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Abstract
We present SMARTEST, a novel symbolic execution tech-
nique for effectively hunting vulnerable transaction sequences
in smart contracts. Because smart contracts are stateful pro-
grams whose states are altered by transactions, diagnosing
and understanding nontrivial vulnerabilities requires gener-
ating sequences of transactions that demonstrate the flaws.
However, finding such vulnerable transaction sequences is
challenging as the number of possible combinations of trans-
actions is intractably large. As a result, most existing tools
for smart contract analysis use abstractions and merely point
out the locations of vulnerabilities, which in turn imposes a
steep burden on users of understanding the bugs, or have lim-
ited power in generating transaction sequences. In this paper,
we aim to overcome this challenge by combining symbolic
execution with a language model for vulnerable transaction
sequences, so that symbolic execution effectively prioritizes
program paths that are likely to reveal vulnerabilities. Ex-
perimental results with real-world smart contracts show that
SMARTEST significantly outperforms existing tools by find-
ing more vulnerable transaction sequences including critical
zero-day vulnerabilities.

1 Introduction

Securing smart contracts is a pressing issue waiting to be
addressed for the upcoming blockchain era. Blockchain is
a ground-breaking technology that enables automatic fulfill-
ment of agreed obligations between untrusted parties. The
obligations are written in smart contracts, computer programs
running on blockchain whose executions are therefore guar-
anteed to be faithful. Smart contracts are gaining popularity
across diverse application domains where security and privacy
are important [29]. Unfortunately, however, the safety of smart
contracts itself remains a major concern. Smart contracts are
attractive targets for attackers since they typically manipulate
valuable data such as digital assets and therefore even a single
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glitch can cause tremendous financial damage [1, 5]. Even
worse, smart contracts are immutable and their vulnerabilities
cannot be mitigated once deployed. Developing techniques to
ensure their safety before deployment is critically important
and urgent.

In this paper, we present SMARTEST, a new safety an-
alyzer for Ethereum smart contracts. The key feature of
SMARTEST, which differs crucially from existing analyz-
ers [3,6,24,25,28,30,31,36,37], is that it effectively finds vul-
nerable transaction sequences of smart contracts. Ethereum
smart contracts are stateful programs whose global states are
altered by receiving and processing a series of transactions.
Therefore, nontrivial bugs in smart contracts are typically
caused by the interaction of multiple transactions, and un-
derstanding such bugs requires contriving concrete scenar-
ios in terms of transaction sequences. The primary goal of
SMARTEST is to automate this process; SMARTEST aims
not only to detect bugs in smart contracts, but to automati-
cally generate vulnerable transaction sequences that prove the
flaws.

Existing analyzers for smart contracts fall short in this as-
pect. For example, existing safety verifiers (e.g. [6, 24, 36])
are fundamentally limited in producing vulnerable transaction
sequences because they abstract the set of all transaction se-
quences into single transaction invariants (i.e. properties that
hold under arbitrary interleaving of transactions [36]). Bug-
finders such as OYENTE [28] and OSIRIS [37] are only able to
indicate certain vulnerable points in smart contracts without
generating transaction sequences that reveal vulnerabilities.
As a result, triaging vulnerabilities reported by these tools is
difficult and error-prone since users need to manually identify
concrete scenarios to understand root causes of the vulnera-
bilities. A few symbolic execution tools (e.g. [3, 25, 30, 31])
support tracing vulnerable transaction sequences but, as we
demonstrate in this paper, their performance is far from satis-
factory for real-world smart contracts.

To find vulnerable transaction sequences effectively, we
present a novel technique that guides symbolic execution
with language models. Basically, our technique exhaustively



Symbolic 
Execution

Vulnerable

Sequences

Concrete

Validator

Validated

Sequences

Language

Model

Training

Sequences

Training

Contracts

Testing

Contract

⋮

Symbolic 
Execution

Figure 1: Overview of SMARTEST

enumerates transaction sequences in increasing size and runs
symbolic execution over the sequences to decide whether they
are vulnerable or not. A main technical challenge that arises
in this method is that the number of transaction sequences to
be examined grows exponentially as the size of the sequences
increases. Our key idea to address this challenge is to guide
symbolic execution with statistical language models, so that
guided symbolic execution can effectively prioritize transac-
tion sequences that are likely to reveal vulnerabilities. More
specifically, given a set of training transaction sequences that
are automatically obtained by running unguided symbolic
execution on existing vulnerable contracts, our technique au-
tomatically learns a probability distribution over vulnerable
transaction sequences. Then, symbolic execution guided by
the learned model can effectively find vulnerable transaction
sequences for new, unseen smart contracts. Figure 1 depicts
our approach.

Experimental results show that our language model-guided
symbolic execution is highly effective in hunting vulnerable
transaction sequences. We implemented SMARTEST for So-
lidity [4], the most widely used programming language for
Ethereum smart contracts, and evaluated it on two datasets
with different types of known vulnerabilities. The first dataset
is comprised of 443 smart contracts with CVE-reported
arithmetic vulnerabilities (e.g., integer overflows). The sec-
ond dataset consists of 104 contracts with access control-
related vulnerabilities, namely Ether-leaking and suicidal con-
tracts [31]. On CVE dataset, we compared SMARTEST with
MYTHRIL [3] and MANTICORE [30], two well-known sym-
bolic execution tools developed by blockchain security
firms. The results show that SMARTEST found 93.0% of
known vulnerabilities out of sampled contracts, whereas
MYTHRIL and MANTICORE collectively found 37.2%. On
the second dataset with leaking and suicidal contracts, we
compared SMARTEST with four symbolic executors and one
fuzzer: MAIAN [31], TEETHER [25], MYTHRIL, MANTI-
CORE, and ILF [19]. The results show that SMARTEST effec-
tively found more vulnerabilities than these tools. Moreover,
SMARTEST found a number of critical zero-day vulnerabili-

1 contract SocialChain {
2 uint totalSupply;
3 mapping(address=>uint) balance;
4 mapping(address=>mapping(address=>uint)) allowance;
5
6 constructor (uint initialSupply) {
7 totalSupply = initialSupply;
8 balance[msg.sender] = initialSupply;
9 }

10
11 function transfer (address to, uint value)
12 public returns (bool) {
13 require (balance[msg.sender] >= value);
14 balance[msg.sender] -= value;
15 balance[to] += value;
16 return true;
17 }
18
19 function approve (address spender , uint value)
20 public returns (bool) {
21 allowance[msg.sender][spender] = value;
22 return true;
23 }
24
25 function transferFrom (address from , address to,
26 uint value) public returns (bool) {
27 require (balance[from] >= value);
28 require (balance[to] + value > balance[to]);
29 require (allowance[from][msg.sender] >= value);
30 balance[from] -= value;
31 balance[to] += value;
32 allowance[from][msg.sender] += value; // bug
33 return true;
34 }
35 }

Figure 2: A vulnerable contract (simplified for readability).

ties from smart contracts in the wild.

Contributions. We summarize our contributions below.

• We present a new technique for effectively finding vul-
nerable transaction sequences in smart contracts. To our
knowledge, our work is the first to use language models
to steer symbolic execution towards likely paths.

• We extensively evaluate our technique in comparison
with five recently-developed tools [3, 19, 25, 30, 31].

• We make our tool, SMARTEST, and benchmarks publicly
available. 1 All experimental results are reproducible.

2 Motivating Examples

In this section, we illustrate SMARTEST with examples.

Example 1. Figure 2 shows a token contract, called SCA.2

It has three global variables: totalSupply, balance, and
allowance. totalSupply stores the total amount of issued
tokens. balance is a mapping from account addresses to
token balances. allowance is a two-dimensional mapping,
which maps approved agents’ addresses to token amounts that
are allowed to use on behalf of original token holders. For

1http://prl.korea.ac.kr/smartest
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example, allowance[A][B] indicates the amount of tokens
that A (i.e. the original token holder) allows B (i.e. the agent)
to spend.

The constructor at lines 6–9 initializes totalSupply and
balance[msg.sender] (i.e. the balance of the contract cre-
ator) with the argument (initialSupply). By invoking the
transfer function, a transaction sender (msg.sender) can
send value tokens to a designated account address (to).
By invoking approve, a token holder (msg.sender) can
set allowance (allowance[msg.sender][spender]) for her
agent (spender). The transferFrom function is similar to
transfer but tokens are transferred from from to to by the
agent (msg.sender) of from.

The contract has a critical bug in trasnferFrom. A
successful transaction must decrease both the sender’s
balance (balance[from]) and the agent’s allowance
(allowance[from][msg.sender]) by the same amount of
tokens (value). At line 32, however, the allowance is mistak-
enly increased by value (that is, += at line 32 should have
been -=). This logical flaw in this contract can be found by
detecting an integer overflow in the agent’s allowance. For
example, suppose the contract is deployed by a transaction
constructor (V1) with msg.sender= A, and then assume
two transactions below are processed in sequence:

1. approve(B,V2) with msg.sender = A

2. transferFrom(A,C,V3) with msg.sender = B

where A denotes the contract creator, B is the A’s agent, C is an-
other account address, and V1–V3 are 256-bit integer constants
that can trigger the overflow at line 32. For example, assume
V1=0x8800...00, V2=0x8100...00, and V3=0x7f00...00.
In this case, the remaining allowance after the last transaction
must be 0x0200...00 but it ends up with 0x0000...00 due
to the overflow. Note that this bug does not manifest itself in a
single transaction; to reveal the bug at line 32, transferFrom
must be invoked with value > 0, but a direct invocation to
transferFrom with value > 0 will throw an exception due
to the guard statement at line 29. Therefore, a transaction
sequence such as the one shown above is required to trigger
and understand the bug.

SMARTEST is able to generate such a vulnerable transac-
tion sequence automatically. It reports the scenario described
above with concrete argument values of each transaction and
automatically demonstrates that following the scenario indeed
causes an integer overflow in a real environment (Figure 1).

