
Mind Your Weight(s): A Large-scale Study on Insufficient
Machine Learning Model Protection in Mobile Apps

Zhichuang Sun
Northeastern University

Ruimin Sun
Northeastern University

Long Lu
Northeastern University

Alan Mislove
Northeastern University

Abstract
On-device machine learning (ML) is quickly gaining

popularity among mobile apps. It allows offline model
inference while preserving user privacy. However, ML models,
considered as core intellectual properties of model owners,
are now stored on billions of untrusted devices and subject to
potential thefts. Leaked models can cause both severe financial
loss and security consequences.

This paper presents the first empirical study of ML model
protection on mobile devices. Our study aims to answer three
open questions with quantitative evidence: How widely is
model protection used in apps? How robust are existing model
protection techniques? What impacts can (stolen) models in-
cur? To that end, we built a simple app analysis pipeline and an-
alyzed 46,753 popular apps collected from the US and Chinese
app markets. We identified 1,468 ML apps spanning all popular
app categories. We found that, alarmingly, 41% of ML apps do
not protect their models at all, which can be trivially stolen from
app packages. Even for those apps that use model protection
or encryption, we were able to extract the models from 66%
of them via unsophisticated dynamic analysis techniques. The
extracted models are mostly commercial products and used for
face recognition, liveness detection, ID/bank card recognition,
and malware detection. We quantitatively estimated the poten-
tial financial and security impact of a leaked model, which can
amount to millions of dollars for different stakeholders.

Our study reveals that on-device models are currently at
high risk of being leaked; attackers are highly motivated to
steal such models. Drawn from our large-scale study, we report
our insights into this emerging security problem and discuss
the technical challenges, hoping to inspire future research on
robust and practical model protection for mobile devices.

1 Introduction

Mobile app developers have been quickly adopting on-device
machine learning (ML) techniques to provide artificial intelli-
gence (AI) features, such as facial recognition, augmented/vir-
tual reality, image processing, voice assistant, etc. This trend

is now boosted by new AI chips available in the latest smart-
phones [1], such as Apple’s Bionic neural engine, Huawei’s
neural processing unit, and Qualcomm’s AI-optimized SoCs.

Compared to performing ML tasks in the cloud, on-device
ML (mostly model inference) offers unique benefits desirable
for mobile users as well as app developers. For example,
it avoids sending (private) user data to the cloud and does
not require network connection. For app developers or
ML solution providers, on-device ML greatly reduces the
computation load on their servers.

On-device ML inference inevitably stores ML models
locally on user devices, which however creates a new security
challenge. Commercial ML models used in apps are often part
of the core intellectual property (IP) of vendors. Such models
may fall victim to theft or abuse, if not sufficiently protected.
In fact, on-device ML makes model protection much more
challenging than server-side ML because models are now
stored on user devices, which are fundamentally untrustworthy
and may leak models to curious or malicious parties.

The consequences of model leakage are quite severe.
First, with a leaked model goes away the R&D investment
of the model owner, which often includes human, data,
and computing costs. Second, when a proprietary model is
obtained by unethical competitors, the model owner loses the
competitive edge or pricing advantage for its products. Third,
a leaked model facilitates malicious actors to find adversarial
inputs to bypass or confuse the ML systems, which can lead
to not only reputation damages to the vendor but also critical
failures in their products (e.g., fingerprint recognition bypass).

This paper presents the first large-scale study of ML model
protection and theft on mobile devices. Our study aims to
shed light on the less understood risks and costs of model
leakage/theft in the context of on-device ML. We present
our study that answers the following questions with ample
empirical evidence and observations.
• Q1: How widely is model protection used in apps?
• Q2: How robust are existing model protection tech-

niques?
• Q3: What impacts can (stolen) models incur?

To answer these questions, we collected 46,753 trending
Android apps from the US and the Chinese app markets. To
answer Q1, we built a simple and automatic pipeline to first
identify the ML models and SDK/frameworks used in an app,
and then detect if the ML models are encrypted. Among all
the collected apps, we found 1,468 apps that use on-device
ML, and 602 (41%) of them do not protect their ML models
at all (i.e., models are stored in plaintext form on devices).
Most of these apps have high installation counts (greater than
10M) and span the top-ten app categories, which underlines
the limited awareness of model thefts and the need for model
protection among app developers.

To answer Q2, for the encrypted models, we dynamically
run the corresponding apps and built an automatic pipeline to
identify and extract the decrypted ML models from memory.
This pipeline represents an unsophisticated model theft attack
that an adversary can realistically launch on her own device.
We found that the same protected models can be reused/shared
by multiple apps, and a set of 18 unique models extracted
from our dynamic analysis can affect 347 apps (43% of all the
apps with protected models). These apps cover a wide range
of ML frameworks, including TensorFlow, TFLite, Caffe,
SenseTime, Baidu, Face++, etc. They use ML for various
purposes, including face tracking, liveness detection, OCR,
ID card and bank card recognition, photo processing, and even
malware detection.

We also observed some interesting cases where a few model
owners spent extra effort on protecting their models, such
as encrypting both code and model files, encrypting model
files multiple times, or encrypting feature vectors. Despite the
efforts, these models can be successfully extracted in memory
in plaintext. These cases indicate that model owners or app de-
velopers start realizing the risk of model thefts but no standard
and robust model protection technique exists, which echos the
urgent need for research into on-device model protection.

Finally, to answer Q3, we present an analysis on the financial
and security impact of model leakage on both the attackers and
the model vendors. We identify three major sources of impact:
the research and development investment on the ML models,
the financial loss due to competition, and the security impact
due to model evasion. We found that the potential financial
loss can be as high as millions of dollars, depending on the
app revenue and the actual cost of the models. The security
impact includes bypassing the model-based access control,
which may result in reputation damage or even product failure.

By performing the large-scale study and finding answers
to the three questions, we intend to raise the awareness of the
model leak/theft risks, which apps using on-device ML are
facing even if models are encrypted. Our study shows that the
risks are realistic due to absent or weak protection of on-device
models. It also shows that attackers are not only technically
able to, but also highly motivated to steal or abuse on-device
ML models. We share our insights and call for future research
to address this emerging security problem.

In summary, the contributions of our research are:
• We apply our analysis pipeline on 46,753 Android apps

collected from US and Chinese app markets. We found
that among the 1,468 apps using on-device ML, 41% do
not have any protection on their ML models. For those do,
66% of them still leak their models to an unsophisticated
runtime attack.
• We provide a quantified estimate on the financial and

security impact of model leakage based on case studies.
We show that attackers with stolen models can save as
high as millions of dollars, while vendors can encounter
pricing disadvantage and falling market share. Further
model evasion may cause illegal access to private
information of end users.
• Our work calls for research on robust protection

mechanisms for ML models on mobile devices. We share
our insights gained during the study to inform and assist
future work on this topic.

The rest of the paper is organized as follows. Section
2 introduces the background knowledge about on-device
ML. Section 3 presents an overview of our analysis pipeline.
Sections 4, 5, and 6 answers the questions Q1, Q2, and Q3,
respectively. Section 7 summarizes the current model protec-
tion practices and their effectiveness. Section 8 discusses the
research insights and the limitations of our analysis. Section 9
surveys the related work and Section 10 concludes the paper.

2 Background

The Trend of On-device Machine Learning: Currently,
there are two ways for mobile apps to use ML: cloud-based and
on-device. In cloud-based ML, apps send requests to a cloud
server, where the ML inference is performed, and then retrieve
the results. The drawbacks include requiring constant network
connections, unsuitable for real-time ML tasks (e.g., live object
detection), and needing raw user data uploaded to the server.
Recently, on-device ML inference is quickly gaining popular-
ity thanks to the availability of hardware accelerators on mobile
devices and the the ML frameworks optimized for mobile apps.
On-device ML avoids the aforementioned drawbacks of cloud-
based ML. It works without network connections, performs
well in real-time tasks, and seldom needs to send (private) user
data off the device. However, with ML inference tasks and ML
models moved from cloud to user devices, on-device ML raises
a new security challenge to model owners and ML service
providers: how to protect the valuable and proprietary ML mod-
els now stored and used on user devices that cannot be trusted.

The Delivery and Protection of On-device Models :
Typically, on-device ML models are trained by app devel-

opers or ML service providers on servers with rich computing
resources (e.g., GPU clusters and large storage servers).
Trained models are shipped with app installation packages. A
model can also be downloaded separately after app installation

Dynamic
Analysis

Per-App
Analysis
Scripts

Android
APKs

Unencrypted
Models

ModelXRay

APKs with
Encrypted

Models

Decrypted
Models

ModelXtractor

Figure 1: Overview of Static-Dynamic App Analysis Pipeline

to reduce the app package size. Model inference is performed
by apps on user devices, which relies on model files and ML
frameworks (or SDKs). To protect on-device models, some
developers encrypt/obfuscate them, or compile them into app
code and ship them as stripped binaries [9, 25]. However, such
techniques only make it difficult to reverse a model, rather
than strictly preventing a model from being stolen or reused.

On-device Machine Learning Frameworks: There are tens
of popular ML frameworks, such as Google TensorFlow and
TensorFlow Lite [27], Facebook PyTorch and Caffe2 [8],
Tencent NCNN [25], and Apple Core ML [10]. Among
these frameworks, TensorFlow Lite, Caffe2, NCNN and Core
ML are particularly optimized for mobile apps. Different
frameworks use different file formats for storing ML models
on devices, including ProtoBuf (.pb, .pbtxt), FlatBuffer (.tflite),
MessagePack (.model), pickle (.pkl), Thrift (.thrift), etc. To mit-
igate model reverse engineering and leakage, some companies
developed customized or proprietary model formats [53, 61].

On-device Machine Learning Solution Providers: For
cost efficiency and service quality, app developers often use
third-party ML solutions, rather than training their own models
or maintaining in-house ML development teams. The popular
providers of ML solutions and services include Face++ [13]
and SenseTime [34], which sell offline SDKs (including on-
device models) that offer facial recognition, voice recognition,
liveness detection, image processing, Optical Character Recog-
nition (OCR), and other ML functionalities. By purchasing
a license, app developers can include such SDKs in their apps
and use the ML functionalities as black-boxes. ML solution
providers are more motivated to protect their models because
model leakage may severely damage their business [34].

3 Analysis Overview

On-device ML is quickly being adopted by apps, while its
security implications on model/app owners remain largely
unknown. Especially, the threats of model thefts and possible
ways to protect models have not been sufficiently studied.
This paper aims to shed light on this issue by conducting a
large-scale study and providing quantified answers to three
questions: How widely is model protection used in apps? (§4)
How robust are existing model protection techniques? (§5)
What impacts can (stolen) models incur? (§6)

To answer these questions, we built a static-dynamic app
analysis pipeline. We note that this pipeline and the analysis
techniques are kept simple intentionally and are not part of
the research contributions of this work. The goal of our study
is to understand how easy or realistic it is to leak or steal ML
models from mobile apps, rather than demonstrating novel or
sophisticated app analysis and reverse-engineering techniques.
Our analysis pipeline represents what a knowledgeable yet not
extremely skilled attacker can already achieve when trying to
steal ML models from existing apps. Therefore, our analysis
result gives the lower bound of (or a conservative estimate on)
how severe the model leak problem currently is.

