Analysis Attacks: Revealing the Secrets of Smart Cards.
Springer, 2007.

[31] Ubuntu Wiki. Stress-NG. https://wiki.ubuntu.com/
Kernel/Reference/stress-ng, November 2021.

[32] Leak cross-window request timing by exhausting connec-
tion pool. https://bugs.chromium.org/p/chromium/
issues/detail?id=843157, May 2018.

[33] Terjanq. Twitter: Detect X-Frame-Options header in
Chrome. https://twitter.com/terjanq/status/
1111600071014080517, March 2019.

[34] Egor Homakov. Disclose domain of redirect destination
taking advantage of CSP. https://bugs.chromium.org/
p/chromium/issues/detail?id=313737.

[35] Egor Homakov. Using Content-Security-Policy for
Evil. http://homakov.blogspot.com/2014/01/
using-content-security-policy-for-evil.html.

[36] Terjanq. Protected tweets exposure through the url.
https://hackerone.com/reports/491473.

[37] Edward W. Felten and Michael A. Schneider. Timing attacks
on web privacy. In 23rd IEEE Computer Security Foundations
Symposium, pages 200–214. IEEE, 2010.

[38] Eduardo Vela. HTTP Cache Cross-Site Leaks.
https://sirdarckcat.blogspot.com/2019/03/
http-cache-cross-site-leaks.html.

[39] Jens Müller. CORS misconfiguration. https:
//web-in-security.blogspot.com/2017/07/
cors-misconfigurations-on-large-scale.html.

[40] Terjanq. Mass XS-Search using Cache At-
tack. https://terjanq.github.io/Bug-Bounty/
Google/cache-attack-06jd2d2mz2r0/index.html#
VIII-YouTube-watching-history.

[41] Gareth Heyes. Leaking IDs using fo-
cus. https://portswigger.net/research/
xs-leak-leaking-ids-using-focus.

[42] Andrew Bortz and Dan Boneh. Exposing private information
by timing web applications. In Proc. of WWW, 2007.

[43] Chris Evan. Cross-domain search timing. https:
//scarybeastsecurity.blogspot.com/2009/12/
cross-domain-search-timing.html.

[44] Tom Van Goethem, Wouter Joosen, and Nick Nikiforakis. The
Clock is Still Ticking: Timing Attacks in the Modern Web. In
Proc. of the 22nd ACM CCS, pages 1382–1393. ACM, 2015.

[45] Tom Van Goethem, Christina Pöpper, Wouter Joosen, and
Mathy Vanhoef. Timeless timing attacks: Exploiting con-
currency to leak secrets over remote connections. In Proc. of
the 29th USENIX Security Symposium, pages 1985–2002, 2020.

[46] Pepe Vila and Boris Köpf. Loophole: Timing Attacks on
Shared Event Loops in Chrome. In USENIX Security, 2017.

[47] Eduardo Vela. Matryoshka - Web Application Timing Attacks
(or.. Timing Attacks against JavaScript Applications in
Browsers). https://sirdarckcat.blogspot.com/2014/
05/matryoshka-web-application-timing.html.

[48] Eduardo Vela. Security: XS-Search + XSS Auditor =
Not Cool. https://bugs.chromium.org/p/chromium/
issues/detail?id=922829.

[49] Juan Manuel Fernández. CSS Injection Prim-
itives. https://x-c3ll.github.io/posts/
CSS-Injection-Primitives/.

[50] XS-leaks Wiki: postMessage Broadcasts. https://xsleaks.
dev/docs/attacks/postmessage-broadcasts/, October
2020.

[51] cure53.de. HTTPLeaks. https://github.com/cure53/
HTTPLeaks/.

[52] Łukasz Anforowicz. CORB vs side chan-
nels. https://docs.google.com/document/d/
1kdqstoT1uH5JafGmRXrtKE4yVfjUVmXitjcvJ4tbBvM/
edit?ts=5f2c8004.