A few existing tools (e.g. MYTHRIL [3] and MANTI-
CORE [30]) support generating transaction sequences but they
are unsatisfactory; they fail to find a vulnerable sequence for
demonstrating the bug at line 32 in this medium-sized con-
tract (404 lines) even after 3 hours. SMARTEST addresses this
performance issue of symbolic executors with a novel lan-
guage model-guided symbolic execution. Other existing tools
(e.g., [6,24,28,36,37]) do not help here, too. For example, ex-
isting safety verifiers such as SMTCHECKER [6], ZEUS [24],

1 contract Goal {
2 address owner;
3 uint totalSupply;
4 mapping(address=>uint) balance;
5 mapping(address=>mapping(address=>uint)) allowance;
6
7 constructor () public {
8 owner = msg.sender;
9 totalSupply = 0;

10 }
11
12 function mintToken (address target , uint amount)
13 public {
14 require (msg.sender == owner);
15 balance[target] += amount; // overflow
16 totalSupply += amount; // overflow
17 }
18
19 function approve (address spender , uint value)
20 public returns (bool) {
21 allowance[msg.sender][spender] = value;
22 return true;
23 }
24
25 function burnFrom (address from , uint value)
26 public returns (bool) {
27 require (balance[from] >= value);
28 require (allowance[from][msg.sender] >= value);
29 balance[from] -= value;
30 allowance[from][msg.sender] -= value;
31 totalSupply -= value; // underflow
32 return true;
33 }
34 }

Figure 3: A vulnerable contract simplified from Goal contract.

and VERISMART [36] or bug-finders such as OYENTE [28]
and OSIRIS [37] do not support producing concrete scenarios;
they just point out potentially vulnerable locations without
any trace information. As a result, bug triage with these tools
is time-consuming and error-prone; users should manually
analyze reported warnings to decide whether the warnings are
true positives or not and, if they are true, to understand how
they happen in what situations. SMARTEST aims to reduce
this burden on the tool users.

We remark that, in addition to reporting the flaw at line 32
by overflow detection, SMARTEST can directly report that
the transferFrom function does not decrease the agent’s
allowance properly, by producing the same transaction se-
quence with different argument values. For example, the
same sequence with V2=1 and V3=1 can demonstrate the log-
ical flaw, where the addition at line 32 does not overflow.
SMARTEST supports this feature with rules (Appendix C) for
detecting violations of ERC20 standard [2].

Example 2. Figure 3 shows a simplified version of the Goal
token contract.3 There are four global state variables in the
contract, where owner denotes the owner of the contract, and
balance, totalSupply, and allowance are variables that
are similar to those in the previous example (Figure 2).

The constructor sets totalSupply to 0 and initializes the
owner (owner) to be the sender of the initial transaction
(msg.sender). The function mintToken allows owner to

30x7b69b78cc7fee48202c208609ae6d1f78ce42e13
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issue a designated amount (amount) of tokens. The func-
tion approve is the same as the one in the previous exam-
ple. The function burnFrom allows the transaction sender
(msg.sender) to decrease the balance (balance[from]) of
the original token holder (from), where totalSupply and
allowance[from][msg.sender] are equally decreased.

This contract has three integer over/underflow bugs (lines
15, 16, and 31) where finding vulnerable transaction se-
quences for them is nontrivial. Understanding how the in-
teger underflow at line 31 occurs is particularly tricky, al-
though the existence of the bug seems apparent as there are
no explicit guard statements (e.g. require (totalSupply
>= value)) to prevent it from happening. For example, sim-
ply sending a transaction like burnFrom (A, 1) after de-
ployment fails to trigger the bug, because all balances and
allowances are initially zeros and therefore the transaction is
aborted by the statement at line 27. To demonstrate the bug,
we need to generate a transaction sequence of length at least
4, excluding an initial transaction (i.e. call to the constructor
for deployment). For example, the bug can be triggered by
the following scenario:

1. mintToken(A,V1) with msg.sender = owner

2. approve(C,V2) with msg.sender = B

3. mintToken(B,V3) with msg.sender = owner

4. burnFrom(B,V4) with msg.sender = C

where A, B and C are some account addresses, and V1–
V4 are crafted integer values, e.g., V1=0x800...00, V2=10,
V3=0x800...01, and V4=10. What is tricky in this scenario
is that, in order to trigger the integer underflow at line 31, a
series of transactions must first conspire to exploit another
bug in the contract (the integer overflow at line 16). Note
that the first and third transactions cause totalSupply to
overflow at line 16 and have an integer value at high risk
of underflow; in the scenario above, totalSupply becomes
1 (=0x800...00+0x800...01). The second transaction is
required for the last transaction to pass the guard statement
at line 28. Finally, invoking burnFrom is able to cause the
desired underflow bug at line 31.

SMARTEST automatically generates the above transaction
sequence and helps to diagnose and fix the root cause of the
bug; to avoid the underflow at line 31, it is enough to in-
sert a guard statement require (totalSupply + amount
>= totalSupply) at the entry of the mintToken for pre-
venting the overflow at line 16, without any modifications
in the burnFrom. By contrast, existing tools do not help in
this aspect. As mentioned earlier, most tools (e.g. [6, 24, 28,
36, 37]) are fundamentally improper for generating vulner-
able transaction sequences. Two symbolic execution tools,
MYTHRIL [3] and MANTICORE [30], are ineffective too in
this case; they fail to produce a sequence in 3 hours even
when we hint that the maximum search depth is 4.

3 Approach

In this section, we describe our approach in detail. Section 3.1
describes the basic symbolic execution algorithm for discov-
ering vulnerable transactions. Section 3.2 explains how to
guide the symbolic execution with a language model. We use
Figure 4 as a running example.

Language. We formalize our approach for a core subset of
Solidity [4], which is defined by the following grammar [36]:

c ∈C ::= G∗ F∗, F ::= f (x){S}
a ∈ A ::= x := E | x[y] := E | assume(B) | assertl(B)
s ∈ S ::= A | if B S1 S2 | while B S | S1;S2

A contract C is a sequence of global variable declarations
(G∗) followed by a sequence of function definitions (F∗).
A function is comprised of a function name ( f ), a formal
parameter (x), and a body statement (S). We denote the name
of a constructor function by f0. A statement S is an atomic
statement A, an if-statement, a while-loop, or a sequence. An
atomic statement A is an assignment to either a variable (x :=
E) or an array (or a mapping in Solidity) element (x[y] := E),
an assume statement, or an assert statement. E and B are usual
arithmetic and boolean expressions, respectively. We assume
E evaluates to an unsigned 256-bit integer.

In our language, assume statements are used to model guard
expressions (i.e. B in if-statements, while-loops, or require
statements in Solidity) when generating paths in Section 3.1.
On the other hand, assert statements do not affect program
semantics; they express safety properties to be verified or
refuted. We assume every safety condition that needs to be
checked is expressed as an assert statement. Note that users of
SMARTEST do not need to write safety conditions for check-
ing common security vulnerabilities (e.g., integer overflows),
because assertions that express the safety conditions are au-
tomatically inserted in the preprocessing step of SMARTEST.
For example, when we want to check whether a contract con-
tains integer overflow vulnerabilities, given an assignment
x := y+ z, we assume an assertion assert(y+ z >= y) is in-
serted right before the assignment. Custom safety conditions
can be provided using assert statements in Solidity. We as-
sume every assert statement is annotated with a unique label
l, which serves as an identifier for each assertion. Let L be
the set of all labels in a program. We assume all functions
have public or external visibilities (i.e., callable from out-
side). We assume functions that cannot be called from outside
(i.e., internal or private functions) are inlined at each call
site. We also assume all variables have primitive types (e.g.
uint) or mapping types (e.g. mapping(address => uint)).
These assumptions are for presentation brevity; our imple-
mentation supports most of the features in Solidity.

Transaction Sequence. Given a function f (x){S} ∈ F , we
say ( f ,x,a) is a function path, where a ∈ A∗ is a sequence of
atomic statements from the entry to the exit of the function
(we assume the body S of the function is transformed into



1 contract Example {
2 bool flag;
3 uint x;
4
5 constructor () public { }
6
7 function setX (uint y) public returns {
8 x = y;
9 }

10
11 function setFlag (bool b) public returns {
12 flag = b;
13 }
14
15 function incX () public returns {
16 if (flag) {
17 assert (x+1>=x); //goal: disprove the assertion
18 x = x+1;
19 }
20 }
21 }

Figure 4: A running example.

a set of atomic statement sequences [8]). Let P be the set
of all function paths in a given contract c ∈C. We define a
transaction t ∈ T to be a four-tuple:

t = (id, f ,x,a)

which is a function path augmented with a transaction identi-
fier id. We note that multiple transactions can be generated
from a single function because the function may have multi-
ple paths (e.g., the incX function in Figure 4 has two paths).
We write t0 for an initial transaction, i.e., a transaction whose
second component (function name) is the name of a construc-
tor ( f0). A transaction sequence (t0, t1, . . . , tn) ∈ T ∗ is a series
of transactions that start from an initial transaction. We say
a transaction sequence (t0, t1, . . . , tn) is vulnerable when the
function called by the last transaction tn contains an assertion
(i.e., safety condition) that can be violated along the sequence.

Goal. In this paper, we tackle the problem of finding as many
vulnerable transaction sequences as possible with concrete
argument values for the parameters of involved transactions.

3.1 Basic Symbolic Execution
Algorithm 1 shows the overall symbolic execution algorithm.
The input is a Solidity smart contract c, and the output is a
report that shows a vulnerable transaction sequence disprov-
ing the safety condition of each assertion in c. The algorithm
consists of a preparation step (lines 1–4) and a main analysis
phase (lines 5–16).

To avoid generating function paths indefinitely, we first
unroll all loops m times and inline each function into its call
site up to n nested calls (line 1). From the resulting contract c,
we collect function paths in c until up to o paths are gathered
for each function in c (line 2). In the current implementa-
tion, we set m, n, and o to 2, 3, and 50, respectively. The
algorithm initializes the workset W with initial transactions

Algorithm 1 Our Symbolic Execution Procedure for Finding
Vulnerable Transaction Sequences

Input: A Solidity smart contract c
Output: A vulnerability report R

1: Unroll loops and inline function calls in c
2: P← The set of function paths in c
3: W ←{(id, f0,x,a) | ( f0,x,a) ∈ P, new id}
4: R← λl.⊥
5: repeat
6: s← argminw∈W cost(w) . s = t0, t1, . . . , tn
7: W ←W \{s}
8: (State,Π)← GENERATEVC(s)
9: for each (l,VC) ∈Π do

10: if R(l) =⊥ then . l is not yet falsified
11: if SAT(VC) then R← [l 7→ (s,model(VC))]
12: end for
13: if SAT(State) or Solver timeout then
14: W ←W ∪{s · (id, f ,x,a) | ( f ,x,a) ∈ P,

f 6= f0, new id}
15: end if
16: until W = /0 or ∀l. R(l) 6=⊥ or timeout
17: return R

(line 3). During the algorithm, the workset W keeps candidate
transaction sequences to be explored. At line 4, the algorithm
also initializes the report R : L→ T ∗×Model, i.e., mapping
from assertion labels to vulnerable transaction sequences with
error-triggering input values (models), where λl.⊥ (line 4)
means that no vulnerable transaction sequences are found yet
for any assertions.