The workflow of our analysis is depicted in Figure1. Apps
first go through the static analyzer, ModelXRay, which detects
the use of on-device ML and examines the model protection,
if any, adopted by the app. For apps with encrypted models,
the pipeline automatically generates the analysis scripts and
send them to the dynamic analyzer, ModelXtractor, which
performs a non-sophisticated form of in-memory extraction
of model representations. ModelXtractor represents a realistic
attacker who attempts to steal the ML models from an app
installed on her own phone. Models extracted this way are in
plaintext formats, even though they exist in encrypted forms
in the device storage or the app packages. Our evaluation
of ModelXRay and ModelXtractor (§4.3 and §5.3) shows
that they are highly accurate for our use, despite the simple
analysis techniques. We report our findings and insights drawn
from the large-scale analysis results produced by ModelXRay
and ModelXtractor in §4.4 and §5.4, respectively.

We investigated both the financial impact and the security
impact of model leakages. For financial impact, we found
that the attackers would benefit from the savings of model
licenses fee and Research & Development (R&D) investment;
while the model vendors would suffer from losing pricing
advantages and market share. The security impact includes
easier bypass of model based access control and further
security and privacy breaches, which could affect both the end
users and the model vendors. (§6).

4 Q1: How Widely Is Model Protection Used
in Apps?

4.1 Android App Collection
We collect apps from three Android app markets: Google Play,
Tencent My App, and 360 Mobile Assistant. They are the lead-
ing Android app stores in the US and China [35]. We download
the apps labeled TRENDING and NEW across all 55 categories
from Google Play (12,711), and all recently updated apps from
Tencent My App (2,192) and 360 Mobile Assistant (31,850).

4.2 Methodology of ModelXRay
ModelXRay statically detects if an app uses on-device ML
and whether or not its models are protected or encrypted.

App
Asset
Files

App
Libraries

Tensorflow
Caffe

...

.tflite
.model

...

Model Suffix

ocr
model

...

Magic Words

Model File Analyzer

ML Framework Dictionary

Suspected
Model Files

File Size Filter

ML
Libraries

Model
Files

Encrypted
Model Files

ML Library Analyzer

File Suffix Filter

ML Library Filter

Any ML
Libraries ?

Entropy
Analysis

Android
APK
File

ML
App

Profile

Figure 2: Identify Encrypted Models with ModelXRay

ModelXRay extracts an app’s asset files and
libraries from the APK file, analyzes the native libraries and asset files to identify ML frameworks, SDK libraries and model files. Then it applies
model filters combining file sizes, file suffixes and ML libraries to reduce false positives and use entropy analysis to identify encrypted models.

ModelXRay is simple by design and adopts a best-effort
detection strategy that errs on the side of soundness (i.e.,
low false positives), which is sufficient for our purpose of
analyzing model leakage.

We only consider encrypted models as protected in this
study. We are aware that some apps obfuscate the description
text in the models. As we will discuss in Section 7, obfuscation
may make it harder for the attacker to understand the model,
but does not prevent the attacker from reusing it at all.

The workflow of ModelXRay is shown in Figure 2. For a
given app, ModelXRay disassembles the APK file and extracts
the app asset files and the native libraries. Next, it identifies
the ML libraries/frameworks and the model files as follows:

ML Frameworks and SDK Libraries: On-device model
inference always use native ML libraries for performance
reasons. Inspired by Xu’s work [61], we use keyword searching
in binaries for identifying native ML libraries. ModelXRay
supports a configurable dictionary that maps keywords to
corresponding ML frameworks, making it easy to include new
ML frameworks or evaluate the accuracy of keywords(listed
in Appendix A1). Further, ModelXRay supports generic
keywords, such as “NeuralNetwork”,“LSTM”, “CNN”, and
“RNN” to discover unpopular ML frameworks. However, these
generic keywords may cause false positives. We evaluate and
verify the results in §4.3.

ML Model Files: To identify model files, previous work [61]
rely on file suffix match to find models that follow the
common naming schemes. We find, however, many model
files are arbitrarily named. Therefore, We use a hybrid
approach combining file suffix match and path keyword match
(e.g.,../models/arbitrary.name can be a model file). We
address false positives by using three filters: whether the file
size is big enough (more than 8 KB); whether it has a file suffix
that is unlikely for ML models (e.g.,model.jpg); whether the
app has ML libraries.

Encrypted Model Files: We use the standard entropy test

to infer if a model file is encrypted or not. High entropy in a
file is typically resulted from encryption or compression [12].
For compressed files, we rule them out by checking file types
and magic numbers. We use 7.99 as the entropy threshold
for encryption in the range of [0,8], which is the average
entropy of the sampled encrypted model files (see §4.3).
Previous work [61] treats models that cannot be parsed by
ML framework as encrypted models, which is not suitable in
our analysis and has high false positives for several reasons,
such as the lack of a proper parser, customized model formats,
aggregated models, etc.

ML App Profiles: As the output, ModelXRay generates a
profile for each app analyzed. A profile comprises of two parts:
ML models and SDK libraries. For ML models, it records file
names, sizes, MD5 hash and entropy. In particular, the MD5
hashes help us identify shared/reused models among different
apps (as discussed in §4.4).

For SDK libraries, we record framework names, the
exported symbols, and the strings extracted from the binaries.
They contain information about the ML functionalities, such
as OCR, face detection, liveness detection. Our analysis
pipeline uses such information to generate the statistics on the
use of ML libraries (§4.4).

4.3 Accuracy Evaluation of ModelXRay

Accuracy of Identifying ML Apps: To establish the ground
truth for this evaluation, we chose the 219 non-ML apps labeled
by [61] as the true negatives, and we manually selected and ver-
ified 219 random ML apps as the true positives. We evaluated
ModelXRay on this set of 438 apps. It achieved a false negative
rate of 6.8% (missed 30 ML apps) and a false positive rate of 0%
(zero non-ML apps is classified as ML apps). We checked the
30 missed ML apps, and found out that they are using unpopu-
lar ML Frameworks whose keywords are not in the dictionary.
We found two ML apps that ModelXRay correctly detected
but are missed by [61], one using ULSFaceTracker, which is

an unpopular ML framework and the other using TensorFlow.
To further evaluate the false positive rate, we run Mod-

elXRay on our entire set of 46,753 apps and randomly sampled
100 apps labeled by ModelXRay as ML apps (50 apps from
Google Play and 50 apps from Chinese app market). We
then manually checked these 100 apps and found 3 apps
that are not ML apps (false positive rate of 3%). The manual
check was done by examining the library’s exposed symbols
and functions. This relatively low false positive rate shows
ModelXRay’s high accuracy in detecting ML apps for our
large-scale study.

Accuracy of Identifying Models: We randomly sampled
100 model files identified by ModelXRay from Chinese app
markets and Google Play, respectively, and manually verified
the results. ModelXRay achieved a true positive rate of 91%
and 97%, respectively.

In order to evaluate how widely apps conform to model
standard naming conventions, we manually checked 100 ML
apps from both Google Play and Chinese app market and
found 24 apps that do not follow any clear naming conventions.
Some use ".tfl" and ".lite" instead of the normal ".tflite" for
TensorFlow Lite models. Some use "3_class_model" without
a suffix. Some have meaningful but not standard suffixes
such as ".rpnmodel",".traineddata". Other have very generic
suffixes such as ".bin", ".dat", and ".bundle". This observation
shows that file suffix matching alone can miss a lot of model
files. Table 1 shows the top 5 popular model file suffixes used
in different app markets. Many of these popular suffixes are
not standard. ModelXRay’s model detection does not solely
depend on model file names.

Table 1: Popular model suffix among different app markets
360 Mobile
Assistant Num.Of.Cases

Google
Play Num.Of.Cases

.bin 1860 .bin 318
.model 1540 .model 175

.rpnmodel 257 .pb 93
.binary 212 .tflite 83

.dat 201 .traineddata 46

Accuracy of Identifying Encrypted Models: To evaluate
whether entropy is a good indicator of encryption, we
sampled 40 models files from 4 popular encodings: ascii
text, protobuffer, flatbuffer, and encrypted format (10 for
each category). As shown in Figure 3, the entropies of
encrypted model files are all close to 8. The other encodings’s
entropies are significantly lower than 8. Figure 4 shows the
entropy distribution of all model files collected from 360 App
Assistant app market. It shows that the typical entropy range
of unencrypted model files is between 3.5 and 7.5.

4.4 Findings and Insights
We now present the results from our analysis as well as our
findings and insights, which provide answers to the question

10 Model File Samples of Different Encodings

M
od

el
 F

ile
 E

nt
ro

py

0

2

4

6

8

1 2 3 4 5 6 7 8 9 10

flatbuffer protobuffer ascii encrypted

Figure 3: Model File Entropy of 4 Popular Encodings

4575 Model Files Collected from 360 App Market
M

od
el

 F
ile

 E
nt

ro
py

0

2

4

6

8

Figure 4: Model File Entropy Distribution of 360 App Market

“Q1: How widely is model protection used in apps?”. We start
with the popularity and diversity of on-device ML among our
collected apps, which echo the importance of model security
and protection. We then compare model protection used in
various apps. Especially, we draw observations on how model
protection varies across different app markets and different
ML frameworks. We also report our findings about the shared
encrypted models used in different apps. In addition, we mea-
sured the adoption of GPU acceleration in ML apps and com-
pared the use of remote models and on-device models to further
reveal the trends of on-device model inference in mobile apps.

Popularity and Diversity of ML Apps: In total, we are able
to collect 46,753 Android apps from Google Play, Tencent
My App and 360 Mobile Assistant stores. Using ModelXRay,
we identify 1,468 apps that use on-device ML and have ML
models deployed on devices, which accounts for 3.14% of our
entire app collection.

We also measure the popularity of ML apps for each
category, as apps from certain categories may be more likely
to use on-device ML than others. We used the app category
information from the three app markets. Table 2 shows the
per-category numbers of total apps and ML apps (i.e., apps
using on-device ML). Our findings are summarized as follows:

On-device ML is gaining popularity in all categories. There
are more than 50 ML apps in each of the categories, which
suggests the widespread interests among app developers in
using on-device ML. Among all the categories, “Business",

“Image" and “News" are the top three that see most ML apps.
This observation confirms the diversity of apps that make
heavy use of on-device ML. It also highlights that a wide range
of apps need to protect their ML models and attackers have
a wide selection of targets.

More apps from Chinese markets are embracing on-device
ML. This is reflected from both the percentage and the absolute
number of ML apps: Google Play has 178 (1.40%), Tencent
My App has 159 (7.25%), and 360 Mobile Assistant has 1,131
(3.55%).

