
MIRAGE: Mitigating Conflict-Based Cache Attacks
with a Practical Fully-Associative Design

Gururaj Saileshwar
gururaj.s@gatech.edu

Georgia Institute of Technology

Moinuddin Qureshi
moin@gatech.edu

Georgia Institute of Technology

Abstract
Shared caches in processors are vulnerable to conflict-

based side-channel attacks, whereby an attacker can monitor
the access pattern of a victim by evicting victim cache lines
using cache-set conflicts. Recent mitigations propose random-
ized mapping of addresses to cache lines, to obfuscate the
locations of set-conflicts. However, these are vulnerable to
newer attack algorithms that discover conflicting sets of ad-
dresses despite such mitigations, because these designs select
candidates for eviction from a small set of conflicting lines.

This paper presents Mirage, a practical design for a fully
associative cache, wherein eviction candidates are selected
randomly from among all the lines resident in the cache, to be
immune to set-conflicts. A key challenge in enabling such a
design for large shared caches (containing tens of thousands
of resident cache lines) is managing the complexity of cache-
lookup, as a naive design can require searching through all the
resident lines. Mirage achieves full-associativity while retain-
ing practical set-associative lookups by decoupling placement
and replacement, using pointer-based indirection from tag-
store to data-store to allow a newly installed address to glob-
ally evict the data of any random resident line. To eliminate
set-conflicts, Mirage provisions extra invalid tags in a skewed-
associative tag-store design where lines can be installed with-
out set-conflict, along with a load-aware skew-selection policy
that guarantees the availability of sets with invalid tags. Our
analysis shows Mirage provides the global eviction property
of a fully-associative cache throughout system lifetime (vio-
lations of full-associativity, i.e. set-conflicts, occur less than
once in 104 to 1017 years), thus offering a principled defense
against any eviction-set discovery and any potential conflict
based attacks. Mirage incurs limited slowdown (2%) and 17–
20% extra storage compared to a non-secure cache.

1 Introduction

Ensuring effective data security and privacy in the context of
hardware side channels is a challenge. Performance-critical
hardware components such as last-level caches (LLC) are
often designed as shared resources to maximize utilization.
When a sensitive application shares the LLC with a malicious
application running simultaneously on a different core, cache
side channels can leak sensitive information. Such cache at-
tacks have been shown to leak sensitive data like encryption
keys [5] and user data in the cloud [44]. Set-conflict based
cache attacks (e.g. Prime+Probe [35]) are particularly potent
as they do not require any shared memory between the victim

and the spy and exploit the set-associative design of conven-
tional caches. Such designs map addresses to only a small
group of cache locations called a set, to enable efficient cache
lookup. If the addresses of both the victim and the attacker
map to the same set, then they can evict each other from the
cache (such an episode is called a set-conflict) – the attacker
uses such evictions to monitor the access pattern of the victim.

Recent proposals for Randomized LLCs [39, 40, 51, 57] at-
tempt to mitigate set-conflict-based attacks by randomizing
the locations of cachelines, i.e. addresses resident in the cache.
By making the address-to-set mapping randomized and unpre-
dictable to an adversary, these designs attempt to obfuscate the
locations of the lines that are evicted. However, such defenses
continue to select cachelines for eviction from a small number
of locations in the cache (equal to the cache associativity), as
shown in Figure 1(a), and thus set-conflicts continue to occur
although their locations are obfuscated. Subsequent attacks
[38, 40, 52] have proposed efficient algorithms to discover a
minimal eviction-set (lines mapping to the same set as a target
address, that can evict the target via set-conflicts) even in the
presence of such defenses, rendering them ineffective. In this
paper, we target the root cause of vulnerability to eviction-set
discovery in prior defenses – the limitation of selecting vic-
tims for eviction from a small subset of the cache (a few tens
of lines), which allows an adversary, that observes evictions,
to learn finite information about installed addresses.

Our goal is to eliminate set-conflicts and attacks that exploit
them, with a cache that has the property of global evictions, i.e
the victims for eviction are chosen (randomly) from among all
the lines in the cache. With global evictions, any line resident
in the cache can get evicted when a new address is installed
into the cache; all cachelines belong to a single set as shown
in Figure 1(b). Hence, an adversary observing an eviction of
its address gains no information about the installed address.