The algorithm enters the loop at lines 5–16, which itera-
tively searches for vulnerable transaction sequences. The algo-
rithm picks a candidate transaction sequence s = t0, t1, . . . , tn
with the least cost (line 6) and remove it from W (line 7),
where t0 is an initial transaction. At the moment, given
a sequence s, we assume the cost function is defined as
cost(t0, t1, . . . , tn) = n, which outputs the length of the trans-
action sequence. That is, the current cost function simply
prioritizes short transaction sequences. This cost function will
be replaced by the language model-guided cost function in
Section 3.2.

After picking the candidate s, we perform symbolic ex-
ecution over s to obtain a state condition (State) for s and
verification conditions (VCs) (line 8), where Π is a set of
pairs of an assertion label l and the VC associated with l. The
VCs are conditions that must be checked to see whether s is
a vulnerable sequence with respect to some assertions; the
satisfiability of the VCs implies the existence of vulnerable
transaction sequences. We will explain the VC generation
procedure (GENERATEVC) shortly in Section 3.1.1. We in-
vestigate each of the VCs through the inner loop at lines 9–12.
If a vulnerable transaction sequence with respect to an as-
sertion annotated with l is already found (i.e., R(l) 6=⊥), we



move on to the next VC (i.e., we do not attempt to disprove as-
sertions whose safety conditions are already falsified by other
transaction sequences). For assertions that are not disproved
yet (i.e., R(l) =⊥, line 10), we check the satisfiability of the
VC by invoking an off-the-shelf SMT solver (we use Z3 [13]).
If satisfiable (i.e., s is a vulnerable transaction sequence), we
update the report R by mapping l to s with a corresponding
satisfying model (line 11).

Finally, if the state condition State is satisfiable (i.e., s is a
feasible transaction sequence in concrete execution) or a pre-
determined solver timeout expires (line 13), we generate a set
of new transaction sequences by appending new transactions
to the current sequence s, and add the set into the workset
W (line 14). Otherwise (i.e., State is unsatisfiable), we do
not collect new transaction sequences, because further explo-
rations of unsatisfiable states will not produce satisfiable VCs.
The loop repeats until the workset becomes empty, vulnerable
sequences for all assertions are found, or a given time limit is
reached. At line 17, the symbolic execution procedure finally
returns R, from which we can obtain a vulnerable transaction
sequence (with concrete input values) for each potentially
violated assertion.

3.1.1 VC Generation

We describe the GENERATEVC procedure for generating veri-
fication conditions, which symbolically executes a transaction
sequence and derives a condition to be vulnerable. We first
define symbolic execution for atomic statements and extend
it to transactions and their sequences.

Let FOL be the set of the first-order formulas in the com-
bined theory of fixed-sized bitvectors and arrays with exten-
tionality. Let sp : A→ FOL×℘(L×FOL)→ FOL×℘(L×
FOL) be the strongest postcondition predicate transformer [8],
which symbolically executes each atomic statement as fol-
lows:

sp(x := e)(φ,Π) = (φ[x′/x]∧ (x = e[x′/x])◦,Π)
sp(x[y] := e)(φ,Π) = (φ[x′/x]∧ (x = x′〈y C e[x′/x]〉)◦,Π)

sp(assume(e))(φ,Π) = (φ∧ e•,Π)

sp(assertl(e))(φ,Π) = (φ,{(l,φ∧¬e)}∪Π)

where φ[x′/x] and e[x′/x] denote the formula φ and expression
e, respectively, where x is replaced by x′. The definition is
mostly standard; it transforms a precondition φ into a post-
condition with respect to a given atomic statement, while
accumulating Π (pairs of assertion labels and corresponding
VCs). In the assignment cases (x := e or x[y] := e), a primed
variable (e.g., x′) represents the previous state of an unprimed
variable (e.g., x) before processing the assignments. We write
x′〈y C e〉 for the array x′ whose element at index y is replaced
by e. In the assertion case, we collect a verification condition
(φ∧¬e) by pairing it with the label l of the assertion to pro-
vide a potentially violating sequence per assertion (line 11
in Algorithm 1). Observe that a VC consists of two parts: a

condition denoting a program state (φ) and a negation of a
safety condition (¬e). An unusual part in the syntax of FOL
is that each atomic formula can be annotated with either a
symbol ◦ or •. We introduce these symbols to simplify con-
straints by differentiating equalities from assignments and
assume statements (Section 3.1.2). These symbols will be
removed before invoking SMT solvers.

Next, we define T : T → FOL×℘(L× FOL) → FOL×
℘(L × FOL), a symbolic executor for a transaction t =
(i, f ,x,(a1, · · · ,an)):

T(i, f ,x,(a1, · · · ,an))(φ,Π) =

(RENAMEL(φ′, i),{(l,RENAMEL(F, i) | (l,F) ∈Π′})

where (φ′,Π′) = sp(an) ◦ · · · ◦ sp(a1)(φ ∧ xe = x ∧ ϕ,Π).
RENAMEL is a function for differentiating local variables
with the same names in different transactions. More con-
cretely, RENAMEL renames all free variables in a given for-
mula, except for global variables, primed global variables,
and variables that are already renamed using other transac-
tion identifiers while processing previous transactions. For
example, if G = {a} (i.e., a is the only global variable in
a contract), RENAMEL(a′ = 0∧ b = 1∧ c′ = 2, j) outputs
(a′ = 0∧b j = 0∧ c′j = 1), where a′ is not renamed since its
original unprimed version is the global variable a. Observe
that the procedure T proceeds in two steps. Firstly, given a
precondition and label-VC pairs Π, we obtain the postcon-
dition φ′ and the possibly updated pairs Π′, by symbolically
executing a1, · · · ,an with sp. Secondly, we postprocess φ′ and
Π′ with RENAMEL. Note that we have additional precondi-
tions (xe = x and ϕ) in the first step. xe = x is a constraint
for retrieving argument values for each transaction, where
xe is an entry-state variable for the formal input parameter
x (i.e., the state of x at the entry of each transaction). ϕ is a
conjunctive formula, which is a Solidity-specific constraint
for obtaining useful arguments. For example, conjuncts of ϕ

include msg.sender 6= 0 to avoid obtaining invalid values for
transaction senders. We assume that each conjunct of ϕ is la-
belled with •, to ensure that these constraints are not removed
by our simplification technique (Section 3.1.2).

Finally, we define the procedure GENERATEVC that
performs symbolic execution over a transaction sequence
t0, t1, · · · , tn. GENERATEVC(t0, t1, · · · , tn) outputs (State,Π)
where (State,Π) = T′(tn) ◦ · · · ◦ T′(t0)(

∧
g∈G init(g), /0). A

symbolic executor T′ for a transaction ti is defined as:

T′(ti)(φ′′,Π′′) =
{

(φ′,Π′) if i = n
(φ′, /0) otherwise

where (φ′,Π′) = T(ti)(φ′′,Π′′). Note that, given a transaction
sequence, we collect VCs from the last transactions only (i.e.,
when i = n) and do not redundantly collect VCs from prior
transactions, because further explorations of ti (i < n) do not
help to disprove safety conditions in ti. /0 means no VCs are
collected yet. init(g) generates a constraint on a declaration



of the global variable g ∈ G:

init(g) =
{

x = 0 if g = x
∀y.x[y] = 0 if g = x[y]

where 0 means a default value for each type of a variable or an
element, e.g., 0 is false for bool types and 0 for uint types.

Example 1 Consider the contract in Figure 4. Suppose we
are given a transaction sequence t0 · t1 · t2 · t3 where

t0 : (p,constructor,⊥,⊥), t1 : (q,setX ,y,x := y),
t2 : (r,setFlag,b, f lag := b),
t3 : (s, incX ,⊥,(assume( f lag);assertl(x+1≥ x);x := x+1)).

Then, GENERATEVC(t0 ·t1 ·t2 ·t3) = (−,{(l,F)}) where F is
a VC for disproving the safety condition at line 17 of Figure 4:

x′ = 0∧ f lag′ = f alse∧ ye
q = yq∧ x = yq∧

be
r = br ∧ f lag = br ∧ f lag∧¬(x+1≥ x)

where we assume symbols ◦ and • are removed. Observe that
the formal parameters (y and b) and the corresponding entry-
state variables (ye and be) are renamed as yq, br, ye

q, and be
r

using the transaction identifiers respectively, because they are
neither the global variables nor the primed global variables.

3.1.2 Constraint Simplification

Constraint solving is a major performance bottleneck in
symbolic execution [7, 15, 21] and it was no exception in
SMARTEST. We devised two constraint simplification tech-
niques to boost SMT solvers, which are particularly effective
in the context of Algorithm 1. We apply these techniques right
before line 11 and line 13 in Algorithm 1.

Property-focused Simplification. Firstly, we identify and
remove parts of the VC that are unnecessary for generat-
ing vulnerable transaction sequences. More specifically, our
technique aims to remove redundant constraints that include
unnecessary variables. Unnecessary variables are variables
whose values affect neither atomic formulas annotated with
• (i.e., path conditions or Solidity-specific constraints, Sec-
tion 3.1.1), nor the safety condition in the VC. For example,
consider the following VC (we omit Solidity-specific con-
straints for brevity):

(x = y)◦∧ (z = 10)•∧¬(y+1≥ y).

The VC may be generated from a sequence of atomic state-
ments x := y;assume(z = 10);assertl(y+1≥ y) where (x =
y)◦∧ (z = 10)• is a state condition and y+1 ≥ y is a safety
condition. Observe that the constraint (x = y)◦ can be re-
moved as the path and safety conditions have no dependen-
cies on the variable x defined in the statement x := y. Note
that, without the symbol ◦, we would not be able to identify
x as an unnecessary variable, because the information on the
direction of value flow (i.e. from y to x, but not vice versa)

is lost. Using this information, our technique simplifies the
formula above into the following:

z = 10∧¬(y+1≥ y)

where the redundant constraint (x = y)◦ is removed. Observe
that we can find a satisfying model [z 7→ 10,y 7→ 2256− 1].
We explain the detailed procedure in Appendix A.