As we can see from the above findings, Chinese app markets
show a significant higher on-device machine learning adoption
rate and unique property of per-category popularity, making
it a non-negligible dataset for studying on-device machine
learning model protection.

Table 2: The number of apps collected across markets.

Google
Play

Tencent
My App

360
Mobile

Assistant
Total

Category All ML All ML All ML All ML
Business 404 2 99 2 2,450 296 2,953 300

News 96 0 102 5 2,450 180 2,648 185
Images 349 36 158 23 4,900 156 5,407 215

Map 263 4 206 14 2,450 83 2,919 101
Social 438 23 141 17 2,450 79 3,029 119

Shopping 183 5 112 16 2,450 84 2,745 105
Life 1,715 15 193 16 2,450 53 4,358 84

Education 389 3 116 7 2,450 74 2,955 84
Finance 123 6 76 21 2,450 55 2,649 82

Health 317 5 115 3 2,450 42 2,882 50
Other 8,434 79 874 35 4,900 29 14,208 143
Total 12,711 178 2,192 159 31,850 1,131 46,753 1,468

Note: In 360 Mobile Assistant, the number of unique apps is 31,591 (smaller
than 32,850) because some apps are multi-categorized. Image category
contains 4,900 apps because we merged image and photo related apps.

We measure the diversity of ML apps in terms of ML
frameworks and functionalities. We show the top-10 most
common functionalities and their distribution across different
ML frameworks in Table 3.

On-device ML offers highly diverse functionalities. Almost
all common ML functionalities are now offered in the on-
device fashion, including OCR, face tracking, hand detection,
speech recognition, handwriting recognition, ID card recogni-
tion, and bank card recognition, liveness detection, face recog-
nition, iris recognition and so on. This high diversity means
that, from the model theft perspective, attackers can easily find
targets to steal ML models for any common functionalities.

Long tail in the distribution of ML frameworks used in
apps. Besides the well-known frameworks such as TensorFlow,
Caffe2/PyTorch, and Parrots, many other ML frameworks are
used for on-device ML, despite their relatively low market
share. For instance, as shown in Table 3, Tencent NCNN [25],
Xiaomi Mace [9], Apache MXNet [5], and ULS from Util-
ity Asset Store [30] are used by a fraction of the apps that
we collected. Each of them tends to cover only a few ML
functionalities. In addition, there could be other unpopular ML
frameworks that our analysis may have missed. This long tail in

the distribution of ML frameworks poses a challenge to model
protection because frameworks use different model formats,
model loading/parsing routines, and model inference pipelines.

Models Downloaded at Runtime: Mobile apps can always
update on-device models as part of the app package update,
or update models independently by downloading the models
at runtime. After investigating a few open ML platforms
including Android’s Firebase and Apple’s Core ML, we found
that they support downloading models at runtime [4, 6]. Other
open-sourced ML platforms like Paddle-Lite [21], NCNN [26]
and Mace [32], do not explicitly support downloading models
at runtime. Developers who use their SDKs can implement this
feature easily if they need it. Some proprietary ML SDKs, like
SenseTime, Face++, which are not open-sourced, do not leave
enough information for us to tell whether they implement this
feature or not.

To measure how many ML apps that download models at
runtime, we can use static analysis or dynamic analysis. For
dynamic analysis, we can run each app, monitor the down-
loaded files, and check whether these files are ML models or
not. It would require installing and running tens of thousands
of apps, as well as triggering the model downloading process,
which is not practical. For static analysis, we can reverse
engineer each app and analyze whether it implements this
feature or not. However, this feature can be implemented in
a few lines of code without exporting any symbols and the app
packages are always obfuscated, making it hard to analyze.

We took an indirect approach. We measure the number
of apps that contain on-device ML libraries but not any ML
models. These apps have to download the models at runtime
to use the ML function. We found 109 such apps, 64 from the
Chinese app markets and 45 from the US app markets.

Model Protection Across App Stores: Figure 5 gives the
per-app-market statistics on ML model protection and reuse.
Figure 5a shows the per-market numbers of protected apps
(i.e., apps using protected/encrypted models) and unprotected
apps (i.e., apps using unprotected models).

Overall, only 59% of ML apps protect their models. The
rest of the apps (602 in total) simply include the models in
plaintext, which can be easily extracted from the app packages
or installation directories. This result is alarming and suggests
that a large number of app developers are unaware of model
theft risks and fail to protect their models. It also shows that,
for 41% of the ML apps, stealing their models is as easy as
downloading and decompressing their app packages. We urge
stakeholders and security researchers to raise their awareness
and understanding of model thefts, which is a goal of this work.

Percentages of protected models vary across app markets.
When looking closer at each app market, it is obvious to see
that Google Play has the lowest percentage of ML apps using
protected models (26%) whereas 360 Mobile Assistant has
the highest (66%) and Tencent My App follows closely (59%).
A similar conclusion can be drawn on the unique models

Table 3: Number of apps using different ML Frameworks with different functionalities.

Functionality
TensorFlow

(Google)
*Caffe2/PyTorch

(Facebook)
*Parrots

(SenseTime)
TFLite

(Google)
NCNN

(Tencent)
Mace

(Xiaomi)
MxNet

(Apache)
ULS (Utility
Asset Store) Total

OCR(Optical Character Recognition) 41 186 140 6 37 18 1 11 441
Face Tracking 26 272 216 7 53 6 13 27 620

Speech Recognition 7 32 9 1 11 18 1 9 88
Hand Detection 4 0 0 2 4 0 0 0 10

Handwriting Recognition 8 17 1 0 16 0 0 0 42
Liveness Detection 32 392 349 9 70 7 10 3 872

Face Recognition 17 116 95 6 40 7 10 3 294
Iris Recognition 0 4 0 0 2 0 3 0 9

ID Card Recognition 26 230 147 5 47 18 0 10 483
Bank Card Recognition 11 126 117 2 16 18 0 9 299

Note: 1) One app may use multiple frameworks for different ML functionalities. Therefore, the sum of apps using different functionalities is bigger than the number of total apps. 2)
Security critical functionalities are in bold fonts and can be used for fraud detection or access control. 3) *Caffe was initially developed by Berkeley, based on which Facebook built

Caffe2, which was later merged with PyTorch. The following uses “Caffe” to represent Caffe, Caffe2 and PyTorch.

(i.e., excluding reused models) found in those apps: 26%
models in Chinese apps are protected whereas the percentage
of protected models in Google Play apps is 23%. These
percentages indicate that the apps from the Chinese markets
are more active in protecting their ML models, possibly due
to better security awareness or higher risks [13, 34].

When zooming into apps and focusing on individual
models (i.e., some apps use multiple ML models for different
functionalities), the percentages of unprotected models
(Figure 5b) become even higher. Overall, 4,254 out of 6,522
models (77%) are unprotected and thus easily extractable and
reverse engineered.

Model Protection Across ML Frameworks: We also derive
the per-ML-framework statistics on model protection (Figure
6). The frameworks used by a relatively small number apps,
including MXNet, Mace, TFLite, and ULS, are grouped into
the “Other" category.

Some popular ML frameworks have wider adoption of
model protection, but some not. As shows in Figure 6a,
more than 79% of the apps using SenseTime (Parrots) have
protected models, followed by apps using Caffe (60% of
them have protected models). For apps using TensorFlow
and NCNN, the number is around 20%. Apps using other
frameworks are the least protected against model thefts. This
result can be partly explained by the fact that some popular
frameworks, such as SenseTime, has first-party or third-party
libraries that provide the model encryption feature. However,
even for apps using the top-4 ML frameworks, the percentage
of ML apps adopting model protection is still low at 59%.

Encrypted Models Reused/Shared among Apps: Our
analysis also reveals a common practice used in developing
on-device ML apps, which has profound security implications.
We found that many encrypted models are reused or shared
by different apps. The most widely shared model, namely
SenseID_Motion_Liveness.model, is found in 81 apps.
This reuse might be legitimate given that app developers buy
and use ML models and services from third-party providers,
such as SenseTime, instead of developing their own ML
features. The encrypted models reflect the awareness of the
ML providers in preventing model thefts. However, we found

60 cases of different app companies are reusing model licenses.
One of the licenses is even used by 12 different app companies,
indicating a high chance of illegal uses.

It is common to see the same encrypted model shared by
different apps. For all the encrypted models that we detected
from the apps, we calculate their MD5 hashes and identify
those models that are used in different and unrelated apps.
Figures 5c and 6c show the numbers of unique (or non-shared)
models and reused (or shared) models, grouped by app markets
and ML frameworks, respectively. Overall, only 22% of all
the protected models are unique. 75% of the encrypted models
from Google Play are unique whereas only 50% and 19% of
the encrypted models on Tencent My App and 360 Mobile As-
sistant, respectively, are not reused (Figure 5c). When grouped
by ML frameworks, 82% of encrypted SenseTime models are
shared, the highest among all frameworks (Figure 6c).

GPU Acceleration Adoption Rate among ML Apps: Table
4 shows the number ML apps and libraries that use GPU for
acceleration. 797(54%) ML apps make use of GPU. The wide
adoption of GPU acceleration poses a challenge to the design
of secure on-device ML. For instance, the naive idea of perform-
ing model inference and other model access operations entirely
inside a trusted execution environment (TEE, e.g., TrustZone)
is not viable due to the need for GPU acceleration, which can-
not be easily or efficiently accessed within the TEE.

Table 4: ML apps and libraries that use GPU acceleration
360 Mobile
Assistant

Tencent
My App

Google
Play

ML Apps 669 104 24
ML Libraries 212 103 23

Measurement of Remote Models: Unlike on-device model
inference, remote model inference allows an app to query
a remote server with an object, and obtain the inference
result from the response. Remote model inference does not
necessarily leave footprints like machine learning libraries
or models in the app packages. We thus measure the use of
remote models through APIs provided by AI companies.

We investigated the APIs provided by notable AI companies

(a) Apps using protected/encrypted
models vs. those using unprotected models

1897

199

172

2268

2831

666

757

4254

360 Mobile
Assistant

Tencent My
App

Google Play

Total

0% 25% 50% 75%

Protected models Unprotected models

(b) On-device
models that are protected/encrypted vs. those not

347

97

129

453

1550

102

43

1815

360 Mobile
Assistant

Tencent My
App

Google Play

Total

0% 25% 50% 75%

Unique Models Reused models

(c) Unique encrypted models
vs. encrypted models reused/shared by multiple apps.

Figure 5: Statistics on ML model protection and reuse, grouped by app markets. The “total” number of unique models is less than the sum of the per-store numbers
because some models are not unique from different stores.