A fully associative cache design, where an address can
map to any location in the cache, naturally provides global
evictions. However, the main challenge in adopting such a
design for the LLC is ensuring practical cache lookup. As
a line can reside in any cache location, a cache lookup can
require searching through the entire LLC (containing tens of
thousands of lines) and be much slower than even a memory
access. Ideally, we want the security of a fully-associative
design, but the practical lookup of a set-associative design.

To this end, we propose Mirage (Multi-Index Randomized
Cache with Global Evictions). The key insight in Mirage is
the decoupling of placement of a new line in the tag-store

(a) Set-Associative Eviction (b) Goal: Fully-Associative Global Eviction

A

B

C

 X

Line-Install

Set-Conflict

Cache

Sets

Any line evicted

(c) Our Proposal Mirage

Line

Install

Load-Balancing

Placement

Extra Tags &

Indirection

Data-Store

Any line
evicted}

Global Replacement

Tag-Store

f1

f2

B C

All Cachelines

Form a Single Set

A X

Line-Install

}

Figure 1: (a) Traditional LLCs have set-associative evictions (SAE), which leaks information to a spy. (b) Desired abstraction:
Global Evictions (GLE) on misses that avoid set conflicts. (c) Our proposal, Mirage, enables global evictions practically with: (1)
Indirection from tag-store to the data-store, (2) Skewed-Associative tag-store with extra tags, and (3) Placement of lines with
load-balancing that guarantees the availability of sets with invalid tags and eliminates SAE.

(where the metadata is stored, that determines the complexity
of lookup), from the replacement decisions (which locations
should be evicted to free up capacity in the data-store). This
allows the placement of the tag of the line in a small number of
possible locations in the tag-store for efficient lookup, while
selecting data victims globally from the entire data-store.

To enable global evictions, Mirage uses pointer-based in-
direction to associate tags with data-blocks and vice-versa
(inspired by V-way Cache [41]) as shown in Figure 1(c), un-
like traditional caches that have an implicit mapping between
the tag and data of a cacheline. Moreover, Mirage provisions
extra invalid tags in each set of the tag-store at a modest stor-
age cost (while retaining the same data-store capacity) and
guarantees the availability of such invalid tags in each set with
a high probability. Thus, when a new line is installed, an in-
valid tag can be allocated from the tag-store without requiring
an eviction of a line from the same set. An eviction of a line is
only required to free a data-block, which is selected randomly
from all the lines in the data-store, providing global eviction.

It is essential to prevent the adversary from mapping several
lines at a time to a specific set, to fully deplete the available
tags in that set. On an install to such a fully-occupied set, the
cache is forced to perform a Set Associative Eviction (SAE),
where a valid tag from the same set needs to be evicted to
accommodate the incoming line. By observing such an SAE,
an adversary can infer the address of the installed line causing
the eviction, and eventually launch a set-conflict based attack.

To eliminate set-conflicts and SAE, and ensure all evictions
are global evictions, Mirage first splits the tag store into two
equal parts (skews), and uses a cryptographic hash function
to randomize the line-to-set mapping within each skew, like
prior skewed-associative designs for secure caches [40, 57].
This allows a line the flexibility of mapping to two possible
sets (one in each skew), in a manner unpredictable to the ad-
versary. As both skews could have invalid tag-store entries, an
important consideration is the skew-selection policy on a line-
install. Using a random skew-selection policy, such as in prior
works [40,57], results in an unbalanced distribution of invalid
tags across sets, causing the episodes of SAE to continue to
occur every few microseconds (a few thousand line installs).
To promote a balanced distribution of invalid tags across sets,

Mirage employs a load-aware skew selection policy (inspired
by load-aware hashing [4, 43]), that chooses the skew with
the most invalid tag-entries in the given set. With this policy,
Mirage guarantees an invalid tag is always available for an
incoming line for system lifetime, thus eliminating SAE.

For an LLC with 2MB/core capacity and 16-ways in the
baseline, Mirage provisions 75% extra tags, and has two
skews, each containing 14-ways of tag-store entries. Our anal-
ysis shows that such a design encounters SAE once per 1017

years, providing the global eviction property and an illusion of
a fully associative cache virtually throughout system lifetime.

If Mirage is implemented with fewer than 75% extra tags,
the probability of an SAE increases as the likelihood that the
tag entries in both skews are all valid increases. To avoid an
SAE in such cases, we propose an optimization that relocates
an evicted tag to its alternative set that is likely to have invalid
tags with high probability (note that each address maps to two
sets, one in each skew). Mirage equipped with such Cuckoo
Relocation (inspired from cuckoo hashing [36]), ensures an
SAE occurs once every 22,000 years, with 50% extra tags.