[53] Sigurd Kolltveit. A timing attack with CSS selec-
tors and Javascript. https://blog.sheddow.xyz/
css-timing-attack/.

[54] Takashi Yoneuchi. A Rough Idea of Blind Regular Expres-
sion Injection Attack. https://diary.shift-js.info/
blind-regular-expression-injection/.

[55] Soroush Karami, Panagiotis Ilia, and Jason Polakis. Awak-
ening the Web’s Sleeper Agents: Misusing Service Workers
for Privacy Leakage. In Proc. of NDSS ’21, 2021.

[56] MDN Web Docs. Sec-Fetch-Site. https:
//developer.mozilla.org/en-US/docs/Web/HTTP/
Headers/Sec-Fetch-Site.

[57] MDN Web Docs. Vary. https://developer.mozilla.
org/en-US/docs/Web/HTTP/Headers/Vary.

1520    31st USENIX Security Symposium USENIX Association

https://github.com/Yossioren/pp0
https://developer.mozilla.org/en-US/docs/Web/Security/Same-origin_policy#cross-origin_script_api_access
https://developer.mozilla.org/en-US/docs/Web/Security/Same-origin_policy#cross-origin_script_api_access
https://developer.mozilla.org/en-US/docs/Web/Security/Same-origin_policy#cross-origin_script_api_access
https://hackerone.com/reports/723175
https://hackerone.com/reports/723175
https://github.com/kohler/hotcrp/commit/406a966aad00a762460fbc62cfb04a7532fc9fbd
https://github.com/kohler/hotcrp/commit/406a966aad00a762460fbc62cfb04a7532fc9fbd
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Cross-Origin-Opener-Policy
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Cross-Origin-Opener-Policy
https://www.imperva.com/blog/facebook-privacy-bug/
https://www.imperva.com/blog/facebook-privacy-bug/
https://xsleaks.dev/docs/attacks/window-references/
https://xsleaks.dev/docs/attacks/window-references/
https://bugs.chromium.org/p/chromium/issues/detail?id=838314
https://bugs.chromium.org/p/chromium/issues/detail?id=838314
https://bugs.chromium.org/p/chromium/issues/detail?id=768900
https://bugs.chromium.org/p/chromium/issues/detail?id=768900
https://scikit-learn.org/
https://scikit-learn.org/
https://www.tensorflow.org
https://colab.research.google.com/
https://colab.research.google.com/
https://wiki.ubuntu.com/Kernel/Reference/stress-ng
https://wiki.ubuntu.com/Kernel/Reference/stress-ng
https://bugs.chromium.org/p/chromium/issues/detail?id=843157
https://bugs.chromium.org/p/chromium/issues/detail?id=843157
https://twitter.com/terjanq/status/1111600071014080517
https://twitter.com/terjanq/status/1111600071014080517
https://bugs.chromium.org/p/chromium/issues/detail?id=313737
https://bugs.chromium.org/p/chromium/issues/detail?id=313737
http://homakov.blogspot.com/2014/01/using-content-security-policy-for-evil.html
http://homakov.blogspot.com/2014/01/using-content-security-policy-for-evil.html
https://hackerone.com/reports/491473
https://sirdarckcat.blogspot.com/2019/03/http-cache-cross-site-leaks.html
https://sirdarckcat.blogspot.com/2019/03/http-cache-cross-site-leaks.html
https://web-in-security.blogspot.com/2017/07/cors-misconfigurations-on-large-scale.html
https://web-in-security.blogspot.com/2017/07/cors-misconfigurations-on-large-scale.html
https://web-in-security.blogspot.com/2017/07/cors-misconfigurations-on-large-scale.html
https://terjanq.github.io/Bug-Bounty/Google/cache-attack-06jd2d2mz2r0/index.html#VIII-YouTube-watching-history
https://terjanq.github.io/Bug-Bounty/Google/cache-attack-06jd2d2mz2r0/index.html#VIII-YouTube-watching-history
https://terjanq.github.io/Bug-Bounty/Google/cache-attack-06jd2d2mz2r0/index.html#VIII-YouTube-watching-history
https://portswigger.net/research/xs-leak-leaking-ids-using-focus
https://portswigger.net/research/xs-leak-leaking-ids-using-focus
https://scarybeastsecurity.blogspot.com/2009/12/cross-domain-search-timing.html
https://scarybeastsecurity.blogspot.com/2009/12/cross-domain-search-timing.html
https://scarybeastsecurity.blogspot.com/2009/12/cross-domain-search-timing.html
https://sirdarckcat.blogspot.com/2014/05/matryoshka-web-application-timing.html
https://sirdarckcat.blogspot.com/2014/05/matryoshka-web-application-timing.html
https://bugs.chromium.org/p/chromium/issues/detail?id=922829
https://bugs.chromium.org/p/chromium/issues/detail?id=922829
https://x-c3ll.github.io/posts/CSS-Injection-Primitives/
https://x-c3ll.github.io/posts/CSS-Injection-Primitives/
https://xsleaks.dev/docs/attacks/postmessage-broadcasts/
https://xsleaks.dev/docs/attacks/postmessage-broadcasts/
https://github.com/cure53/HTTPLeaks/
https://github.com/cure53/HTTPLeaks/
https://docs.google.com/document/d/1kdqstoT1uH5JafGmRXrtKE4yVfjUVmXitjcvJ4tbBvM/edit?ts=5f2c8004
https://docs.google.com/document/d/1kdqstoT1uH5JafGmRXrtKE4yVfjUVmXitjcvJ4tbBvM/edit?ts=5f2c8004
https://docs.google.com/document/d/1kdqstoT1uH5JafGmRXrtKE4yVfjUVmXitjcvJ4tbBvM/edit?ts=5f2c8004
https://blog.sheddow.xyz/css-timing-attack/
https://blog.sheddow.xyz/css-timing-attack/
https://diary.shift-js.info/blind-regular-expression-injection/
https://diary.shift-js.info/blind-regular-expression-injection/
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Sec-Fetch-Site
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Sec-Fetch-Site
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Sec-Fetch-Site
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Vary
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Vary