Quantifier Elimination. Secondly, we transform constraints
with quantifiers into quantifier-free constraints. We devised
this technique because we observed that existing SMT solvers
are often inefficient to handle formulas with universal quanti-
fiers that are introduced by initializations of mapping-typed
variables (Section 3.1.1). Our key insight for eliminating those
universal quantifiers is that, in many cases it is enough to re-
place quantified variables by indices for certain elements that
appear in a given formula. For example, consider a VC

∀i.x′[i] = 0∧ x = x′〈y C 10〉∧¬(x[y]< 10)

where x is a mapping type (mapping(address=>uint)) vari-
able, and y is an address type variable where addresses are
160-bit expressions in Solidity. Our technique transforms the
formula into its quantifier-free version

x′[y] = 0∧ x = x′〈y C 10〉∧¬(x[y]< 10)

by initializing the element of x′ at index y only, because the
y is the only index variable that is used to access the ele-
ment of the mapping x′ and its unprimed version x (which
shares the element of x′). We explain the detailed procedure
in Appendix B.

3.2 Symbolic Execution with Language Model
Now we present the key technical contribution of this paper,
i.e., guiding symbolic execution with a language model for
effectively finding vulnerable transaction sequences.

Background on Language Model. We provide a necessary
background on language model based on [23]. A language
model assigns a probability to each sequence w1, · · · ,wn of
words. The probability is denoted P(w1, · · · ,wn) and quanti-
fies how likely or natural the sentence is. P(w1, · · · ,wn) can
be computed using the chain rule of probability:

P(w1, · · · ,wn) =
n

∏
i=1

P(wi | w1 · · ·wi−1).

However, using the chain rule may not generalize to unseen
data due to the data sparsity problem. While there exist nu-
merous language models to deal with the data sparsity, we use
the n-gram model that is found to be simple yet effective for
our purpose. The n-gram model uses the last (n−1) words
as context when predicting the last word. For example, for
3-gram model, P(w1, · · · ,wn) is estimated as follows:

P(w1, · · · ,wn)≈
n

∏
i=1

P(wi | wi−2wi−1)



where each probability can be computed by maximum likeli-
hood estimation, i.e., normalizing 3-gram counts by previous
2-gram counts from the training corpus:

P(wi | wi−2wi−1) =
C(wi−2wi−1wi)

C(wi−2wi−1)
.

For illustration, we will explain our approach with the 3-gram
model in the rest of this section.

Role of Language Model. We leverage a language model
to compute probabilities for predicting how likely a given
(partial) transaction sequence will become vulnerable in the
future, which we call vulnerable probabilities of transaction
sequences. With vulnerable probabilities, we can steer sym-
bolic execution towards effectively finding vulnerable trans-
action sequences.

The rest of this section is organized as follows: learning
a language model from collected vulnerable transaction se-
quences (Section 3.2.1), and guiding symbolic execution with
a learned language model (Section 3.2.2).

3.2.1 Learning a Language Model

Training an n-gram language model is essentially to collect
n-gram counts (e.g., C(wiwi+1wi+2)) from word sequences
(e.g., w1 · · ·wn), where the counting information will be used
to compute vulnerable probabilities (Section 3.2.2). That is,
our goal in the training phase is to construct a training corpus
(i.e., a multiset of word sequences) Y and then collect n-gram
counts from it.

Collecting Vulnerable Transaction Sequences. Firstly,
we collect a multiset of vulnerable transaction sequences
{T1, · · · ,Tm} (where Ti ∈ T ∗) by running our basic symbolic
execution (Section 3.1) on training data with sufficient time
budget (30 minutes per contract in our experiments, see Sec-
tion 5).

Note that, if we treat a transaction itself without any ab-
stractions as a word, a learned language model would not
generalize to unseen data, because there are possibly many
syntactic variations in real-world smart contracts, though
overall structures of the code are similar. For example, the
two-dimensional mapping variables allowance in Figure 2
and Figure 3 sometimes appear with different names (e.g.,
allowed) in other contracts.

Abstracting Transaction Sequences. To make a learned lan-
guage model better generalize to unseen contracts, we rep-
resent a transaction as an abstract form. Our key idea for
representing transactions as words is to use type information.
We observed that type information plays an important role for
characterizing behaviors of functions in smart contracts. More
specifically, functionalities of Solidity smart contracts are of-
ten implemented in modular ways and, as a result, each func-
tion involves only certain types of variables out of the whole
set of variables in a contract. For example, for a function

involving a global variable of a type mapping(address =>
mapping(address => uint)), a Solidity developer may be
able to come up with approve function that frequently ap-
pears in ERC20-based token contracts (e.g., Figure 2 and
Figure 3).

Based on the observation, we obtain final training corpus Y
by transforming each transaction sequence Ti = t0

i · · · tn
i into a

corresponding word sequence:

Y = {〈s〉〈s〉ατ(t0
i ) · · ·ατ(tn

i )〈e〉〈e〉 ∈ T̂ ∗ | Ti = t0
i · · · tn

i , i ∈ [1,m]}.

τ : Type→ N is a type frequency table that maps each type
to the number of its occurrences from the collected trans-
action sequences {T1, · · · ,Tm}. Specifically, we obtain τ by
counting type frequencies for global variables that are defined
via assignments or used in assume statements within each
transaction in {T1, · · · ,Tm}. Using τ, a word map ατ : T → T̂
abstracts a transaction to a word (an abstract form of a trans-
action), which is defined as follows:

ατ(t) =
{

if t = (−, f0,−,−) then 〈i〉
else〈D1

τ(t), · · ·,Dk
τ(t),U

1
τ (t), · · ·,Uk

τ (t),P(t),E(t),X(t)〉.

Note that the set of words T̂ = {〈s〉,〈e〉,〈i〉} ∪ {0,1}2k+3.
That is, a word w ∈ T̂ is either a pseudo-start word 〈s〉, a
pseudo-end symbol 〈e〉, a constructor word 〈i〉 for abstracting
initial transactions t0, or a boolean vector of 2k+ 3 dimen-
sion. Further note that we consider only top k-th ranked types
from τ for generalization (i.e., we use τ as a criterion for iden-
tifying types that are important for abstract representations
of transactions). Let a be a sequence of atomic statements
of a transaction t (i.e., t = (−,−,−,a)). Di

τ (1 ≤ i ≤ k) is a
predicate (1 for true, 0 for false) that checks whether a global
variable, having a top i-th ranked type in τ, is defined via
assignments in a of t. U i

τ (1≤ i≤ k) is a predicate that checks
whether a global variable, having a top i-th ranked type in
τ, is used in assume statements in a. P, E, and X are addi-
tional, Solidity-specific feature predicates. P checks whether
a function f is annotated with payable keyword. E checks
whether a built-in function that sends Ethers (e.g., transfer)
exists in a. X checks whether a built-in function that destructs
a contract (selfdestruct, suicide) exists in a. Following
the convention of 3-gram models [23], we append pseudo
words 〈s〉 · 〈s〉 at the beginning of each word sequence and
append 〈e〉 · 〈e〉 at the end of each word sequence.

Example 2 Assume k = 2 and τ = [uint 7→ 10,bool 7→
3,uint8 7→ 1]. Then, the transaction t3 in Example 1 is
represented as 〈1,0,0,1,0,0,0〉, because uint type global
variable is defined (thus the first component is set to 1), bool
type global variable is used in assume (thus the fourth com-
ponent is set to 1), and the function incX is not annotated
with payable keyword and does not have statements that
send Ethers or destruct the contract.

Discussion. Let us justify our design choices on the trans-
action representation in more detail. For initial transactions
t0 = (−, f0,−,−), we uniformly abstract them into the special



word 〈i〉 for generalization; for virtually all smart contracts,
the main job of the constructor is to initialize global variables,
rather than performing other specific functionalities. Note
that, for Di

τs and U i
τs, we focus on types of global variables

and ignore types of local variables, because Ethereum smart
contracts are stateful and global states are affected by global
variables only. We consider Di

τs, P, E, and X in the represen-
tation, because they are important clues for understanding
semantic behaviors in Solidity contracts. As an example for
Di

τs, consider a transfer function that is one of the core func-
tions in ERC20 token contracts; it is common for a global
variable of type mapping (address=>uint) to be defined,
because the transfer function is in charge of transferring
tokens from one’s balance to another. We also consider U i

τs
in the representation, because they are important clues for
inferring which transaction may have been called before. For
example, to disprove the assertion at line 17 of incX in Fig-
ure 4, we first should set flag to true by invoking setFlag.

3.2.2 Using a Language Model

Let V ⊆ T̂ be a vocabulary, a set of known words from training
sentences Y (Section 3.2.1), i.e., V = {wi | w1 · · ·wm ∈ Y, i ∈
[1,m]}. Note that we can now compute vulnerable probabili-
ties using n-gram counts from Y . Guiding symbolic execution
with a language model is a two-step process.

Firstly, for a given transaction sequence t0 · · · tn, we trans-
late the transaction sequence into a word sequence 〈s〉 · 〈s〉 ·
w0 · · ·wn where wi = α′τ(ti). Here, α′τ : T → T̂ is an extended
word map for handling unknown words:

α′τ(t) =
{

ατ(t) if ατ(t) ∈V
argmaxw∈V similarity(ατ(t),w) if ατ(t) 6∈V

where similarity(w1,w2) is a function that heuristically com-
putes the similarity between words:

similarity(〈v1, · · · ,v2k+3〉,〈v′1, · · · ,v′2k+3〉) =
2k+3

∑
i=1

Ni× vi× v′i.

That is, if we encounter an out-of-vocabulary word that is not
obtained in the training phase (i.e., ατ(t) 6∈V ), we transform
it into the most similar word in the dictionary. For integer con-
stants N1, · · · ,N2k+3 that represent weights for each feature
vector, we set them to be N1, · · · ,N2k < N2k+1,N2k+2,N2k+3,
i.e., we give the highest scores for the Solidity-specific fea-
tures. Moreover, note that we do not append 〈e〉s for each
transaction sequence when computing vulnerable probabili-
ties; our purpose is to estimate whether further explorations of
a given transaction sequence would be beneficial for finding
vulnerable transaction sequences, not to evaluate whether the
given sequence itself is a vulnerable transaction sequence.