703

104

493

84

7

866

459

327

133

289

45

602

Caffe

NCNN

SenseTime

TensorFlow

Other

Total

0% 25% 50% 75%

Protected apps Unprotected apps

(a) Apps using
protected models vs. those using unprotected models

2141

440

1550

317

34

2268

2992

2184

1190

1602

301

4254

Caffe

NCNN

SenseTime

TensorFlow

Other

Total

0% 25% 50% 75%

Protected models Unprotected models

(b) On-device
models that are protected/encrypted vs. those not

400

167

272

110

22

453

1741

273

1278

207

12

1815

Caffe

NCNN

SenseTime

TensorFlow

Other

Total

0% 25% 50% 75%

Unique models Reused models

(c) Unique encrypted models
vs. encrypted models reused/shared by multiple apps

Figure 6: Statistics on ML model protection and reuse, grouped by ML frameworks. The “total” number is less than the sum of the per-framework numbers
because many apps use multiple frameworks for different functionalities.

from both US and China. Given publicly available documen-
tation, we were able to extract the use of remote models from
Google Cloud AI, Amazon Cloud AI and Baidu AI. Specifi-
cally, we scanned the API documentation for signature (unique
naming) of remote ML inference libraries. For example, to use
the remote Voice Synthesizer of Baidu AI, an app developer
needs to include the library libBDSpeechDecoder_V1.so. We
then collected all the signatures from the three companies, and
analyzed the use of such signatures in our app collection.

We compared the number of apps using remote models,
on-device models, or using both type of models in a hybrid
mode. As Table 5 shows, 1,341 apps use remote models,
1,468 apps use on-device models, and 182 apps use both. We
emphasize again that on-device model inference is as popular
as remote model inference.

Table 5: Comparison between apps using remote and on-device ML models

App Number
360 Mobile
Assistant

Tencent
My App

Google
Play Sum

Remote Models 1,186 118 37 1,341
On-device Models 1,131 159 178 1,468

Hybrid Mode 153 23 6 182

We also analyzed the type of ML services provided by
remote models, and the coverage of remote models among
Android apps. Among the 1,341 apps using remote models,

1,075 apps use NLP APIs (speech recognition/synthesizer,
etc.), 266 apps use ML Vision APIs (OCR, image labeling,
landmark recognition, etc.). We did not find any security
critical use cases for remote models. As we can see, remote ML
models offer services such as NLP, Voice Synthesizer, OCR
and so on, rather than liveness detection, face recognition,
or other live image processing functionalities, as often seen
in on-device models. This indicates that on-device models
are preferred in scenarios with security critical use cases,
and real-time demands. For the remaining scenarios, remote
models are preferred for easier integration.

5 Q2: How Robust Are Existing Model Protec-
tion Techniques?

To answer this question, we build ModelXtractor, a tool simple
by design to dynamically recover protected or encrypted
models used in on-device ML. Conceptually, ModelXtractor
represents a practical and unsophisticated attack, whereby
an attacker installs apps on his or her own mobile device and
uses the off-the-shelf app instrumentation tools to identify
and export ML models loaded in the memory. ModelXtractor
mainly targets on-device ML models that are encrypted during
transportation and at rest (in storage) but not protected when
in use or loaded in memory. For protected models mentioned

in §4, ModelXtractor is performed to assess the robustness
of the protection.

The workflow of ModelXtractor is depicted in Figure 7.
It takes inputs from ModelXRay, including the information
about the ML framework(s) and the model(s) used in the
app (described in §4). These information helps to target and
efficiently instrument an app during runtime, and capture
models in plaintext from the memory of the app. We discuss
ModelXtractor’s code instrumentation strategies in §5.1, our
techniques for recognizing in-memory models in §5.2, and
how ModelXtractor verifies captured models in §5.3. Our
findings, insights, the answer to Q2, and several case studies
are presented in §5.4 and §5.5. Responsible disclosure of our
findings is discussed in §5.6.

5.1 App Instrumentation
ModelXtractor uses app instrumentation to dynamically find
the memory buffers where (decrypted) ML is loaded and ac-
cessed by the ML frameworks. For each app, ModelXtractor de-
termines which libraries and functions need to be instrumented
and when to start and stop each instrumentation,based on the in-
strumentation strategies (discussed shortly). ModelXtractor au-
tomatically generates the code that needs to be inserted at differ-
ent instrumentation points. It employs the widely used Android
instrumentation tool, Frida [11], to perform code injection.

ModelXtractor has a main instrumentation strategy (S0)
and four alternative ones (S1-S4). When the default strategy
cannot capture the models, the alternatively strategies (S1-S4)
will be used.

S0: Capture at Model Deallocation: This is the default
strategy since we observe the most convenient time and place
to capture an in-memory model is right before the deallocation
of the buffer where the model is loaded. This is because (1)
memory deallocation APIs (e.g.,free) are limited in numbers
and easy to instrument, and (2) models are completely loaded
and decrypted when their buffers are to be freed.

Naive instrumentation of deallocation APIs can lead to dra-
matic app slowdown. We optimize it by first only activating it af-
ter the ML library is loaded, and second, only for buffers greater
than the minimum model size (a configurable threshold). To
get buffer size, memory allocation APIs (e.g.,malloc) are in-
strumented as well. The size information also helps correlate
a decrypted model to its encrypted version (discussed in §5.3).

This default instrumentation strategy may fail in the
following uncommon scenarios. First, an app is not using
native ML libraries, but a JavaScript ML library. Second, an
app uses its own or customized memory allocator/deallocator.
Third, a model buffer is not freed during our dynamic analysis.

S1: Capture from Heap: This strategy dumps the entire heap
region of an app when a ML functionality is in use, in order to
identify possible models in it. It is suitable for apps that do not
free model buffers timely or at all. It also helps in cases where
memory-managed ML libraries are used (e.g., JavaScript) and

buffer memory deallocations (done by a garbage collector)
are implicit or delayed.

S2: Capture at Model Loading: This strategy instruments
ML framework APIs that load models to buffers. We manually
collect a list of such APIs (e.g., loadModel) for the ML
frameworks observed in our analysis. This strategy is suitable
for those apps where S0 fails and the ML framework code is
not obfuscated.

S3: Capture at Model Decryption: This strategy instru-
ments model decryption APIs (e.g., aes256_decrypt) in ML
frameworks, which we collected manually. Similar to S2, it is
not applicable to apps that use obfuscated ML framework code.

S4: Capture at Customized Deallocation: Some apps use
customized memory deallocators. We manually identify a
few such allocators (e.g., slab_free), which are instrumented
similarly as S0.

5.2 Model Representation and Recognition
The app instrumentation described earlier captures memory
buffers that may contain ML models. The next step is to
perform model recognition from the buffers. The recognition is
based on the knowledge of in-memory model representations,
i.e., different ML frameworks use different formats model
encoding, discussed in the following.

Protobuf is the most popular model encoding format, used
by TensorFlow, Caffe, NCNN, and SenseTime. To detect and
extract models in Protobuf from memory buffers, ModelX-
tractor uses two kinds of signatures: content signatures and
encoding signatures. The former is used to identify buffers that
contain models and the latter is used to locate the beginning
of a model in a buffer.

Model encoded in Protobuf usually contains words descrip-
tive of neural network structures and layers. For example,
“conv1" is used for one-dimension convolution layer,and “relu"
for the Rectified Linear Unit. Such descriptive words appear
in almost every model and are used as the content signatures.

The encoding signatures of Protobuf is derived from its
encoding rule [22]. For example, a Protobuf contains multiple
messages. Every message is a series of key-value pairs, or
fields. The key of a field is encoded as (field_number � 3)
| wire_type, where the field_number is the ID of the field
and wire_type specifies the field type.

A typical model in Protobuf starts with a message whose
first field defines the model name (e.g.,VGG_CNN_S). This field
usually has a wire_type of 2 (i.e., a length-delimited string)
and a field_number of 0 (i.e., the first field), which means
that encoded key for this field is “0A”. This key is usually the
first byte of a Protobuf encoded model. Due to alignment, this
key appears at a four-byte aligned address within the buffer.
It is used as an encoding signature.

Other model formats and representations have their own
content and encoding signature. For example, TFLite models
usually include "TFL2" or “TFL3" as version numbers. Some

App with
Encrypted

Models

S0: Capture at
Model

Deallocation
N

Y

Succeed?
ModelXtractor

S1: Capture
from Heap

S2: Capture at
Model Loading

S4: Capture at
Customized
Deallocation

Decrypted
Model

Buffers
Verified

Model Files

Extract & Verify

Dump Model Buffers

Dump Model Buffers

S3: Capture at
Model

Decryption

ML Triggered

Check SDK License

Fetch Decryption Key

Decrypt Model

Model Inference

Parse Model

Allocate Buffer

Free Buffer

YN

Figure 7: Extraction of (decrypted) models from app memory using ModelXtractor

The left side shows the typical workflow of model loading and decryption in mobile apps. The
right side shows the workflow of ModelXtractor. The same color on both sides indicate the same timing of the strategy being used. The "Check

SDK License" shows that a model provider will check an app’s SDK license before releasing the decryption keys as a way to protect its IP.

model files are even stored in JSON format, with easily identi-
fiable names for each field. Models from unknown frameworks
or of unknown encoding formats are hard to identify from mem-
ory. In such cases, we consider the buffer of the same size as the
encrypted model to contain the decrypted model. This buffer-
model size matching turns out to be fairly reliable in practice.
The reason is that, when implementing a decryption routine,
programmers almost always allocate a buffer for holding the
decrypted content with the same size as the encrypted content.
This practice is both convenient (i.e., no need to precisely calcu-
late the buffer size before decryption) and safe (i.e., decrypted
content is always shorter than its encrypted counterpart due to
the use of IV and padding during encryption). We show how
buffer size matching is used in our case studies in §5.5.

5.3 Evaluation of ModelXtractor

Model Verification: ModelXtractor performs a two-step
verification to remove falsely extracted models. First, it
confirms that the extracted model is valid. Second, it verifies
that the extracted model matches the encrypted model. We
use publicly available model parsers to verify the validity of
extracted model buffers (e.g., protobuf decoder [19] to extract
protobuf content, and Netron [18] to show the model structure).
When a decoding or parsing error happens, ModelXtractor
considers the extracted model invalid and reports a failed
model extraction attempt. To confirm that an extracted model
indeed corresponds to the encrypted model, ModelXtractor
uses the buffer-model size matching described before.

Evaluation on Apps from Google Play: There are 47 ML
apps from Google Play that use encryption to protect their
models. We applied ModelXtractor on half of the ML apps
(randomly selected 23 out of 47). Among the tested 23
apps, we successfully extracted decrypted models from 9 of
them. As for the other 14 apps, 2 apps do not use encryption,
1 app does not using ML, and 11 apps do not have their
models extracted for the following reasons: apps cannot be

instrumented; apps did not trigger the ML function; apps
cannot be installed on our test devices.