Overall, this paper makes the following contributions:

1. We observe that conflict-based cache attacks can be mit-
igated by having global eviction that considers all the
lines for eviction. For practical adoption, our goal is pro-
vide such a global eviction property without incurring
significant latency for cache-lookup or power overhead.

2. We propose Mirage, a practical way to get the global
eviction benefits of a fully associative cache. Mirage uses
indirection from tag-store to data-store, an intelligent tag
store design, and a load balancing policy to ensure that
the cache provides global evictions for system lifetime
(set-associative evictions occur once in 1017 years).

3. We propose Mirage with Cuckoo Relocation, whereby
set-associative evictions in the tag store are mitigated by
relocating a conflicting entry to an alternative location.

As Mirage requires extra tags and indirection, it incurs a
modest storage overhead of 17% to 20% for a cache design
with 64-byte linesize compared to a non-secure design. Our
evaluations show that Mirage incurs a modest slowdown of
2%, compared to a non-secure set-associative baseline cache.

2 Background and Motivation

2.1 Cache Design in Modern Processors
Processor caches are typically organized at the granularity
of 64-byte cache lines. A cache is typically divided into two
structures – the tag-store and the data-store. For each cache-
line, the metadata used for identification (e.g. address, valid-
bit, dirty-bit) is called the tag and stored in the "tag-store",
and there is a one-to-one mapping of the tag with the data
of the line, which is stored in the "data-store". To enable effi-
cient cache lookups, the tag-store is typically organized in a
set-associative manner, where each address maps to a set that
is a group of contiguous locations within the tag-store, and
each location within a set is called a way. Each set consists of
w ways, typically in the range of 8 - 32 for caches in modern
processors (w is also referred to as the cache associativity). As
last-level caches (LLCs) are shared among multiple processor
cores for performance, cachelines of different processes can
contend for the limited space within a set, and evict each other
from the cache – such episodes of "set-conflicts" are exploited
in side-channel attacks to evict victim cachelines.

2.2 Threat Model
We assume a threat model where the attacker and victim
execute simultaneously on different physical cores sharing
an LLC, that is inclusive of the L1/L2 caches private to each
core. We focus on conflict-based cache side-channel attacks
where the attacker causes set-conflicts to evict a victim’s line
and monitor the access pattern of the victim. Such attacks are
potent as they do not require victim and attacker to access any
shared memory. For simplicity, we assume no shared memory
between victim and attacker, as existing solutions [57] are
effective at mitigating possible attacks on shared lines.1

2.3 Problem: Conflict-Based Cache Attacks
Without loss of generality, we describe the Prime+Probe at-
tack [35] as an example of a conflict-based cache attack. As
shown in Figure 2, the attacker first primes a set with its ad-
dresses, then allows the victim to execute and evict an attacker
line due to cache-conflicts. Later, the attacker probes the ad-
dresses to check if there is a miss, to infer that the victim
accessed that set. Prior attacks have monitored addresses ac-
cessed in AES T-table and RSA Square-Multiply Algorithms
to leak secret keys [29], addresses accessed in DNN computa-
tions to leak DNN model parameters [60], etc. To launch such
attacks, the attacker first needs to generate an eviction-set for
a victim address, i.e. a minimal set of addresses mapping to
the same cache set as the victim address.

1If the attacker and the victim have shared-memory, attacks such as
Flush+Reload or Evict+Reload are possible. These can be mitigated by stor-
ing duplicate copies of shared-addresses, as proposed in Scatter-Cache [57].
We discuss how our design incorporates this mitigation in Section 5.

Set-0

Set-1

A B A X A

Attacker

Probes

Miss for B leaks

victim access

Victim

Accesses X

Attacker

Primes

Installs A,B

B

Evicts B

Prime+Probe Attack

EvictionSet (X)

= {A,B}

Requires

discovery of

Lines that can

evict X

Figure 2: Example of Conflict-Based Attack (Prime+Probe).

2.4 Recent Advances in Attacks and Defenses
Given how critical eviction-set discovery is for such attacks,
recent defense works have proposed randomized caches to
obfuscate the address to set mapping and make it harder to
learn eviction sets. At the same time, recent attacks have con-
tinued to enable faster algorithms for eviction set discovery.
We describe the key related works in this spirit and discuss
the pitfalls of continuing with such an approach.