Next, we guide symbolic execution by redefining the cost
function at line 6 of Algorithm 1 as follows:

cost(t0, · · · , tn) =−
n

∏
i=0

P(wi | wi−2wi−1)

where w−2 = w−1 = 〈s〉 and w j = α′τ(t j) if j ∈ [0,n]. Note
that we compute negative probabilities, because our algorithm
picks a candidate with the least cost (Algorithm 1). Moreover,
to make our language model generalize to unknown con-
texts that may appear in unseen contracts, we use a smooth-
ing method called simple linear interpolation [20, 23], which
mixes 1-gram, 2-gram, and 3-gram all together:

P(wi | wi−2wi−1) = λ1Padd−k(wi | wi−2wi−1)+
λ2Padd−k(wi | wi−1)+
λ3P(wi)

such that λ1 + λ2 + λ3 = 1 (condition for ensuring
∑w j∈V P(w j | wi−2wi−1) = 1). Observe that, to compute 3-
gram and 2-gram probabilities, we use add-k smoothing, e.g.,
for 3-gram, Padd−k(wi |wi−2wi−1) =

C(wi−2wi−1wi)+k
C(wi−2wi−1)+k|V | for some

real number k (where 0 < k < 1) to avoid zero counts in
denominators. For 1-gram, we compute it by unsmoothed
maximum likelihood estimation (i.e., P(wi) =

C(wi)
∑w j∈V C(w j)

),

because numerator and denominator are not zeros (i.e., ∀w ∈
V.C(w)> 0). We remark that, though there exists a method
called EM algorithm [20, 23] for obtaining locally optimal
λis, we simply set λ1 = 0.9, λ2 = 0.08 and λ3 = 0.02, which
worked fairly well in our case.

4 Implementation

We implemented SMARTEST in OCaml on top of VERIS-
MART [36], an open-sourced verifier for Solidity contracts.
Specifically, we reused the frontend of VERISMART and its
VC generator for atomic statements, but newly implemented
our symbolic executor for transaction sequences (Section 3.1),
constraint solving optimization (Section 3.1.2), and symbolic
execution with a language model (Section 3.2).

To be practical as much as possible, our VC generator is
implemented in a more sophisticated way than the one de-
fined in Section 3.1. In particular, our VC generator takes
into account statements that follow assertions. For exam-
ple, consider the statements uint x = n - 12; require
(n==10); ... where n is a formal input parameter. In this
case, in order for the input value n to trigger the underflow
for n-12, SMARTEST produces a value of 10; while any inte-
ger values from 0 to 11 can trigger the underflow, the most
desirable value would be 10, since the effect by the underflow
can persist after the transaction. Other extensions include the
following.

Vulnerability Checker. Currently, SMARTEST supports the
detection of six types of security-critical vulnerabilities: in-
teger over/underflow, assertion violation, division-by-zero,
ERC20 standard violation, Ether-leaking vulnerability (e.g.,
unauthorized access to transfer), and suicidal vulnerability
(e.g., unauthorized access to selfdestruct). For the first
three types of vulnerabilities, we reused the implementation
of VERISMART. We provide detailed explanations on how



we detect the rest three types of vulnerabilities (which are
currently not supported by VERISMART) in Appendix C.

Concrete Validator. We implemented our concrete validator
in Python using the Truffle testing framework.4 We use the
validator to confirm true positives (i.e., vulnerable transaction
sequences generated by SMARTEST can violate correspond-
ing safety conditions in concrete execution), thereby reducing
the burden of manual effort for validating analysis results.
Given a set of vulnerable transaction sequences obtained by
running symbolic execution (Section 3) on a contract, our
validator examines the analysis results as follows. First, on a
testnet, we deploy contracts with assertions that are automat-
ically generated for each safety condition deemed violated
in the analysis phase. Next, we check safety conditions in
assertions are falsified or relevant logging messages are emit-
ted. For leaking and suicidal vulnerabilities, in addition to
checking violations of safety conditions, to further increase
the confidence in our analysis results, we check a positive
amount of Ethers (produced by the symbolic execution) is
indeed transferred to untrusted accounts (Appendix C) and
an analyzed contract is actually deactivated, respectively. In
our experiments (Section 5), we sampled validation results
and manually confirmed that our validator works as intended.

Function Call Analysis. Although we described our ap-
proach for a small subset of Solidity, our implementation
supports most of the features in Solidity, including in-
ternal function calls, inheritance, and structures. However,
SMARTEST currently does not precisely handle external func-
tion calls (i.e., calling functions defined in other contracts).
For example, given a statement o.foo() where o is a con-
tract object, we produce the constraint false to reduce false
positives (i.e., generated vulnerable sequences do not violate
corresponding safety conditions in concrete execution). Also,
given a call statement (e.g., rcv.call.value(amount)()),
we consider Ether-transfer to detect leaking vulnerabilities,
but do not consider behaviors of fallback functions of the
Ether receiver (e.g., rcv).

5 Evaluation

In this section, we evaluate our approach to answer the fol-
lowing research questions.

• How effectively does SMARTEST find vulnerable trans-
action sequences? How does it compare to existing tools?
(Section 5.1)

• Is using language models essential for performance?
How does SMARTEST compare to the basic symbolic
execution without language models? (Section 5.2)

• What are the insights we can get from the learned lan-
guage models? (Section 5.3)

4https://www.trufflesuite.com/

• Can SMARTEST find zero-day bugs from smart contracts
in the wild? (Section 5.4)

5.1 Effectiveness of SMARTEST

We evaluate the vulnerability-finding ability of SMARTEST in
comparison with five publicly available tools: MYTHRIL [3],
MANTICORE [30], MAIAN [31], TEETHER [25], and ILF [19].
They are well-known and recently-developed analyzers that
can generate vulnerable transaction sequences. The first four
are symbolic executors and the last one is a fuzzer. We com-
pare these tools against five security-critical vulnerabilities:
integer over/underflow, assertion violation, division-by-zero,
Ether-leaking, and suicidal. The first three types of vulnera-
bilities are supported by MYTHRIL and MANTICORE. The
leaking (resp., suicidal) vulnerabilities are supported by all
tools (resp., all but TEETHER). We additionally demonstrate
the effectiveness of SMARTEST on finding ERC20 standard
violations, which is not supported by the five.

Benchmark Setup. One important issue when using machine
learning approaches is about how to obtain sufficient amounts
of useful data (i.e., sufficiently many vulnerable smart con-
tracts). For vulnerabilities related to arithmetic properties
(integer over/underflow, assertion violation, division-by-zero,
ERC20 violation), we used smart contracts with known arith-
metic vulnerabilities (e.g., integer overflows) reported in CVE.
Out of the 487 smart contracts with arithmetic vulnerabilities,
we used 443 contracts after we deduplicate contracts whose
names of the root contracts and the code are exactly equivalent
to previously collected ones. On average, the deduplicated
contracts consist of 229 lines. We note that, although CVE
dataset is mostly comprised of smart contracts with known
integer over/underflow vulnerabilities, we additionally tar-
geted three more kinds of vulnerabilities related to arithmetic
properties, in order to compare the tools from more diverse
perspectives.

We note that contracts in CVE dataset have several typi-
cal CVE-reported vulnerability patterns with some contract-
specific variations (e.g., implementations of vulnerable func-
tions, contract sizes), which thus can be useful enough to
compare the effectiveness of tools. The vulnerability patterns
include: over/underflows due to logical flaws in guard expres-
sions (e.g., CVE-2018-12025), missing overflow protection
statements in mintToken functions (e.g., CVE-2018-13085),
and missing guard statements for preventing overflows in
calculating the amount of tokens to be sent when sending
tokens to multiple accounts (e.g., CVE-2018-10299—well-
known for batchOverflow). The most of the benchmarks are
ERC20 token contracts, reflecting the prevalence of them in
the Ethereum blockchain.

For Ether-leaking and suicidal vulnerabilities, we used 104
smart contracts (90 contracts with leaking vulnerabilities and
53 contracts with suicidal vulnerabilities, Table 3) labelled
with vulnerable program points (explained shortly). Out of

https://www.trufflesuite.com/


104, 50 contracts came from a publicly available vulnerability
database, called SmartBugs [14], for Solidity smart contracts.
Specifically, 8 out of 50 are mostly small test contracts manu-
ally collected by the authors of [14] from public repositories
(e.g., SWC registry). The rest 42 contracts are the ones found
by MAIAN [31]. More concretely, the authors of [14] ran MA-
IAN on deployed contracts (> 10,000), where MAIAN flagged
44 contracts in total (for Ether-leaking and suicidal vulner-
abilities) out of them; we excluded 2 out of 44 as 2 were
obtained by running against non-main contracts. We assumed
contracts flagged by MAIAN have real vulnerabilities, since
MAIAN internally performs concrete validation to confirm
true positives [31]. One typical vulnerability pattern in con-
tracts found by MAIAN is an improper access control due to a
mistakenly named constructor (e.g., Pattern 1 in Section 5.4).
For more extensive evaluation, we additionally collected the
rest 54 (=104-50) contracts by manually injecting realistic
vulnerabilities into 21 randomly selected real-world contracts
deployed on blockchain. On average, the contracts (without
duplicated contracts) in Leaking-Suicidal datatset consist of
335 lines.

We explain our constructed benchmarks in more detail. To
mimic real vulnerabilities as possible, we tried not to exces-
sively alter original code. Specifically, we devised and applied
3 mutation patterns in Appendix D, where mutation opera-
tions are negation or removal (rather than insertion of code)
for preferring small changes. We also considered variations
in program sizes; the 21 seed contracts consist of 399 lines
on average, including 7 relative large contracts (> 500 lines).
Similar to those in CVE dataset, these contracts are mostly
token contracts, including a few other types of contracts (e.g.,
game).

Ground truths for Ether-leaking and suicidal vulnerabili-
ties were manually constructed by the authors of [14] (ones
that were provided for the 8 test contracts) and us (the rest,
including ones unexpectedly found by tools used in our exper-
iments). Although our ground truths for vulnerabilities may
not be exhaustive despite our significant effort, we believe
they will be useful for evaluating other analysis tools as well.

Although we tried hard in preparing benchmarks for ob-
jective evaluation, the benchmarks may not be perfect; unfor-
tunately, however, we are currently unaware of other proper
public datasets with confirmed vulnerabilities. We discuss the
limitation of our benchmarks in Section 5.5.

Tool Setup. We obtained the latest versions (as of August,
2020) of each tool from public docker images provided by the
developers of these tools (MYTHRIL, MANTICORE, ILF) and
the public GitHub repository (TEETHER). For MAIAN, we
were unable to run MAIAN obtained from its public repository
due to library dependency issues. Instead, we used the docker
image 5 provided by the authors of [14], where they managed
the dependency issues for running MAIAN.