Evaluation on Apps from Chinese App Markets: There
are 819 apps from Chinese app markets found to be using
encrypted models, where model reuse is quite common as
shown in our static analysis. We carefully selected 59 of these
apps prioritizing model popularity and app diversity. Our
analyzed apps cover 15 of the top 45 most widely used models
(i.e., each is reused more than 10 times) and 8 app categories.

When analyzing the Chinese apps, we encountered some
non-technical difficulties of navigating the apps and triggering
their ML functionalities. For instance, some apps require
phone numbers from certain regions that we could not obtain
for user registration. A lot of them are online P2P loan apps or
banking apps that require a local bank account to trigger ML
functionalities. Out of the 59 apps, we managed to successfully
navigate and trigger ML functionalities in 16 apps. We then
extracted decrypted models from 9 of them.

Limitation of ModelXtractor: ModelXtractor failed to
extract 11 models whose ML functionalities were indeed
triggered. This was because of the limitation of our instru-
mentation strategies discussed in §5.1. We note that these
strategies and the design of ModelXtractor are not meant
to extract every protected model. Instead, they represent a
fairly practical and simple attack, designed only to reveal the
insufficient protection of ML models in today’s mobile apps.

5.4 Findings and Insights

Results of Dynamic Model Extraction: Table 6 shows the
statistics on the 82 analyzed apps, grouped by the ML frame-
works they use. Among the 29 apps whose ML functionalities
were triggered, we successfully extracted models from 18
of them (66%). Considering the reuse of those extracted
encrypted models, the number of apps that are affected by
our model extraction is 347 (i.e., 347 apps used the same
models and same protection techniques as the 18 apps that we

extracted models from). This extraction rate is alarming and
shows that a majority of the apps using model protection can
still lose their valuable models to an unsophisticated attack.
It indicates that even for app developers and ML providers
willing/trying to protect their models, it is hard to do it in a
robust way using the file encryption-based techniques.

Table 7 shows the per-app details about the extracted models.
We anonymized the apps for security concerns: many of
them are highly downloaded apps or provide security-critical
services. Many of the listed apps contain more than one ML
models. For simplicity, we only list one representative model
for each app.

Most decrypted models in memory are not protected at all.
As shown in Table 7, most of the decrypted models (12 of
15) were easily captured using the default strategy (S0) when
model buffers are to be freed. This means that the decrypted
models may remain in memory for an extended period of time
(i.e., decrypted models are not erased before memory dealloca-
tion), which creates a large time window for model thefts for
leakages. Moreover, this result indicates that apps using encryp-
tion to protect models are not doing enough to secure decrypted
models loaded in memory, partly due to the lack practical in-
memory data protection techniques on mobile platforms.

Popularity and Diversity of Extracted Models: The
extracted models are highly popular and diverse, some very
valuable or security-critical. From Table 7 we can see that 8
of 15 listed apps have been downloaded more than 10 million
times. Half of the extracted models belong to commercial
ML providers, such as SenseTime, and were purchased by the
app developers. Such models being leaked may cause direct
financial loss to both app developers and model owners (§6).

As for diversity, the model size ranges from 160KB to
20MB. They span all the popular frameworks, such as
TensorFlow, TFLite, Caffe, SenseTime, Baidu, and Face++.
The observed model formats include Protobuf, FlatBuffer,
JSON, and some proprietary formats used by SenseTime,
Face++ and Baidu. In terms of ML functionalities, the models
are used for face recognition, face tracking, liveness detection,
OCR, ID/card recognition, photo processing, and malware
detection. Among them, liveness detection, malware detection,
and face recognition are often used for security-critical
purposes, such as access control and fraud detection. Leakage
of these models may give attackers an advantage to develop
model evasion techniques in a white-box fashion.

Reusability of the Extracted Models: Extracted models can
be directly used by an attacker when they expect standard
input representations (e.g., images and video) and run on the
common ML frameworks (e.g., TensorFlow and PyTorch).
More than 81% of apps in our study contain directly usable
models. In some uncommon cases, such as the example given
in Section 5.5, a model may expect a special/obfuscated input
representation. Such a model, after extraction, cannot be
directly used. However, as we demonstrated in the paper, using

standard reverse engineering techniques, we could recover
the feature vectors and reuse the extracted models in this case.

Potential Risk of Leaking SDK/Model License: SDK/-
Model license are poorly protected. Developers who bought
the ML SDK license from model provider usually ship the
license along with app package. During analysis, we find
the license are used to verify legal use of SDK before model
file get decrypted. However, license file are not protected by
the developer, which means it is possible to illegally use the
SDK by stealing license file directly from those apps that have
bought it. Poor protection of license has been observed in both
SenseTime ML SDKs and some other SDKs, which actually
affects hundreds of different apps.

Table 6: Model extraction statistics.
ML

Framework
Unique Models

Analyzed
ML

Triggered
Models

Extracted
Models
Missed

Apps
Affected

TensorFlow 3 3 3 0 3
Caffe 7 3 1 2 79

SenseTime 55 16 11 5 186
TFLite 3 2 2 0 76
NCNN 9 3 0 3 0
Other 5 3 2 1 88
Total 82 29 18 11 347

Note: 347 is the sum of affected apps per framework after deduplication.

5.5 Interesting Cases of Model Protection
We observe a few cases clearly showing that some model
providers use extra protection on their models. Below we
discuss these cases and share our insights.

Encrypting Both Code and Model Files: We analyzed an
app that uses the Anyline OCR SDK. From the app profile gen-
erated by ModelXRay,we can tell that this app uses TensorFlow
framework. It places the encrypted models under a directory
named “encrypted_models”. Initially, ModelXtractor failed to
extract the decrypted models using the default strategy (S0).
We manually investigated the reason and found that, unlike
most ML apps, this app runs ML inference in a customized
WebView, where an encrypted JavaScript, dynamically loaded
at runtime, performs the model decryption and inference. We
analyzed the heap memory dumped by ModelXtractor using
the alternative strategy, S1, and found the TensorFlow model
buffers in the memory dump. We verified our findings by decod-
ing the Protobuf model buffers and extract the models’ weights.

It shows that, despite the extra protection and sophisticated
obfuscation, the app can still lose its models to not-so-
advanced attacks that can locate and extract decrypted models
in app memory.

Encrypting Feature Vectors and Formats: When we
analyzed one malware detection app, we found that it does not
encrypt its model file. Instead, it encrypts the feature vectors
which is the input of the model. This app uses a Random
Forest model for malware classification. It uses TensorFlow
framework and the model is in the format of Protobuf. There
are more than one thousand features used in this malware

Table 7: Overview of Successfully Dumped Models with ModelXtractor
App name Downloads Framework Model Functionality Size (B) Format Reuses Extraction Strategy
Anonymous App 1 300M TFLite Liveness Detection 160K FlatBuffer 18 Freed Buffer
Anonymous App 2 10M Caffe Face Tracking 1.5M Protobuf 4 Model Loading
Anonymous App 3 27M SenseTime Face Tracking 2.3M Protobuf 77 Freed Buffer
Anonymous App 4 100K SenseTime Face Filter 3.6M Protobuf 3 Freed Buffer
Anonymous App 5 100M SenseTime Face Filter 1.4M Protobuf 2 Freed Buffer
Anonymous App 6 10K TensorFlow OCR 892K Protobuf 2 Memory Dumping
Anonymous App 7 10M TensorFlow Photo Process 6.5M Protobuf 1 Freed Buffer
Anonymous App 8 10K SenseTime Face Track 1.2M Protobuf 5 Freed Buffer
Anonymous App 9 5.8M Caffe Face Detect 60K Protobuf 77 Freed Buffer
Anonymous App 10 10M Face++ Liveness 468K Unknown 17 Freed Buffer
Anonymous App 11 100M SenseTime Face Detect 1.7M Protobuf 18 Freed Buffer
Anonymous App 12 492K Baidu Face Tracking 2.7M Unknown 26 Freed Buffer
Anonymous App 13 250K SenseTime ID card 1.3M Unknown 13 Freed Buffer
Anonymous App 14 100M TFLite Camera Filter 228K Json 1 Freed Buffer
Anonymous App 15 5K TensorFlow Malware Classification 20M Protobuf 1 Decryption Buffer

Note: 1) We excluded some apps that dumped the same models as reported above; 2) We anonymized
the name of the apps to protect the user’s security; 3) Every app has several models for different functionalities, we only list one representative model for each app.

classification model, including the APIs used by the App, the
Permissions claimed in the Android Manifest files and so on.
By encrypting the feature vectors, the developer assumes it is
impossible to (re)use the model because the input format and
content are unknown to attackers. However, we instrumented
the decryption functions and extracted the decrypted feature
vectors. With this information, an attacker can steal and
recover the model as well as the feature vector format, which
can lead to model evasions or bypassing the malware detection.
It shows that even though some models take specific input
format, with some basic reverse engineering effort, the attacker
can still uncover and reuse the model.

Encrypting Models Multiple Times: We also observed that
one app encrypts its models multiple times. This app offers
online P2P loans. It uses two models provided by SenseTime:
one for ID card recognition and the other for liveness detection,
which are security critical. ModelXtractor successfully
extracted 6 model buffers, whose sizes range from 200KB
to 800KB. However, we only found 2 encrypted model files.
When we were trying to map the model buffers to the encrypted
files, we found something very interesting. One encrypted
model file named SenseID_Ocr_Idcard_Mobile_1.0.1.model
has a size of 1.3 MB. Among the dumped model buffers,
we have one buffer of the same size. It is supposed to be
the right decrypted buffer. After analyzing its content, we
found that it is actually a tar file containing multiple files, one
of which is align_back.model. After inspecting the content
of align_back.model, we found that it is also an encrypted
file. We then found another buffer of the same size, 246 KB,
which contains a decrypted model. We finally realized that
the app encrypts each model individually and compresses all
encrypted models into a tar file, then encrypts it again.

5.6 Responsible Disclosure
We have contacted 12 major vendors whose apps have leaked
models, including Google, Facebook, Tencent, SenseTime

and etc. We have received responses from five of them.
In summary, for vendors that use plaintext models, one ven-

dor is unaware of possible model leakage until we contact them.
For the other vendors, one of them is unaware of the impact that
leaked models can incur. Two vendors respond with lack of
a practical solution to protect the models, in which one vendor
is waiting for hardware support to encrypt the models securely,
and the other fails to find an existing proprietary mitigation to
make it harder for model reuse. This vendor assumes that ma-
licious end users might eventually gain access to some model
data, but not for practical use. For vendors whose models are
encrypted but can still be extracted, our research raised internal
discussions of one vendor on improving model security. The
vendor is taking actions on robust model protection, with re-
search and collaborations with well-known security partners.

6 Q3: What Impacts can (Stolen) Models
Incur?

ML models are the core intellectual properties of ML solution
providers. The impacts of leaked models are wide and
profound, including substantial financial impact as well as
significant security implications.