[58] XS-leaks Wiki: Subresource Protections. https:
//xsleaks.dev/docs/defenses/design-protections/
subresource-protections/, October 2020.

[59] W3C Working Draft. Fetch Metadata Request Headers.
https://www.w3.org/TR/fetch-metadata/.

[60] Anne van Kesteren. Cross-Origin-Opener-Policy response
header (also known as COOP). https://gist.github.com/
annevk/6f2dd8c79c77123f39797f6bdac43f3e.

[61] MDN Web Docs. X-Frame-Options. https:
//developer.mozilla.org/en-US/docs/Web/HTTP/
Headers/X-Frame-Options.

[62] MDN Web Docs. CSP: frame-ancestors.
https://developer.mozilla.org/en-US/docs/
Web/HTTP/Headers/Content-Security-Policy/
frame-ancestors.

[63] XS-leaks Wiki: Isolation Policies. https://xsleaks.dev/
docs/defenses/isolation-policies/, December 2020.

[64] The Chromium Projects. Cross-Origin Read Blocking for
Web Developers. https://www.chromium.org/Home/
chromium-security/corb-for-developers.

[65] Vicki Pfau. Optionally partition cache to prevent using cache
for tracking. https://bugs.webkit.org/show_bug.cgi?
id=110269.

[66] Josh Karlin. Split Disk Cache Meta Bug. https://bugs.
chromium.org/p/chromium/issues/detail?id=910708.

[67] Anne van Kesteren. Top-level site partitioning. https:
//bugzilla.mozilla.org/show_bug.cgi?id=1590107.

[68] Colin Percival. Cache Missing for Fun and Profit. In BSDCan
2005, 2005.

[69] Yossef Oren, Vasileios P. Kemerlis, Simha Sethumadhavan,
and Angelos D. Keromytis. The Spy in the Sandbox: Practical
Cache Attacks in JavaScript and their Implications. In CCS,
pages 1406–1418, 2015.