5https://hub.docker.com/r/smartbugs/maian/tags

For a fair comparison, we deactivated checker options that
are irrelevant to vulnerabilities targeted in each experiment,
when related options were available (MYTHRIL, MANTI-
CORE). We ran MAIAN separately for each type of vulnera-
bilities, since it analyzes only one type of vulnerability for
each run. For symbolic executors, we provided an option to
explore transaction sequences up to length 4 when available
(all but TEETHER), to avoid potential disadvantages of each
tool in terms of the number of found vulnerable transaction
sequences. Note that, for SMARTEST, we did not give such a
hint on the transaction depth (Algorithm 1). For MANTICORE,
we provided options for running it within the capacity of our
machine, since MANTICORE creates multiple subprocesses
per tool invocation by default. For all symbolic executors,
we set the analysis timeout to 30 minutes per contract when
timeout option is available (all but MAIAN and TEETHER),
and we set the external timeout to 35 minutes per contract to
ensure the termination. We ran ILF with 100K transactions
until it terminates, which spent 37 minutes on average per
contract. For additional inputs (other than contracts) required
by TEETHER (e.g., the address of the attacker) and ILF (con-
structor argument values), we simply provided random values.
We left remaining options as default for the four tools. For
SMARTEST, we set timeout to 1 minute per Z3 request.

For CVE dataset, we ran each tool with 40 threads on
Ubuntu machine with AMD Ryzen Threadripper 3970X CPU
(3.7 GHz) (32 cores and 64 threads in total) and 62GB of
memory. For the second dataset with leaking and suicidal
vulnerabilities, we ran each tool with 26 threads on Ubuntu
machine with two Intel(R) Xeon(R) E5-2630 v3 (2.40GHz)
CPUs (16 cores and 32 threads in total) and 188GB of mem-
ory. As exceptions, we ran MAIAN and ILF with 2 and 3
threads respectively; we observed MAIAN produced runtime
exceptions with 26 threads and ILF showed substantial CPU
usage (e.g., > 500 %) per tool invocation.

Results. On each of the two datasets, we performed 4-fold
cross validation, a methodology for evaluating the general-
izability of models; we randomly divided each dataset into
4 folds with equal or similar sizes, ran each fold with our
baseline symbolic execution (Section 3.1), and tested on each
fold using a model learned from training sequences that were
obtained from the rest three folds (i.e., each fold is used once
as testing data and three times as training data). For each tool,
following [19], we report numbers whose results on every
fold is summed.

Table 1 provides the results on 443 contracts from CVE for
each tool. The column #G shows the number of vulnerable
transaction sequences found by each tool for each vulnerabil-
ity kind and for each transaction depth. The column #V means
the number of transaction sequences that are automatically
confirmed by our validator; for CVE dataset, we also vali-
dated the outputs of MYTHRIL and MANTICORE using our
validator. The results show that SMARTEST outperformed
MYTHRIL and MANTICORE in terms of finding vulnerable

https://hub.docker.com/r/smartbugs/maian/tags


Table 1: Test results on 443 contracts with 4-fold cross vali-
dation. #G: the number of vulnerable transaction sequences
generated by each tool. #V: the number of vulnerable trans-
action sequences confirmed by the validator. Each instance
is unique, i.e., each of the instances in each contract is differ-
ent in at least one of the following three things: lines, safety
conditions, and vulnerability types.

Vuln. Tx. SMARTEST MYTHRIL MANTICORE
Kind Depth #G #V #G #V #G #V

Total 2110 1982 594 460 4 2

Integer 0 144 118 8 5 0 0

Over/ 1 890 862 442 354 3 1

Underflow 2 782 731 143 100 1 1
3 287 264 1 1 0 0
≥ 4 7 7 0 0 0 0

Total 219 203 74 73 2 1

Division 0 0 0 0 0 0 0

by 1 180 171 60 59 2 1

Zero 2 38 31 14 14 0 0
3 1 1 0 0 0 0
≥ 4 0 0 0 0 0 0

Total 80 77 32 25 6 3
0 0 0 0 0 0 0

Assertion 1 45 44 23 17 6 3
Violation 2 31 30 8 7 0 0

3 4 3 1 1 0 0
≥ 4 0 0 0 0 0 0

Total 683 654

N/A N/A
ERC20 0 0 0

Standard 1 28 28

Violation 2 621 592
3 32 32
≥ 4 2 2

transaction sequences. For example, for integer over/under-
flow vulnerabilities, SMARTEST found 1,982 validated vul-
nerable transaction sequences. By contrast, MYTHRIL and
MANTICORE found 594 and 4 at most, respectively. We ob-
serve that SMARTEST is particularly more effective in finding
lengthy vulnerable transaction sequences (e.g. depth 3).

To evaluate the tools in a more security relevant aspect, we
also compared three tools in terms of finding known CVE
vulnerabilities related to integer over/underflows. We ran-
domly sampled 300 out of 443 contracts and manually la-
belled vulnerable locations described in each CVE report.
We found that 58 CVE reports are not valid (e.g., vulnerable
functions reported in CVE cannot be invoked in designated
main contracts, vulnerable functions reported do not exist in
source code, determined to be incorrect [36]), or have inte-
ger overflow vulnerability patterns appeared in other CVE
reports but the reports themselves are not directly related
to overflows or the other types of vulnerabilities targeted in
our experiment (e.g., CVE-2018-12078). Table 2 shows that
SMARTEST outperforms MYTHRIL and MANTICORE in this
aspect as well. SMARTEST found 93.0% (225/242) of the
known vulnerabilities in total; using our concrete validator,
we checked that SMARTEST successfully generated validated

Table 2: Evaluation on labelled 242 CVE reports out of ran-
domly sampled 300 CVE reports. #G: the number of found
CVE vulnerabilities (possibly spanning multiple lines per vul-
nerability). #V: the number of CVE vulnerabilities confirmed
by the validator.

Sampled
CVE

Labelled
CVE

SMARTEST MYTHRIL MANTICORE
#G #V #G #V #G #V

300 242 225 219 90 85 0 0

vulnerable sequences for 90.5% (219/242). On the other hand,
MYTHRIL and MANTICORE found 37.2% (90/242) and 0 of
the known vulnerabilities in total, respectively. We note that
the findings of SMARTEST in Table 2 strictly include those of
MYTHRIL and MANTICORE. We also note that MYTHRIL and
MANTICORE produced analysis failures on 3 and 274 con-
tracts, respectively.

On the leaking and suicidal contracts, SMARTEST found
more vulnerabilities compared to the five tools (Table 3). For a
fair comparison as possible, we compare the six tools in three
levels (contract, function, and lines), because we observed
MAIAN and TEETHER immediately terminate once they
found one vulnerability in each contract (i.e., they do not try
to exhaustively find all vulnerable locations) and ILF reports
vulnerable function names without line-level information. At
contract level, SMARTEST detected 90.0% (81/90) and 96.2%
(51/53) of leaking and suicidal contracts with validated trans-
action sequences, whereas ILF (the best among the five tools)
detected 83.3% (75/90) and 94.3% (50/53). SMARTEST is
consistently more effective than the five tools in both function-
and line-levels. We observed that existing tools were less ef-
fective in finding leaking vulnerabilities, because it typically
requires longer transactions than finding suicidal vulnerabili-
ties, requiring steps for designating malicious Ether-receivers.
We also observed interesting false negative cases for ILF.
While ILF was effective in most cases, it failed to detect vul-
nerabilities when relatively tricky arguments are necessary
for passing by guard statements. For example, ILF failed to
detect the suicidal vulnerability in the following code snippet:
1 function kill (uint code) public /* onlyOwner */ {
2 require (code == 1234567890);
3 selfdestruct(owner);} // suicidal vulnerability

where we injected a vulnerability by removing the onlyOwner
modifier (i.e., anyone can kill the contract). In the snip-
pet, the developer’s intention at line 2 was to prevent ac-
cidental invocation of this function. Two symbolic executors
SMARTEST and MAIAN found this vulnerability. We also
note that SMARTEST reported four warnings not in our ground
truths, which are false positives (virtually safe though prede-
fined safety conditions can be violated, excluded in Table 3)
due to current imprecise modeling of leaking vulnerabilities.
For MAIAN, we excluded one finding from Table 3, where it
did not properly report a vulnerable function (e.g., the hash
of the reported function did not match with any functions in
the contract).



Table 3: Results on 104 contracts (90 with leaking and 53 with suicidal vulnerabilities). #G: the number of vulnerable transaction
sequences. #V: the number of validated vulnerable transaction sequences; MAIAN provides its own validated results in concrete
execution and we report them, and we deem #G = #V for ILF because ILF performs dynamic analyses. #Fail: the number of
contracts on which each tool produced some failures without any partial results. #TO: the number of contracts on which each tool
encountered timeout; we considered partial results when available (MANTICORE). n/a: relevant information is not available from
results obtained by each tool, or tools immediately terminate once one vulnerability is found in a contract.

Tools
Leaking (Total: 90 contracts) Suicidal (Total: 53 contracts)

Contract Function Line
#Fail #TO

Contract Function Line
#Fail #TO

#G #V #G #V #G #V #G #V #G #V #G #V
SMARTEST 82 81 112 111 115 111 0 0 51 51 51 51 51 51 0 0

ILF 75 75 101 101 n/a n/a 4 - 50 50 50 50 n/a n/a 1 -
MAIAN 65 58 n/a n/a n/a n/a 7 0 43 43 n/a n/a n/a n/a 7 0

TEETHER 37 n/a n/a n/a n/a n/a 7 29 n/a n/a n/a n/a n/a n/a n/a n/a
MYTHRIL 7 n/a 8 n/a 8 n/a 0 0 19 n/a 19 n/a 19 n/a 0 0

MANTICORE 9 n/a 9 n/a 9 n/a 65 9 3 n/a 3 n/a 3 n/a 46 4

Analysis Cost. The runtime costs of each tool for ob-
taining the results on CVE dataset (Table 1 and 2) are:
SMARTEST (6h 7m), MYTHRIL (6h 5m), and MANTI-
CORE (4h 35m). The costs of each tool for obtaining the
results on the second dataset (Table 3) are: SMARTEST (2h
4m), ILF (22h 49m), MAIAN (2h 28m), TEETHER (2h 20m),
MYTHRIL (2h 5m), and MANTICORE (2h 21m).

Learning Cost. On average, the training time on CVE dataset
can be computed as about 4.5 hours; the total time for running
4 folds with basic symbolic execution (Section 3.1) took about
6 hours (6h 8m) and 3 folds are used as training data for
obtaining n-gram counts (i.e., 6 hours * 3/4). Similarly, the
average learning time on Leaking-Suicidal dataset can be
calculated as 1.5 hours, where the total running time on all
four folds with basic symbolic execution is about 2 hours (2h
4m). Note that, given n-gram counts, computing vulnerable
probabilities (Section 3.2) is done on demand during symbolic
execution and thus requires no additional training time.