6.1 Financial Impact
6.1.1 Financial Benefit for Attackers

App developers usually have two legitimate ways to get ML
models: (1) buying a license from ML solution providers,
such as SenseTime, Face++, and so on; (2) Developing their
own ML models, which usually requires a large amount of
computing and human resources. Stealing the models saves
the attackers either the license fee paid to the model providers,
or the research and development (R&D) cost on the models.

License Fee Savings for Attackers: Usually, when vendors
license an ML model, the app developer can choose between

online authorization or offline authorization. A license with
offline authorization allows a device to use the ML SDK
without network connection. A company with such licenses
is given unlimited uses on different devices [14]. The down
side is that the model provider has no control over the number
of devices or which devices to have access to the model SDKs.
As a result, it is hard for the model provider to tell whether
a model has been stolen or not. According to Face++, the
annual fee for a license with offline authorization is $50,000
to $200,000 [14]. The saving is large enough to motivate
an attacker to steal the models or the model licenses. In our
analysis, we found 60 cases in which several different apps
sharing one model license. One of the licenses is even used
by 12 different apps, indicating a high chance of illegal uses.

A license with online authorization can control the usages of
the SDKs. Before using the model SDK, a device has to authen-
ticate itself to the model provider with a license key. The model
provider can then count the number of authorized devices, and
charge the app company per device or per pack of devices.
Online authorization offers stronger protection of the model
licenses than offline authorization. However, there are still
chances that attackers stealthily use a license before it reaches
the limit of the current pack. The market price for face landmark
SDK is $10,000 for up to 10,000 of online authorizations [14].
Even though the savings are smaller than offline authorized
licenses, attackers can still benefit from them financially.

R&D Savings for Attackers: The R&D cost of ML models
comes from three sources: collecting and labeling data for train-
ing, hiring AI engineers for designing and fine-tuning models,
and computing resources, such as renting or buying and main-
taining storage servers and GPU clusters for training models.

According to Amazon Mechanical Turk [2], the price of
labeling an object ranges from $0.012 to $0.84, depending on
the type of the object (e.g., image, text, semantic segmentation).
Considering the CMU Multi-PIE database as an example,
which contains more than 750,000 images [29], the cost of
labeling would be at least $9,000. For larger databases, for
example, MegaFace with 4.7 million labels [16], or some
audio and video datasets [20, 31], the cost of labeling could be
even higher. According to LinkedIn statistics [23], the median
base salary for machine learning engineers is $145,000 per
year. Given a team with five engineers, training and fine-tuning
a model for one year, the cost would be $725,000. Based on
the pricing of Amazon SageMaker [3], the monthly rate for
ML storage is $0.14 per GB, and the hourly rate for the current
generation of ml.p3.2xlarge accelerated computing is $4.284.
Still considering the CMU Multi-PIE database as an example,
with a data size of 305GB, the yearly cost of data storage and
training would be $38,040.

Based on the above information, a conservative estimate
on the total saving for attackers on model R&D cost could
be $772,040. Note that the salary of AI engineers are based
on the public information of large AI companies, which can
be higher than those from small companies. The number of

AI engineers and the acutual model development cycle vary
from case to case. The estimation of R&D cost should take
all above factors into consideration.

6.1.2 Financial Loss for Model Vendors

For vendors whose main business (source of income) depends
on ML models, e.g., model providers or app companies, model
leakages result in pricing disadvantages, lost of customers and
market share.

Pricing Disadvantages for Vendors: As mentioned earlier,
the cost of ML models can reach millions of dollars, thereby
competitors have strong motivation towards leaked models.
Once competitors start adopting leaked models with lower
cost, they can offer lower prices to the customers. At the same
quality, customers are more willing to choose the cost efficient
products. Therefore, vendors who leak their models will lose
the pricing competition in the first place.

For model providers, the market is strongly competitive. In
our study, we have found some top ML SDK providers, such as
SenseTime, Megvii, Baidu, ULSee, Anyline, etc. Take Megvii
as an example, according to Owler [17], 10 competitors are
closely related to its businesses, such as Cognitec, SenseTime,
Kairos, FaceFirst, Cortexica, etc. For app companies, the
competition is as much competitive if not more so. In Google
Play only, our study found 36 apps using ML SDK for image
recognition as the main business. Considering the other two
stores, at least 215 apps are competing for this business.

Anticipated Falling Market Share for Vendors: The pricing
disadvantage caused by leaked models will potentially result
in loss of customers and market share, which will both lead
to significant revenue loss. Take model provider SenseTime as
an example, our study found 8 unique SenseID_OCR models,
and each is reused by 21 apps on average. Loss of one single
app customer will potentially bring a loss of at least $10,000,
based on the market price discussed earlier (e.g., $10,000 for
up to 10,000 of online authorizations). In fact, SenseTime has
more than 700 customers and partners [24], and has a revenue
of $750 Million in 2019. For app companies, we also observed
unbalanced market share in the 215 apps competing for the
business of image recognition. The number of downloads for
these apps ranges from ten thousands to one hundred million.
For both model providers and app companies, the decline in
market share caused by pricing disadvantage may lead to
further financial loss.

6.2 Security Impact
Some ML models are used for security-critical purposes. For
example, liveness detection model is used to verify whether
it is a real person holding a real ID card. Face, fingerprint
and iris recognition models are used to detect and verify the
identity of a person. These models bring in great convenience,
for example, users do not need to go to a bank or customer

service centers to verify their identities. However, breaches
of such models bring in security and privacy concerns.

For attackers, a leaked security-critical model makes it
easier for them to design and craft adversarial examples. They
can then use the examples to either fake different identities,
or simply bypass the identity check of the apps [7].

We found more than 100 apps using on-device ML models
for banking and loan services. These apps provide personal
loan services aiming at quick and convenient loan applications.
They use face recognition models to verify the identity of a
person by taking a short video, and comparing with the photo
on the ID card. The apps then determine the credit limits and
rates to loan to the applicants. When the models are leaked,
attackers can easily fake identities of other applicants, and
apply for loans on their behalf.

In our analysis, we found that 872 apps are using live-
ness detection models, representing 59% of all the apps
using on-device ML. We also found security-critical mod-
els to be shared among different apps, for example, the
SenseID_Motion_Liveness model is shared by 81 apps.
Leakage of this model from any of the apps will make it easier
for the attackers to bypass the detection to all the 81 apps.

For end users, it raises the concern that attackers with
faked identities can access users’ private information. For
example, some apps provide online medical services, such
as booking appointments, filling out medical history forms,
receiving electrical prescriptions, and laboratory reports from
the doctors. They may also use on-device ML models to verify
the identities of patients. Bypassing the verification will allow
attackers to access personal medical records. In our analysis,
we found 6 such apps, which have been downloaded more
than 9 million times on 360 Mobile Assistant Store. One of
the face detection model, although encrypted, is shared by
77 different apps. Leakage of the model from any of the apps
will potentially expose the personal medical records of mass
end users. It is therefore important for vendors to protect the
models, especially when they are security-critical. Vendors
and app developers should be careful about the potential
security impact caused by leaked/stolen models.

7 Countermeasures

In this section, we discuss several existing approaches to
protecting on-device machine learning models and their
limitations. We also share our insights in the future research
of model protection.

7.1 Current Model Protection

Obfuscation makes it harder for attackers to recover the
model. We observed that developers have implemented their
own obfuscation/de-obfuscation mechanisms, which impose
non-trivial programming overhead. For example, NCNN can
convert models into binaries where text is all striped, and

Mace can convert a model to C++ code [26, 32].

Encryption prevents the attackers from directly accessing
the model from a downloaded APK. We observed that
developers use encryption in many ways to protect their
models, including the ML feature vectors, ML models, and
the code to run model inferences. However, they all fall victim
to our non-sophisticated dynamic analysis.

Customized model frameworks/formats increase the effort
for attackers to identify and reuse the models. We observed
that customized or proprietary model formats, such as
MessagePack (.model), pickle (.pkl), Thrift (.thrift), can be
used to counter against model reverse engineering. We also
observed customized ML library running encrypted JavaScript
in a customized WebView.

7.2 Limitations

Obfuscation is vulnerable to devoted attackers who can
recover the model with knowledge of binary decompilation.
Attackers can leverage program slicing and partial execu-
tion [41,51] to de-obfuscate Android apps [39,60], and further
decompile and recover the obfuscated models. Even without
these knowledge, attackers can reuse the model as a black box.

Encryption is vulnerable to attackers who can perform
dynamic analysis and instrument app memory at runtime. We
have demonstrated it in Section 5.1.

Customized model frameworks/formats are vulnerable to
documentation leakage of the model frameworks/formats. The
documentation may come from internal attackers, or skilled
and patient attackers who have good motivation to reverse
engineer the model frameworks/formats.

7.3 Future Works

Secure hardware is the most promising approach to pro-
tecting models on mobile devices. It has been demonstrated
on desktop platforms. For example, recent advance in
TF-Trusted [28] allows developers to run Tensorflow models
inside of secure enclaves, such as Intel SGX [15]. Slalom [56]
uses SGX during model inference, applies homomorphic en-
cryption on each layer’s input and outsources the computation
of linear layers to GPU securely. Privado [55] uses SGX to mit-
igate side channel attacks of input inference. TensorScone [46]
also uses SGX to protect model inference but does not consider
GPU. Graviton [58] is proposed to make GPU a trusted ex-
ecution environment with minimal hardware changes incurred.
So far, research in this area focuses on cloud-end security.

Future research should consider secure hardware backed
model inference on mobile device. For example, Arm
TrustZone [33] in mobile devices can be used to provide model
protection. There are also some unique challenges that needs
to be addressed on mobile devices. Compared with desktop
platforms, mobile devices are more restricted in computation

resources, making it impractical to perform model inference
entirely in TEE. Given the wide adoption of GPU on mobile
devices, an effective model protection should also consider
using the GPU for acceleration in a secure way.

8 Discussion

Manual analysis effort: Although ModelXtractor can auto-
matically generate instrumentation scripts customized for the
apps, manual effort is required in the dynamic analysis. As de-
scribed in Section 5.3, some Chinese apps require registration
with valid phone numbers or regional bank accounts before
using ML models. Manual effort is thus needed to feed in valid
registration information. To maximize the chance of triggering
ML models, manual effort is also needed to fully navigate
the apps with ML-related functionalities. After the model is
loaded and suspected model buffer dumped by ModelXtractor,
manual effort is needed to verify the start of the model based
on the encoding signatures described in Section 5.2. Then we
truncate the buffer and use a model decoder, e.g. protobuf, to
parse the buffer and manually verify whether it is a ML model.

The amount of manual effort depends on how easy it
is to trigger the ML functionality. Some apps do not need
registration and the ML models are loaded by default, such
as some AI camera apps, extracting their models takes less
than an hour. In the worst cases, such as some P2P loan apps,
whole ML models cannot be loaded without registration with
valid phone numbers and regional bank accounts, it may take
hours to extract the models. We therefore prioritize on apps
whose models can be easily extracted, and budget 2 hours for
each app among the 82 apps we analyzed in Table 6.