[70] Anatoly Shusterman, Zohar Avraham, Eliezer Croitoru, Yarden
Haskal, Lachlan Kang, Dvir Levi, Yosef Meltser, Prateek
Mittal, Yossi Oren, and Yuval Yarom. Website Fingerprinting
Through the Cache Occupancy Channel and its Real World
Practicality. IEEE Trans. Dependable Secur. Comput.,
18(5):2042–2060, 2021.

[71] Suman Jana and Vitaly Shmatikov. Memento: Learning Secrets
from Process Footprints. In IEEE Symposium on Security and
Privacy, pages 143–157. IEEE Computer Society, 2012.

[72] Berk Gülmezoglu, Thomas Eisenbarth, and Berk Sunar.
Cache-Based Application Detection in the Cloud Using
Machine Learning. In AsiaCCS, pages 288–300. ACM, 2017.

[73] Shane S. Clark, Hossen A. Mustafa, Benjamin Ransford,
Jacob Sorber, Kevin Fu, and Wenyuan Xu. Current Events:
Identifying Webpages by Tapping the Electrical Outlet. In
ESORICS, pages 700–717, 2013.

[74] Qing Yang, Paolo Gasti, Gang Zhou, Aydin Farajidavar, and
Kiran S. Balagani. On Inferring Browsing Activity on Smart-
phones via USB Power Analysis Side-Channel. IEEE Trans.
Information Forensics and Security, 12(5):1056–1066, 2017.

[75] Pavel Lifshits, Roni Forte, Yedid Hoshen, Matt Halpern,
Manuel Philipose, Mohit Tiwari, and Mark Silberstein. Power
to peep-all: Inference Attacks by Malicious Batteries on
Mobile Devices. PoPETs, 2018(4):1–1, 2018.

[76] Sangho Lee, Youngsok Kim, Jangwoo Kim, and Jong Kim.
Stealing Webpages Rendered on Your Browser by Exploiting
GPU Vulnerabilities. In IEEE SP, pages 19–33, 2014.

[77] Raphael Spreitzer, Simone Griesmayr, Thomas Korak, and Ste-
fan Mangard. Exploiting Data-Usage Statistics for Website Fin-
gerprinting Attacks on Android. In WISEC, pages 49–60, 2016.

[78] Berk Gülmezoglu, Andreas Zankl, Thomas Eisenbarth, and
Berk Sunar. PerfWeb: How to Violate Web Privacy with Hard-
ware Performance Events. In ESORICS (2), pages 80–97, 2017.

[79] Jo M. Booth. Not So Incognito: Exploiting Resource-Based
Side Channels in JavaScript Engines. Bachelor thesis, Harvard,
April 2015.

[80] Hyungsub Kim, Sangho Lee, and Jong Kim. Inferring browser
activity and status through remote monitoring of storage usage.
In ACSAC, pages 410–421, 2016.

[81] Chromium bugs: Side-channel attack can deanonymize
users (potential risk to journalists and activists).
https://bugs.chromium.org/p/chromium/issues/
detail?id=1285604, 2022.

[82] Bugzilla: Side-channel attack can deanonymize users (po-
tential risk to journalists and activists). https://bugzilla.
mozilla.org/show_bug.cgi?id=1749129, 2022.

[83] Roei Schuster, Vitaly Shmatikov, and Eran Tromer. Beauty and
the Burst: Remote Identification of Encrypted Video Streams.
In USENIX Security Symposium, pages 1357–1374, 2017.

[84] Qian Ge, Yuval Yarom, Tom Chothia, and Gernot Heiser. Time
Protection: The Missing OS Abstraction. In EuroSys, 2019.

[85] David Li. The transition of Chrome extensions to Man-
ifest V3. https://developer.chrome.com/blog/
mv2-transition/, September 2021.