5.2 Effectiveness of Using Language Model

Figure 5 shows the performance of SMARTEST with and with-
out language models. In Figure 5(a) (resp., (b)), the meaning
of a point at (x,y) is as follows: from the 443 (resp., 104)
contracts, y vulnerable transaction sequences were found in
total when each contract was analyzed with the testing budget
of x seconds. The two figures show that the learned language
models greatly help to find more vulnerable transaction se-
quences in a short time. For example, on CVE dataset, while
the basic symbolic execution took 1,817 seconds to find 2,178
vulnerable transaction sequences, our language model-guided
symbolic execution took 68 seconds to find the same number
of vulnerable transaction sequences.

Discussion. SMARTEST can be effective when it is trained
and tested on contracts with vulnerabilities whose patterns
of vulnerable transaction sequences are similar. However,
SMARTEST may not be effective when trained and tested on
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Figure 5: SMARTEST with vs. without language model.

vulnerabilities whose typical patterns of vulnerable sequences
are substantially different. We discuss our limitation with fol-
lowing experiments: training on CVE dataset for four types
of vulnerabilities in Table 1 and testing on Leaking–Suicidal
dataset for two types of vulnerabilities in Table 3, and vice
versa. For each experiment, we observed a language model
trained on one dataset degrades the performance of our basic
symbolic execution when tested on the other dataset: 2,084
vulnerable transaction sequences (vs. 2,178) for the first ex-
periment (trained on Leaking-Suicidal dataset and tested on
CVE dataset), 149 sequences (vs. 155) for the second experi-
ment (trained on CVE dataset and tested on Leaking-Suicidal
dataset). One possible reason for these results may be that,
typical patterns of vulnerable transaction sequences that ap-
pear in each dataset are rather different (e.g., Section 5.3). We
believe generalizing to vulnerabilities with different sequence
patterns is challenging and further research is needed for it.

5.3 Learned Insight
We present case studies that can help to understand how our
learned language models improve the speed of symbolic exe-
cution. We have inspected learned conditional probabilities
that are commonly high ranked in each model, where we con-
sidered top-6 types in each training phase (i.e., k = 6, see
Section 3.2.1). For CVE dataset, we observed that prioritizing
transactions without proper arithmetic guard statements is



important for quickly finding arithmetic vulnerabilities. For
example, consider the conditional probability below:

P(〈110000001000000〉 | 〈s〉 · 〈i〉)

where mapping(address => uint) and uint are the top
two variable types. We note that one possible implementation
corresponding to 〈110000001000000〉 is mintToken func-
tion (e.g., Figure 3), where 1st and 2nd elements are set to
1 (i.e., variables with the top two types may be defined) and
7th and 8th elements are set to 0 (i.e., corresponding guard
statements do not exist). For Leaking-Suicidal dataset, we
observed that finding transactions involved with unprotected
ownership is critical for finding those two types of vulnerabil-
ities. One example is the following conditional probability:

P(〈000000100000010〉 | 〈i〉 · 〈110000000000000〉)

where address is the top ranked variable type.
〈110000000000000〉 may indicate a transaction that
enables to change contract’s owners without checking access
privileges (the 1st and 7th elements are set to 1 and 0) and
〈000000100000010〉 may be a transaction that includes a
safety-critical instruction that sends Ethers (the 14th element
is set to 1), which makes contracts leak Ethers to anyone.

5.4 Finding Zero-day Bugs in the Wild
We conducted an experiment to evaluate SMARTEST for find-
ing unknown bugs from smart contracts in the wild. In Novem-
ber 2019, we collected 2,743 smart contracts with an open-
source license from Etherscan6 and ran SMARTEST (trained
on CVE dataset) on the contracts with timeout 10 minutes for
each contract. To ease our manual inspection on found bugs,
we ran SMARTEST with an option to detect ERC20 standard
violations only. We then manually inspected 142 automati-
cally validated vulnerable transaction sequences (from 89 con-
tracts) to judge the significance of found bugs. Below, we re-
port two most significant bug patterns that SMARTEST found
from 7 contracts, excluding benign and uncertain cases. We do
not provide concrete addresses of vulnerable smart contracts
to prevent abuse.

Pattern 1 (Mistakenly Named Constructor). Consider the
code snippet below:

contract AToken {
/* Constructor function */
function BToken ( ) public {

balance[msg.sender] = 10000000000;
totalSupply = 10000000000; } ... }

where we deliberately modified the names of the contract
and the function but included a part of the original com-
ment (“Constructor function”). In old versions of Solidity
(≤ v.0.4.26), a function whose name is equal to the name of
the contract was considered a constructor. Based on the com-
ment in the code, we conjecture that the developer mistakenly
named the constructor function. Due to this flaw, anyone can

6https://etherscan.io/

have 10000000000 tokens for free by invoking the BToken
function. We found this type of vulnerabilities in 4 contracts
with vulnerable transaction sequences of depths 3–4 generated
by SMARTEST, by detecting violations of ERC20 standard
invariants (Appendix C).

Pattern 2 (Unrestricted Token Transfer). Consider the
transferFrom implementation below:

function transferFrom (address from , address to,
uint value) public returns (bool) {

require (balance[from] >= value);
require(balance[to] + value >= balance[to]);
balance[from] -= value;
balance[to] += value;
return true; }

According to the description of the ERC20 standard inter-
face [2], the transferFrom function should raise an excep-
tion if the original token holder (from) did not authorize a
transaction sender (msg.sender). However, the above imple-
mentation does not impose any restrictions on transaction
senders, i.e., there are no guard statements such as the one
at line 29 of Figure 2. As a result, anyone can send money
from one’s account (balance[from]) to another’s account
(balance[to]) without any restrictions, if there are some
balances in the from’s account. SMARTEST found these vul-
nerabilities with this pattern in 3 contracts by generating trans-
actions of depth 1, each of which violates the specification of
standrad transferFrom (Appendix C).

Note that, once the vulnerabilities described above are ex-
ploited in smart contracts that high market values, it can lead
to considerable economic loss to existing token holders. For
example, if the vulnerabilities in Pattern 1 are exploited, hack-
ers can have large amounts for nothing. Moreover, due to
these unrestricted token supplies, the market prices of the
tokens may get lower, resulting in considerable economic loss
to existing token holders.

5.5 Discussion

Limitations and Scope. As discussed in Section 5.2, our
technique may not be effective when the training and test
datasets contain different types of vulnerabilities. Another
limitation is that our technique assumes a sufficient amount
of vulnerable contracts for learning but such data may not be
always readily available for some types of vulnerabilities.

Below we describe limitations and scope of our experi-
ments in terms of covered vulnerabilities, and discuss po-
tential extensions related to them. While we showed the ef-
fectiveness of our technique on six types of vulnerabilities,
its effectiveness on vulnerabilities not covered in our exper-
iments remains to be seen. In particular, in our evaluation,
we did not consider vulnerabilities that require analysis of
the interaction of multiple contracts to demonstrate the flaws
(e.g., reentrancy). To support those types of vulnerabilities,
we should be able to precisely handle external function calls

https://etherscan.io/


(Section 4), possibly involving synthesis of unknown, inter-
acting contracts. Moreover, to apply our technique to those
types of vulnerabilities, we may need to extend our transac-
tion representation method for identifying and prioritizing
certain transactions that involve external function calls and
are likely to reveal those types of vulnerabilities.

Exploitability of Vulnerabilities. While vulnerabilities
found by SMARTEST include exploitable ones (e.g.,
batchOverflow vulnerability in CVE-2018-10299) but they
would not be always immediately exploitable (e.g., CVE-
2018-13085 where overflows can happen by a misuse of a
contract owner rather than an arbitrary user). Nevertheless, we
believe that our technique for effectively finding vulnerabili-
ties (i.e., transaction sequences that violate safety conditions)
is useful, because violations of safety conditions would be
undesirable for safety-critical smart contracts. To precisely
find immediately exploitable vulnerabilities, we need to for-
mally specify the notion of exploitability in terms of logical
formulas.

Threats to Validity. We describe potential sources of threats
to validity that may be introduced in our experiments. Firstly,
the benchmarks used in our experiments (443 contracts from
CVE reports and 104 leaking and suicidal contracts from [14]
and us) may not be representative and may be biased, al-
though we tried hard for objective evaluation (e.g., collecting
benchmarks from existing vulnerability databases, evaluat-
ing on trustful ground truths for vulnerabilities). Thus, when
evaluated with other dataset whose regularities for vulner-
able sequence patterns are rather different, results may be
different. Secondly, comparing the vulnerability-finding capa-
bilities among tools may be unfair in several aspects, despite
our significant effort for a fair comparison (e.g., providing
tool-specific constraints, giving more time budgets to other
tools).

We describe concrete examples for the second point. As
one example, we empirically found that modeling of leaking
vulnerabilities differs in each tool. Specifically, we observed
that MAIAN, TEETHER, MANTICORE, and ILF aim to find
transaction sequences that leak Ethers to arbitrary addresses,
assuming a test contract can have positive amounts of Ethers
somehow (e.g., receiving Ethers from other killed contracts).
Note that adopting this assumption may affect the effective-
ness and the ground truth for vulnerabilities. As for the effec-
tiveness aspect, following the assumption, a tool may be able
to detect leaking vulnerabilities more quickly, since the vul-
nerabilities may be detected with shorter transactions without
explicitly invoking payable functions. As for ground truth
aspect, consider a simple contract without payable functions:
contract NoPayable {
function sendEther () public {

msg.sender.transfer(address(this).balance);}}

Observe that this contract has a leaking vulnerability with the
assumption but does not have the vulnerability without the as-
sumption (since the invariant address(this).balance ==

0 holds). MAIAN, TEETHER, MANTICORE, and ILF report
the vulnerability for the above contract which does not have
payable functions, while MYTHRIL does not. Regarding
ground truths and SMARTEST’s detection for leaking vulner-
abilities, we followed the four tools’ assumption, because we
believe reporting issues related to improper access-controls
would be beneficial rather than not reporting them. As another
example for the second point, tools (TEETHER, ILF) that re-
quire additional inputs other than source code may yield better
results if more sophisticated inputs are provided from users.

6 Related Work

Analysis of Smart Contracts. There is a large body of works
on analysis of smart contracts, which we classify into four
groups: symbolic execution [3,17,25,28,30,31,37,38], static
analysis [9,10,16,39], formal verification [6,18,24,32,34,36],
and fuzzing [19, 22, 27].