Research Insights: White-box Adversarial Machine Learning.
Previous research on adversarial machine learning has been
focused on black-box threat models, assuming the model files
are inaccessible. Our research shows that an attacker can easily
extract the protected private models. As a result, more research
on defending adversarial machine learning under white-box
threat model is much needed to improve the resiliency of those
models used in security critical applications.

Model Plagiarism Detection. As machine learning models
are not well protected, attackers, instead of training their own
model, can steal their competitor’s model and reuse it. As a
result, model plagiarism detection is needed to prevent this
type of attack. It is challenging because the attacker can retrain
their model based on the stolen one, making it looks very
different. We need research to detect model plagiarism and
provide forensic tools for illegal model reuse analysis.

Limitations: Since the goal of this paper is to show that even
simple tools can extract on-device ML models in a large scale,
ModelXRay and ModelXtractor are limited by the straightfor-
ward design of keyword matching. We acknowledge that the
scale of model extraction can be further improved by leveraging
program slicing and partial execution [41,51], and Android app

de-obfuscation [39, 60]. Further, model encoding and content
features are limited to well-known ML SDKs having documen-
tation available, thereby we believe an extended knowledge
base can further include special model encoding formats.

We note that our financial loss analysis is subjective and lim-
ited by the asymmetric information of R&D cost and company
revenue. The approach is used to emphasize the point that costs
can be very high. A more comprehensive study can be carried
out by stakeholders having real data of model leakage cases.

9 Related Work

Motivated by hardware acceleration and efficiency improve-
ment of deep neural networks [48], on-device model inference
becomes a new trend [61]. This work empirically evaluates
model security on mobile devices. It interacts with three lines
of research: machine learning model extraction, adversarial
machine learning, and proprietary model protection.

To extract information from Android apps, prior works have
used various techniques, such as memory instrumentation,
program slicing and partial execution. For example, to detect
Android malware, Hoffmann presents static analysis with
program slicing on Smali code [43]. DroidTrace [63] presents
ptrace based dynamic analysis with forward execution capa-
bility. DroidTrace monitors selected system calls of the target
process, and classifies the behaviors through the system call
sequences. Rasthofer combines program slicing and dynamic
execution [51] to further extract values from obfuscated
samples, which include reflected function calls, sensitive
values in native code, dynamically loaded code, and other anti-
analysis techniques. Similar works include DeGuard [39] and
TIRO [60]. To extract the cryptographic key of a TLS connec-
tion, DroidKex [54] applies fast extraction of ephemeral data
from the memory of a running process. It then performs partial
reconstruction on the semantics of data structures. ARTIST
provides an Android Runtime Instrumentation Toolkit [42],
which monitors the execution of Java and native code. ARTIST
parses OAT executable files in memory to find classes and meth-
ods of interest, and locate internal structures of the Android
Runtime. AndroidSlicer combines asynchronous slicing for
data modeling and control dependencies in the callbacks [37].
It can locate instructions responsible for model loading/unload-
ing, and track responsible parts based on app inputs. Similarly,
CredMiner investigates the prevalent unsafe uses of developer
credentials [64]. It leverages data flow analysis to identify the
raw form of the embedded credential. Our work also combines
static and dynamic analysis on Android apps, however, with
a different goal of machine learning model extraction.

Prior work on machine learning model extraction focuses
on learning-based techniques targeting ML-as-a-service.
Tramer et. al proposes stealing machine learning models
via prediction APIs [57], since ML-as-a-service may accept
partial feature vectors as inputs and include confidence values
with predictions. Then, Wang et. al [59] extend the attacks by

stealing hyperparameters. Other work includes stealing the
functionality of the models [45, 50], querying the gradient to
reconstruct the models [49], exploratory attacks to reverse engi-
neer the classifiers [52], and side channel attacks to recover the
models [38]. Our work is orthogonal to these study by targeting
on-device model inference, assuming the attackers having
physical access to the mobile devices running model inference.

Model extraction paves the road for adversarial machine
learning. Prior work [44, 47] fooling the models or bypassing
the check is mostly under the black-box threat model. Once
ML models become white-box, attackers can easily craft
adversarial examples to deceive the learning systems. Our
study shows white-box adversarial machine learning is a real
threat to on-device ML models.

To protect machine learning model as an intellectual
property, watermark technique has been used to detect
illegitimate model uses [36, 62]. Moreover, fingerprinting
has been used to protect model integrity. Chen et al. encodes
fingerprint [40] in DNN weights so that the models can be
attested to make sure it is not tampered or modified. Our
research supports it with the finding that model plagiarism is
a realistic problem especially for mobile platforms.

10 Conclusion

We carry out a large scale security analysis of machine learn-
ing model protection on 46,753 Android apps from both the
Chinese and the US app markets. Our analysis shows that on-
device machine learning is gaining popularity in every category
of mobile apps, however, 41% of them are not protecting their
models. For those are, many suffer from weak protection mech-
anisms, such as using the same encrypted model for multiple
apps, and even the encrypted models can be easily recovered
with our unsophisticated analysis. Our impact analysis shows
that model leakage can financially benefit attacks with as high
as millions of dollars, and allow attackers to evade model-based
authentication and access user private information. Attackers
both technically can and financially are motivated to steal mod-
els. We call for research into robust model protection.

Acknowledgment

The authors would like to thank the paper shepherd Prof.
Konrad Rieck and the anonymous reviewers for their insightful
comments. This project was supported by the National Science
Foundation (Grant#: CNS-1748334) and the Army Research
Office (Grant#: W911NF-18-1-0093). Any opinions, findings,
and conclusions or recommendations expressed in this paper
are those of the authors and do not necessarily reflect the views
of the funding agencies.

References

[1] A brief guide to mobile AI chips. https:
//www.theverge.com/2017/10/19/16502538/
mobile-ai-chips-apple-google-huawei-qualcomm.

[2] Amazon SageMaker Ground Truth pricing. https://aws.
amazon.com/sagemaker/groundtruth/pricing/.

[3] Amazon SageMaker Pricing. https://aws.amazon.com/
sagemaker/pricing/.

[4] Android ml. https://developer.android.com/ml.

[5] Apache MXNet | A flexible and efficient library for deep
learning. https://mxnet.apache.org/.

[6] Apple core ml. https://developer.apple.com/
documentation/coreml/core_ml_api/personalizing_a_
model_with_on-device_updates.

[7] Artificial Intelligence + GANs can create fake celebrity
faces. https://medium.com/datadriveninvestor/artificial-
intelligence-gans-can-create-fake-celebrity-faces-
44fe80d419f7.

[8] Caffe2 -a lightweight, modular, and scalable deep learn-
ing framework. https://github.com/facebookarchive/
caffe2.

[9] Converting model to C++ code. https:
//mace.readthedocs.io/en/latest/user_guide/advanced_
usage.html.

[10] Core ML | Apple Developer Documentation.
https://developer.apple.com/documentation/coreml.

[11] Dynamic instrumentation toolkit for developers, reverse-
engineers, and security researchers. https://frida.re/.

[12] Entropy(information theory). https://en.wikipedia.
org/wiki/Entropy_(information_theory)#Entropy_as_
information_content.

[13] Face++ - Cognitive Services. https://www.faceplusplus.
com/.

[14] Face++ pricing details - mobile sdk. https:
//www.faceplusplus.com/pricing-details/#offline.

[15] Intel R© Software Guard Extensions. https:
//software.intel.com/en-us/sgx.

[16] MegaFace and MF2: Million-Scale Face Recognition.
http://megaface.cs.washington.edu/.

[17] Megvii’s Competitors, Revenue, Number of
Employees, Funding and Acquisitions. https:
//www.owler.com/company/megvii.

https://www.theverge.com/2017/10/19/16502538/mobile-ai-chips-apple-google-huawei-qualcomm
https://www.theverge.com/2017/10/19/16502538/mobile-ai-chips-apple-google-huawei-qualcomm
https://www.theverge.com/2017/10/19/16502538/mobile-ai-chips-apple-google-huawei-qualcomm
https://aws.amazon.com/sagemaker/groundtruth/pricing/
https://aws.amazon.com/sagemaker/groundtruth/pricing/
https://aws.amazon.com/sagemaker/pricing/
https://aws.amazon.com/sagemaker/pricing/
https://developer.android.com/ml
https://mxnet.apache.org/
https://developer.apple.com/documentation/coreml/core_ml_api/personalizing_a_model_with_on-device_updates
https://developer.apple.com/documentation/coreml/core_ml_api/personalizing_a_model_with_on-device_updates
https://developer.apple.com/documentation/coreml/core_ml_api/personalizing_a_model_with_on-device_updates
https://github.com/facebookarchive/caffe2
https://github.com/facebookarchive/caffe2
https://mace.readthedocs.io/en/latest/user_guide/advanced_usage.html
https://mace.readthedocs.io/en/latest/user_guide/advanced_usage.html
https://mace.readthedocs.io/en/latest/user_guide/advanced_usage.html
https://developer.apple.com/documentation/coreml
https://frida.re/
https://en.wikipedia.org/wiki/Entropy_(information_theory)#Entropy_as_information_content
https://en.wikipedia.org/wiki/Entropy_(information_theory)#Entropy_as_information_content
https://en.wikipedia.org/wiki/Entropy_(information_theory)#Entropy_as_information_content
https://www.faceplusplus.com/
https://www.faceplusplus.com/
https://www.faceplusplus.com/pricing-details/#offline
https://www.faceplusplus.com/pricing-details/#offline
https://software.intel.com/en-us/sgx
https://software.intel.com/en-us/sgx
http://megaface.cs.washington.edu/
https://www.owler.com/company/megvii
https://www.owler.com/company/megvii

[18] Netron. https://lutzroeder.github.io/netron/.

[19] Online Protobuf Decoder. https://protogen.marcgravell.
com/decode.

[20] Over 1.5 TB’s of Labeled Audio
Datasets. https://towardsdatascience.com/
a-data-lakes-worth-of-audio-datasets-b45b88cd4ad.

[21] Paddle-lite github. https://github.com/PaddlePaddle/
Paddle-Lite.

[22] Protocol Buffers Encoding Rule. https://developers.
google.com/protocol-buffers/docs/encoding#simple.

[23] Salary for the Machine Learning Engineer.
https://www.linkedin.com/salary/machine-learning-
engineer-salaries-in-san-francisco-bay-area-at-xnor-ai.

[24] SenseTime has 700+
customers and part-
ners. https://www.forbes.com/sites/bernardmarr/2019/06/17/meet-
the-worlds-most-valuable-ai-startup-chinas-
sensetime/.

[25] Strip visible string in ncnn. https://github.com/Tencent/
ncnn/wiki.

[26] Tencent ncnn github. https://github.com/Tencent/ncnn.

[27] TensorFlow. https://www.tensorflow.org/.

[28] TF Trusted. https://github.com/dropoutlabs/tf-trusted.