[86] Extending the fetch metadata headers: related tab-
s/windows #83. https://github.com/w3c/
webappsec-fetch-metadata/issues/83, 2022.

[87] Stan Salvador and Philip Chan. Toward accurate dynamic time
warping in linear time and space. Intelligent Data Analysis,
11(5):561–580, 2007.

A Additional Experimental Setup Details

In this section, we provide additional details about our
experimental setup. Table 4 provides details about the five
system configurations we used in the experiments.

Machine Learning Classifier Parameters. The LSTM
neural network model was used with the hyper-parameters
described in Table 5. The logistic regression classifier was
used with 1000 max iterations.

B Embedding Details For Various Services

In this section, we provide details about the method used
to embed leaky resources for each sharing service. The
embedding methods are based on specific SD-URLs we
identified for these services.

In Chrome, we used the <iframe> embedding method for
YouTube, LinkedIn and TikTok, and the tab-under method for
Facebook, Instagram, Reddit and Twitter. In Safari, we used
the pop-under method, whereas in Tor we used the tab-under
method.

USENIX Association 31st USENIX Security Symposium    1521

https://xsleaks.dev/docs/defenses/design-protections/subresource-protections/
https://xsleaks.dev/docs/defenses/design-protections/subresource-protections/
https://xsleaks.dev/docs/defenses/design-protections/subresource-protections/
https://www.w3.org/TR/fetch-metadata/
https://gist.github.com/annevk/6f2dd8c79c77123f39797f6bdac43f3e
https://gist.github.com/annevk/6f2dd8c79c77123f39797f6bdac43f3e
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/X-Frame-Options
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/X-Frame-Options
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/X-Frame-Options
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Content-Security-Policy/frame-ancestors
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Content-Security-Policy/frame-ancestors
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Content-Security-Policy/frame-ancestors
https://xsleaks.dev/docs/defenses/isolation-policies/
https://xsleaks.dev/docs/defenses/isolation-policies/
https://www.chromium.org/Home/chromium-security/corb-for-developers
https://www.chromium.org/Home/chromium-security/corb-for-developers
https://bugs.webkit.org/show_bug.cgi?id=110269
https://bugs.webkit.org/show_bug.cgi?id=110269
https://bugs.chromium.org/p/chromium/issues/detail?id=910708
https://bugs.chromium.org/p/chromium/issues/detail?id=910708
https://bugzilla.mozilla.org/show_bug.cgi?id=1590107
https://bugzilla.mozilla.org/show_bug.cgi?id=1590107
https://bugs.chromium.org/p/chromium/issues/detail?id=1285604
https://bugs.chromium.org/p/chromium/issues/detail?id=1285604
https://bugzilla.mozilla.org/show_bug.cgi?id=1749129
https://bugzilla.mozilla.org/show_bug.cgi?id=1749129
https://developer.chrome.com/blog/mv2-transition/
https://developer.chrome.com/blog/mv2-transition/
https://github.com/w3c/webappsec-fetch-metadata/issues/83
https://github.com/w3c/webappsec-fetch-metadata/issues/83


System Device OS CPU Browser Measurement Method

Win-Chrome Dell Latitude Windows 10 Pro 20H2 Intel Core i7 7820HQ Chrome 96.0 C, 8MB, 2ms
Win-Tor Dell Latitude Windows 10 Pro 20H2 Intel Core i7 7820HQ Tor 11.0.1 S, 8MB, 100ms
Mac-Intel-Safari MacBook Pro macOS Catalina 10.15.7 Intel Core i7 3540M Safari 15.0 C, 4MB, 2ms
Mac-M1-Chrome Mac mini macOS Big Sur 11.4 Apple M1 8-Core Chrome 96.0 S, 4MB, 10ms
Android-Chrome Samsung Android 11, One UI 3.1 Qualcomm SM8350 Chrome Android 92.0 S, 4MB, 10ms

Galaxy S21 5G

Table 4: System configurations used for the attacks. The “Measurement Method” column describes the setup used for cache
measurements, in the format (Method, Buffer size, Interval). “Method” denotes the cache measurement method used: C for Cache
Occupancy, S for Sweep Counting. “Interval” is related to the accuracy of the time measurement API, which is determined by
the combination browser/device. For Cache Occupancy, “Interval” denotes the time between consecutive cache measurements.
For Sweep Counting, “Interval” denotes the time needed to take one cache measurement.