Symbolic execution, which SMARTEST builds upon, is per-
haps the most popular approach for finding bugs in smart
contracts. In particular, MYTHRIL [3], MANTICORE [30],
MAIAN [31], TEETHER [25], and ETHBMC [17] are closely
related to SMARTEST in that they also use symbolic execu-
tion and are able to generate vulnerable transaction sequences.
MYTHRIL and MANTICORE are well-known and actively-
maintained tools for finding a range of security vulnerabil-
ities. MAIAN and TEETHER are tools for finding relatively
high-level safety violations such as Ether-leaking and suicidal
vulnerabilities. ETHBMC [17] focuses on precise modeling
of EVM internals (e.g., cryptographic hash functions) for
accurate analysis. Our focus is on improving the speed of
symbolic execution with language models, where we believe
our core idea is applicable to existing tools as well (possibly
with some adjustments on transaction representation method
for EVM bytecode). Other symbolic execution tools such as
OYENTE [28], OSIRIS [37], and HONEYBADGER [38] do not
automatically provide trace information of found bugs.

Static analysis and program verification have been also pop-
ular for smart contract security. Vandal [10], SECURIFY [39],
and Ethainter [9] use Datalog-based static analysis for find-
ing security vulnerabilities such as reentrancy. Slither [16]
is a security checker that performs static analyses includ-
ing data dependency analysis. ZEUS [24] is a verifier based
on abstract interpretation. SMTCHECKER [6] and SOLC-
VERIFY [18] are modular verification tools where each func-
tion is analyzed in isolation. VERISMART [36] automatically
infers transaction invariants and uses them for precise verifica-
tion. VERX [32] supports verification of temporal properties.
eThor [34] is a provably sound verifier for EVM bytecode.
However, unlike SMARTEST, these tools are inappropriate for
generating transaction sequences due to abstractions.

Fuzzing is a simple yet effective method for analyzing
smart contracts. ContractFuzzer [22] and REGUARD [27] are



randomized fuzz testing tools for finding common vulnerabili-
ties such as reentrancy. ILF [19] is an imitation learning-based
fuzzer that aims to learn fuzzing policies from training se-
quences generated from symbolic execution.

Machine Learning for Symbolic Execution. There exist a
few prior works that use machine learning to improve sym-
bolic execution [11, 12, 26, 35, 40]. For example, MLB [26]
uses machine learning to accelerate constraint solving in
symbolic execution. To our knowledge, SMARTEST is the
first that combines symbolic execution and language models
to more effectively find vulnerabilities, although language
models have been used in other contexts (e.g., code comple-
tion [33]).

7 Conclusion

We presented a new technique for effectively finding vulner-
able transaction sequences in smart contracts. The key idea
is to learn a statistical model from known vulnerable transac-
tion sequences and use it to steer symbolic execution towards
finding unknown vulnerabilities more effectively. We imple-
mented the technique as a tool, SMARTEST, and demonstrated
that SMARTEST is significantly more effective than existing
tools for finding vulnerable transaction sequences.
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Appendix

A Simplification Procedure in Section 3.1.2

For simplicity, assume FOL is defined by the grammar below:

F ::= true | false | F1∧F2 | F1∨F2 | ¬F | ∀y.x[y] = e | A | A◦ | A•

F is a boolean constant (true, false), the application of a con-
junction (∧), a disjunction (∨), a negation (¬) or a universal
quantifier (∀), or an atomic formula A possibly annotated with
symbols (◦ or •), which provide hints for simplifying given
constraints (Section 3.1, 3.1.2). An atomic formula A is a
binary predicate applied to two terms (i.e., A ::= e1 � e2).

The simplification procedure is the following. Suppose a
VC F = F1∧¬F2 is given where F is a conjunctive formula,
F1 is a state condition, and F2 is a safety condition (Sec-
tion 3.1.1); for State at line 13 of Algorithm 1, we consider
State∧¬false (i.e., F1 = State, F2 = false). Let Fps be the path
conditions and Solidity-specific constraints in F1, i.e., con-
junctions of atomic formulas annotated with • symbols. We
first collect a set of necessary variables X , which are needed
to generate vulnerable transaction sequences. Concretely, we
collect the initial set of variables I = FV(Fps)∪FV(F2), where
FV(F ′) denotes the set of free variables in F ′. Then, we itera-
tively collect all variables that may affect variables in I, until
we reach a fixed point, i.e., X = fix(λx.I∪C(F,x)) where the
“transfer function” C : FOL×℘(Var)→℘(Var) is defined be-
low. Next, by iterating each conjunct F ′′ in F , we replace F ′′

by true if FV(F ′′) 6⊆ X (F ′′ includes unnecessary variables).
Finally, we remove symbols (◦ or •) in each atomic formula.

The function C is defined as follows:
C(true,X) = X , C(false,X) = X

C(F1 ∧F2,X) = C(F1,X)∪C(F2,X), C(F1 ∨F2,X) = C(F1,X)∪C(F2,X)

C(¬F,X) = C(F,X), C(∀y.x[y] = e,X) = C(x[y] = e,X \{y})

C(e1 � e2,X) =

{
X ∪X ′ if X ∩X ′ 6= /0 (where X ′ = V(e1)∪V(e2))
X otherwise

C((x = e)◦,X) =

{
V(e)∪X if x ∈ X
X otherwise , C((e1 � e2)

•,X) = C(e1 � e2,X)



where V(e) means the set of variables in e. Given a formula
F and a set of variables X , C(F,X) outputs a new set of vari-
ables X ′(⊇ X) by adding variables in F into X , where the
variables in F may affect some variables in X . The core part
is C((x = e)◦,X), where we collect V(e) only when x is iden-
tified as a necessary variable to be tracked. By constrast, in
C(e1 � e2,X), we collect variables by considering informa-
tion propagation at both sides (i.e., e1 and e2).

B Quantifier Elimination in Section 3.1.2

Given a verification condition F that may include universally
quantified constraints, we obtain its quantified-free version
F ′ using QE : FOL×FOL→ FOL (i.e., F ′ = QE(F,F)):

QE(true,F) = true, QE(false,F) = false
QE(F1 ∧F2,F) =QE(F1,F)∧QE(F2,F), QE(F1 ∨F2,F) =QE(F1,F)∨QE(F2,F)

QE(¬F ′,F) = ¬(QE(F ′,F))

QE(∀y.x[y] = e,F) = (x[y1] = e)∧·· ·∧ (x[yn] = e) where IF,x = {y1, · · · ,yn}
QE(e1 � e2,F) = e1 � e2

where IF,x denotes a set of index variables that are used as
indices of x (or variables whose unprimed name is x, e.g., x′,
x′′) in F . For example, when F = x[p] = 3∧ x′[q] = 4, IF,x =
{p,q}. Note that we do not define rules for the (e1 � e2)

◦

and (e1 � e2)
• cases, because the symbols (◦, •) are removed

after performing the property-focused simplification.

C Vulnerability Detection Rules (ERC20 Vio-
lation, Leaking, Suicidal)

ERC20 Violation. We implemented four harness functions
equipped with rules for detecting ERC20 standard violations.
We check these rules, by automatically inserting the test har-
ness functions when predefined conditions are met and ana-
lyzing the augmented contracts.

A test harness for transfer functions checks: 1) whether
the token sender’s balance (e.g., balance[msg.sender]) is
greater than or equal to value (an input parameter indicating
the money to be sent) in case of successful transactions (i.e.,
returning true), 2) the token sender’s balance is decreased
by value (resp., not changed) in case of successful (resp.,
failing) transactions, and 3) the token receiver’s balance (e.g.,
balance[to]) is increased by value (resp., not changed) in
case of successful (resp., failing) transactions.

A test harness for transferFrom functions checks: 1) the
token sender’s balance (e.g., balance[from]) is greater than
or equal to value in case of successful transactions, 2) the
agent’s allowance (e.g., allowance[from][msg.sender])
is greater than or equal to value in case of successful trans-
actions, 3) the token sender’s balance is decreased by value
(resp., not changed) in case of successful (resp., failing) trans-
actions, 4) the token receiver’s balance (e.g., balance[to]) is
increased by value (resp., not changed) in case of successful
(resp., failing) transactions, and 5) the allowance is decreased

by value (resp., not changed) in case of successful (resp.,
failing) transactions.

We also have two test harnesses for detecting violations of
ERC20 invariants. The first harness checks whether the sum
of balances between the two different accounts does not over-
flow, where the specification is an under-approximated one
(e.g., it does not consider relationships among three account
addresses). The second harness checks whether the balance of
each account address is less than or equal to the total amount
of supplied tokens (e.g., totalSupply).

Ether-leaking Vulnerability. Given a statement that sends
Ethers to accounts, we report a leaking vulnerability if
the contract leaks Ethers to an untrusted user and the
amount of the leaked Ethers is greater than the amount of
Ethers sent from the untrusted user. For example, given
a statement address(rcv).transfer(amount) that sends
amount Weis to rcv, we report a leaking vulnerability if the
following safety condition can be violated: Trusted[rcv]∨
Invest[rcv] ≥ money∨money = 0. Trusted is an array that
maps accounts to boolean values. We say an account
X is trusted (resp., untrusted), if Trusted[X ] evaluates to
true (resp., false) under a given satisfying assignment. A set
of trusted addresses is defined as: hard-coded addresses in a
source code, a message sender of initial transactions (i.e., a
user that invokes constructors), this address, zero address (a
constraint for ensuring an untrusted rcv is not a zero address,
considering realistic scenarios), and address-typed parameters
in transactions sent from trusted accounts [19]. Invest is an
array that tracks the amount of Ethers invested from each user.

Suicidal Vulnerability. Given a statement that deactivates
contracts, we report a suicidal vulnerability if the statement
can be executed by untrusted users. For example, given a
selfdestruct(...) statement, we report a vulnerability if
the safety condition Trusted[msg.sender] can be violated.

D Mutation Patterns (Leaking, Suicidal)

We describe mutation patterns for injecting likely leaking and
suicidal vulnerabilities into seed contracts. These patterns
aim to cause improper access controls (e.g., allowing anyone
to access safety-critical statements), since one typical root
reason for those vulnerabilities is based on them.

Pattern 1 is to negate conditions in modifiers (e.g.,
onlyOwner) that check ownership of contracts (e.g., changing
require(msg.sender==owner) to require(msg.sender
!= owner)). Pattern 2 is to remove modifiers for check-
ing ownership in functions, which include statements
that send Ethers (e.g., transfer) or kills contracts (e.g.,
selfdestruct). Pattern 3 is to remove modifiers for check-
ing ownership in functions (e.g., transferOwnership) being
in charge of transferring ownership.

The statistics for 54 constructed benchmarks are as follows:
Pattern 1 (20), Pattern 2 (17), and Pattern 3(17).
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