[29] The CMU Multi-PIE Face Database. http://www.cs.cmu.
edu/afs/cs/project/PIE/MultiPie/Multi-Pie/Home.html.

[30] Unity Asset Store - The Best Assets for Game Making.
https://assetstore.unity.com/?category=tools%2Fai&
orderBy=1.

[31] Video Dataset Overview - Sortable and search-
able compilation of video dataset. https:
//www.di.ens.fr/~miech/datasetviz/.

[32] Xiaomi mace github. https://github.com/XiaoMi/mace.

[33] ARM TrustZone in Android.
https://medium.com/@nimronagy/
arm-trustzone-on-android-975bfe7497d2, 2019.

[34] SenseTime. https://www.sensetime.com/, 2019.

[35] The AppInChina App Store Index. https:
//www.appinchina.co/market/app-stores/, 2019.

[36] Yossi Adi, Carsten Baum, Moustapha Cisse, Benny
Pinkas, and Joseph Keshet. Turning your weakness
into a strength: Watermarking deep neural networks by
backdooring. In 27th {USENIX} Security Symposium
({USENIX} Security 18), pages 1615–1631, 2018.

[37] Tanzirul Azim, Arash Alavi, Iulian Neamtiu, and Rajiv
Gupta. Dynamic slicing for android. In 2019 IEEE/ACM
41st International Conference on Software Engineering
(ICSE), pages 1154–1164. IEEE, 2019.

[38] Lejla Batina, Shivam Bhasin, Dirmanto Jap, and Stjepan
Picek. Csi neural network: Using side-channels to
recover your artificial neural network information. arXiv
preprint arXiv:1810.09076, 2018.

[39] Benjamin Bichsel, Veselin Raychev, Petar Tsankov, and
Martin Vechev. Statistical deobfuscation of android
applications. In Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security,
pages 343–355, 2016.

[40] Huili Chen, Cheng Fu, Bita Darvish Rouhani, Jishen
Zhao, and Farinaz Koushanfar. DeepAttest: An
End-to-End Attestation Framework for Deep Neural
Networks. 2019.

[41] Yi Chen, Wei You, Yeonjoon Lee, Kai Chen, XiaoFeng
Wang, and Wei Zou. Mass discovery of android traffic im-
prints through instantiated partial execution. In Proceed-
ings of the 2017 ACM SIGSAC Conference on Computer
and Communications Security, pages 815–828, 2017.

[42] Lukas Dresel,Mykolai Protsenko, and Tilo Müller. Artist:
the android runtime instrumentation toolkit. In 2016
11th International Conference on Availability, Reliability
and Security (ARES), pages 107–116. IEEE, 2016.

[43] Johannes Hoffmann, Martin Ussath, Thorsten Holz, and
Michael Spreitzenbarth. Slicing droids: program slicing
for smali code. In Proceedings of the 28th Annual ACM
Symposium on Applied Computing, pages 1844–1851,
2013.

[44] Ling Huang, Anthony D Joseph, Blaine Nelson, Ben-
jamin IP Rubinstein, and J Doug Tygar. Adversarial
machine learning. In Proceedings of the 4th ACM
workshop on Security and artificial intelligence, pages
43–58. ACM, 2011.

[45] Matthew Jagielski, Nicholas Carlini, David Berthelot,
Alex Kurakin, and Nicolas Papernot. High-fidelity
extraction of neural network models. arXiv preprint
arXiv:1909.01838, 2019.

[46] Roland Kunkel, Do Le Quoc, Franz Gregor, Sergei
Arnautov, Pramod Bhatotia, and Christof Fetzer. Ten-
sorSCONE: A Secure TensorFlow Framework using
Intel SGX. arXiv preprint arXiv:1902.04413, 2019.

[47] Alexey Kurakin, Ian Goodfellow, and Samy Bengio.
Adversarial machine learning at scale. arXiv preprint
arXiv:1611.01236, 2016.

https://lutzroeder.github.io/netron/
https://protogen.marcgravell.com/decode
https://protogen.marcgravell.com/decode
https://towardsdatascience.com/a-data-lakes-worth-of-audio-datasets-b45b88cd4ad
https://towardsdatascience.com/a-data-lakes-worth-of-audio-datasets-b45b88cd4ad
https://github.com/PaddlePaddle/Paddle-Lite
https://github.com/PaddlePaddle/Paddle-Lite
https://developers.google.com/protocol-buffers/docs/encoding#simple
https://developers.google.com/protocol-buffers/docs/encoding#simple
https://github.com/Tencent/ncnn/wiki
https://github.com/Tencent/ncnn/wiki
https://github.com/Tencent/ncnn
https://www.tensorflow.org/
https://github.com/dropoutlabs/tf-trusted
http://www.cs.cmu.edu/afs/cs/project/PIE/MultiPie/Multi-Pie/Home.html
http://www.cs.cmu.edu/afs/cs/project/PIE/MultiPie/Multi-Pie/Home.html
https://assetstore.unity.com/?category=tools%2Fai&orderBy=1
https://assetstore.unity.com/?category=tools%2Fai&orderBy=1
https://www.di.ens.fr/~miech/datasetviz/
https://www.di.ens.fr/~miech/datasetviz/
https://github.com/XiaoMi/mace
https://medium.com/@nimronagy/arm-trustzone-on-android-975bfe7497d2
https://medium.com/@nimronagy/arm-trustzone-on-android-975bfe7497d2
https://www.sensetime.com/
https://www.appinchina.co/market/app-stores/
https://www.appinchina.co/market/app-stores/

[48] Juhyun Lee, Nikolay Chirkov, Ekaterina Ignasheva,
Yury Pisarchyk, Mogan Shieh, Fabio Riccardi, Raman
Sarokin, Andrei Kulik, and Matthias Grundmann.
On-Device Neural Net Inference with Mobile GPUs.
https://arxiv.org/abs/1907.01989, 2019.

[49] Smitha Milli, Ludwig Schmidt, Anca D Dragan, and
Moritz Hardt. Model reconstruction from model
explanations. arXiv preprint arXiv:1807.05185, 2018.

[50] Tribhuvanesh Orekondy, Bernt Schiele, and Mario Fritz.
Knockoff nets: Stealing functionality of black-box mod-
els. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 4954–4963, 2019.

[51] Siegfried Rasthofer, Steven Arzt, Marc Miltenberger,
and Eric Bodden. Harvesting runtime values in android
applications that feature anti-analysis techniques. In
NDSS, 2016.

[52] Tegjyot Singh Sethi and Mehmed Kantardzic. Data
driven exploratory attacks on black box classifiers in ad-
versarial domains. Neurocomputing, 289:129–143, 2018.

[53] Mark Slee, Aditya Agarwal, and Marc Kwiatkowski.
Thrift: Scalable Cross-Language Services Implemen-
tation. Technical report.

[54] Benjamin Taubmann, Omar Alabduljaleel, and Hans P
Reiser. Droidkex: Fast extraction of ephemeral tls keys
from the memory of android apps. Digital Investigation,
26:S67–S76, 2018.

[55] Shruti Tople, Karan Grover, Shweta Shinde, Ranjita
Bhagwan, and Ramachandran Ramjee. Privado:
Practical and secure DNN inference. arXiv preprint
arXiv:1810.00602, 2018.

[56] Florian Tramer and Dan Boneh. Slalom: Fast, verifiable
and private execution of neural networks in trusted
hardware. arXiv preprint arXiv:1806.03287, 2018.

[57] Florian Tramèr, Fan Zhang, Ari Juels, Michael K Reiter,
and Thomas Ristenpart. Stealing machine learning mod-
els via prediction apis. In 25th {USENIX} Security Sym-
posium ({USENIX} Security 16), pages 601–618, 2016.

[58] Stavros Volos, Kapil Vaswani, and Rodrigo Bruno. Gravi-
ton: Trusted execution environments on GPUs. In 13th
{USENIX} Symposium on Operating Systems Design
and Implementation ({OSDI} 18), pages 681–696, 2018.

[59] Binghui Wang and Neil Zhenqiang Gong. Stealing
hyperparameters in machine learning. In 2018 IEEE

Symposium on Security and Privacy (SP), pages 36–52.
IEEE, 2018.

[60] Michelle Y Wong and David Lie. Tackling runtime-
based obfuscation in android with {TIRO}. In 27th
{USENIX} Security Symposium ({USENIX} Security
18), pages 1247–1262, 2018.

[61] Mengwei Xu, Jiawei Liu, Yuanqiang Liu, Felix Xiaozhu
Lin, Yunxin Liu, and Xuanzhe Liu. A First Look at Deep
Learning Apps on Smartphones. The World Wide Web
Conference on - WWW ’19, (May):2125–2136, 2019.

[62] Jialong Zhang, Zhongshu Gu, Jiyong Jang, Hui Wu,
Marc Ph Stoecklin, Heqing Huang, and Ian Molloy.
Protecting intellectual property of deep neural networks
with watermarking. In Proceedings of the 2018 on Asia
Conference on Computer and Communications Security,
pages 159–172. ACM, 2018.

[63] Min Zheng, Mingshen Sun, and John CS Lui. Droidtrace:
A ptrace based android dynamic analysis system with
forward execution capability. In 2014 international
wireless communications and mobile computing
conference (IWCMC), pages 128–133. IEEE, 2014.

[64] Yajin Zhou, Lei Wu, Zhi Wang, and Xuxian Jiang. Har-
vesting developer credentials in android apps. In Proceed-
ings of the 8th ACM Conference on Security & Privacy
in Wireless and Mobile Networks, pages 1–12, 2015.

Appendix A Keywords for Different ML
Frameworks

Table A1: ML Framework Keywords

Framework Magic
Words

Framework Magic
Words

TensorFlow tensorflow Caffe caffe
MXnet mxnet NCNN ncnn
Mace libmace,

mace_input
SenseTime sensetime,

st_mobile
ULS ulstracker,

ulsface
Other neuralnetwork,

lstm, cnn,
rnn

Note: “TensorFlow Lite” and “TensorFlow” are merged into
one framework.

https://arxiv.org/abs/1907.01989

	Introduction
	Background
	Analysis Overview
	Q1: How Widely Is Model Protection Used in Apps?
	Android App Collection
	Methodology of ModelXRay
	Accuracy Evaluation of ModelXRay
	Findings and Insights

	Q2: How Robust Are Existing Model Protection Techniques?
	App Instrumentation
	Model Representation and Recognition
	Evaluation of ModelXtractor
	Findings and Insights
	Interesting Cases of Model Protection
	Responsible Disclosure

	Q3: What Impacts can (Stolen) Models Incur?
	Financial Impact
	Financial Benefit for Attackers
	Financial Loss for Model Vendors

	Security Impact

	Countermeasures
	Current Model Protection
	Limitations
	Future Works

	Discussion
	Related Work
	Conclusion
	Appendices
	Appendix Keywords for Different ML Frameworks