Hyperparameter Value

Optimizer Adam
Learning rate 0.001
Batch size 128
Training Epoch early stop by validation

accuracy
Input units vector size of the input
Convolution layers 1
Convolution activation relu
Convolution kernels 256
Convolution kernel size 32
Pool size 4
LSTM activation tanh
LSTM units 32
Dropout 0.7

Table 5: Hyper-parameters for neural network classifier.

For all the services tested, except for Reddit, the leaky
resource was a video, because it causes cache activity over
an extended period of time. In some cases, the video does not
auto-play, but the video player loads a preview of the video
that generates sufficient cache activity.

Additional details for the individual sharing websites is
provided below.

YouTube. The SD-URL for the leaky resource points to a
video player playing a video. The attack uses the private
sharing-based approach. YouTube complies with cookies
from both cross-site and same-site requests. As a result, we
use the <iframe> embedding method for the Chrome browser:
When the private resource is shared with the victim, the
video is loaded in the embedded YouTube player; when the
private resource is not shared with the victim, the video is not
loaded in the embedded YouTube player. In the Safari and Tor
browsers, cookies are disabled for cross-site requests, so an
embedding method should be used that allows sending cookies
as first party along with the requests. As a result, in the Safari
browser we used the pop-under embedding method, whereas
in the Tor browser we used the tab-under embedding method.

LinkedIn and TikTok. The SD-URL for the leaky resource
points to a publicly shared post containing a video. The attack
uses the blocking-based approach. These services comply
with cookies from both cross-site and same-site requests.
As a result, we use the <iframe> embedding method for
the Chrome browser: If the account holder of the publicly
shared post (the attacker) blocks the victim account, then
the post does not load in the victim’s Chrome browser; if
the victim is not blocked, the post is loaded in the victim’s
Chrome browser. In the Safari and Tor browsers cookies are
disabled for cross-site requests, hence we use the pop-under
and tab-under embedding methods, respectively.

Twitter, Instagram and Facebook. The SD-URL for the
leaky resource points to a publicly shared post containing a
video. The attack uses the blocking-based approach. These
services ignore cookies from cross-site requests. For example,
consider a post embedded cross-site using an <iframe>: If
the post is public, it is loaded in the browser regardless of
user state; if the post is private, it is not loaded in the browser
regardless of the user state. Therefore, an embedding approach
is needed that attaches the cookies to the requests as first
party cookies. In the Safari browser, we used the pop-under
embedding method. In the Chrome and Tor browsers, we used
the tab-under embedding method.

Reddit. The SD-URL for the leaky resource points to a private
subreddit page. The attack uses the private sharing-based ap-
proach. The attacker creates a private subreddit and approves
the victim to the private subreddit. We were not able to embed
the subreddit page cross-site, so we used embedding methods
that make first party requests: The pop-under method for the
Safari browser and the tab-under method for the Chrome and
Tor browsers. Since Reddit does not allow posting of videos in
private subreddits, we modified the default layout of the private
subreddit so that it loads multiple images when displayed.

C An Online-Only Attack

The attacks described in Section 4 implicitly assume that
the attacker has some prior information about the victim’s
system configuration. This prior information lets the attacker

1522    31st USENIX Security Symposium USENIX Association



Win-Chrome Win-Tor Mac-Intel-Safari Mac-M1-Chrome
Accuracy (%) Accuracy (%) Accuracy (%) Accuracy (%)

Service w/ MSE w/ FastDTW w/ MSE w/ FastDTW w/ MSE w/ FastDTW w/ MSE w/ FastDTW
Google 97 98 65 80 100 98 76 87
Twitter 76 82 71 74 98 98 63 71

LinkedIn 100 100 52 54 56 68 82 74
TikTok 67 69 78 82 68 80 67 82

Facebook 100 100 65 66 65 65 93 96
Instagram 60 71 61 66 63 81 54 67

Reddit 67 69 53 63 60 86 61 64

Table 6: Attack accuracy for the Online-Only attack simulation. MSE is mean squared error and FastDTW [87] is an approximate
dynamic time warping (DTW) algorithm that has a linear time and space complexity.

carry out an offline step, in which it trains a machine learning
classifier on a system similar to the victim’s. Although this
assumption is reasonable under our threat model, it is still
interesting to consider the case where the attacker does not
have the ability to prepare for the attack.

We now describe a variant of our attack which can be
carried out without a training step, at the cost of a longer online
attack time. In this setting, the attacker prepares three shared
resources, Rvictim, Rother and Rall . Rvictim is shared with the
victim, Rother is shared with a single user who is not the victim
(i.e., another attacker account), and Rall is shared publicly
with everyone.

The attack page loads the three shared resources one
after the other while taking cache measurements. Next,
the attacker uses a similarity metric, such as mean squared
error (MSE) or dynamic time warping distance (DTW), to
detect whether the trace collected for Rvictim is more similar
to the trace collected for Rother, or to the trace collected
for Rall . That is, if MSE(Trace(Rvictim), Trace(Rall)) <
MSE(Trace(Rvictim), Trace(Rother)), then the attacker
concludes that it is targeting the victim.

To experimentally validate this attack, we performed an
experiment in Chrome for Windows targeting the Google/Y-
ouTube cookie, using three YouTube videos loaded into
an <iframe> element. We collected 1 second side-channel
measurements for each of three videos, resulting in a total
attack time of 3 seconds. Then, we applied the MSE metric
to identify the presence of the victim. We repeated the
experiment 200 times, 100 for a victim user and 100 for a
non-victim user. An implementation of this online-only attack
can be found in the paper’s artifact repository. Our results
showed that all 100 predictions in the victim state were correct,
and 98 out of 100 predictions in non-victim state were correct,
resulting in an overall attack accuracy of 99%. We therefore
conclude that our attacks are feasible in some settings even
if the attacker cannot carry out a training step.

To see if this attack can be extended to other websites and
browsers, we simulated the online-only attack using traces
from our dataset. We did so by repeatedly selecting one pair

of target and non-target traces as references, then measuring
the distance between these reference traces and the subsequent
pair of target and non-target traces from the same dataset. We
discovered that while the simulated online-only attack was ef-
fective in many settings, including Google, LinkedIn and Face-
book on Win-Chrome, Google and Twitter on Mac-Intel-Safari,
and Facebook on Mac-M1-Chrome, it was far less effective
than the classifier-based method in several settings, including
TikTok, Instagram and Reddit on Win-Chrome, LinkedIn and
Facebook on Mac-Intel-Safari, Twitter, Instagram and Reddit
on Mac-M1-Chrome, and most of the services on Win-Tor.
A table listing the full accuracy results for this simulated
experiment can be found in Table 6. Note that an online-only
attack beyond simulation is limited to the settings where it is
possible to load multiple resources through the attack page.

USENIX Association 31st USENIX Security Symposium    1523


	Introduction
	Attacker Model

	Background
	Leaky Resource Attacks
	Cache-Based Side Channel Attacks

	Attack Techniques
	General Attack Methodology
	Embedded Content
	Pop-Unders and Tab-Unders
	Playlists

	Attacks
	Experimental setup
	Experimental Results
	Attacking Mobile Phones
	Scaling to Multiple Targets

	Defenses
	A First Approach: Adding Artificial Noise
	Leakuidator+

	Related Work
	Ethics, Disclosure and Guidance
	Concluding Remarks
	Additional Experimental Setup Details
	Embedding Details For Various Services
	An Online-Only Attack