Move-1: Attack by Eviction Set Discovery in O(n2)
Typically, set-selection functions in caches are undocu-

mented. A key work by Liu et al. [29] proposed an algorithm
to discover eviction-sets without the knowledge of the address
to set mappings – it tests and eliminates addresses one at a
time, requiring O(n2) accesses to discover an eviction-set.

Move-2: Defense via Encryption and Remapping
CEASER [39] (shown in Figure 3(a)) proposed randomiz-

ing the address to set mapping by accessing the cache with
an encrypted line address. By enabling dynamic re-keying, it
ensures that the mapping changes before an eviction-set can
be discovered with an algorithm that requires O(n2) accesses.

(a) CEASER
Scatter-Cache,

CEASER-S

S
e

ts

(b)

fLine

Address

Skews

f1

ways S0

f2

S1

Line

Address

Figure 3: Recent Works on Randomized Caches

Move-3: Attack by Eviction Set Discovery in O(n)
Subsequent works [40,52] developed a faster algorithm that

could discover eviction-sets in O(n) accesses, by eliminating
groups of lines from the set of potential candidates, rather than
one line at a time. CEASER is unable to prevent eviction-set
discovery with such faster algorithms.

Move-4: Defense via Skewed Associativity
Scatter-Cache [57] and CEASER-S [40] adopt skewed as-

sociativity in addition to randomized mapping of addresses
to sets, to further obfuscate the LLC evictions. As shown
in Figure 3(b), such designs partition the cache across ways

(a) Abstraction Mirage Provides (b) Overview of Mirage

Tag-Store

Line
Install

f1

Line

Install

Mirage

LLC

Any Random Line

From Entire Cache

Eviction

Data-Store

Global

Random

Eviction}
Extra-tags & Indirection

Skewed-Indexing

Load-Aware
Skew Selection

f2
inv=3

inv=2

1

2

3

Figure 4: (a) Mirage provides the abstraction of a fully-associative design with globally random evictions. (b) It achieves this by
using extra tags and indirection between tags and data-blocks, skewed-indexing, and load-aware skew-selection.

into multiple skews, with each skew having a different set-
mapping and a new address is installed in a randomly selected
skew. Such a design provides greater obfuscation as evic-
tion sets get decided by the line to skew mapping as well.
These designs were shown to be immune to faster eviction set
discovery algorithms [40, 52] that require O(n) steps.
Move-5: Attack by Probabilistic Eviction Set Discovery

A recent work [38] showed that faster eviction-set discovery
in Scatter-Cache is possible with an intelligent choice of initial
conditions, that boosts the probability of observing conflicts.
This allows discovery of partial eviction-sets (lines that evict
a target in a subset of the ways) within 140K accesses in
Scatter-Cache, which can enable a conflict-based attack.

Pitfalls: There is an interplay between the robustness of de-
fenses and algorithms for eviction set discovery. The security
of past defenses has hinged on obfuscation of eviction-sets.
However, newer algorithms enabling faster eviction-set dis-
covery continue to break such defenses. Ideally, we seek a de-
fense that eliminates Set-Associative Evictions (SAE), which
are the root cause of the vulnerability, as they allow the adver-
sary to learn eviction-sets. Eliminating SAE would not only
safeguard against current algorithms for eviction set discov-
ery but also against a hypothetical oracular algorithm that can
learn an eviction-set after observing just a single conflict.

2.5 Goal: A Practical Fully-Associative LLC
As a principled defense against conflict-based attacks, we
seek to design a cache that provides Global Eviction (GLE),
i.e. the eviction candidates are selected from among all of the
addresses resident in the cache when new addresses are in-
stalled. Such a defense would eliminate SAE and be immune
to eviction-set discovery, as evicted addresses are indepen-
dent of the addresses installed and leak no information about
installed addresses. While a fully-associative design provides
global evictions, it incurs prohibitive latency and power over-
heads when adopted for an LLC.2 The goal of our paper is to
develop an LLC design that guarantees global evictions while
retaining the practical lookup of a set-associative cache.

2Recent works propose fully-associative designs for a subset of the cache
(Hybcache [12]) or for L1-Caches (RPCache [54], NewCache [55]). These
approaches are impractical for LLCs (see Section 10.1).

3 Full Associativity via MIRAGE
To guarantee global evictions practically, we propose Mirage
(Multi-Index Randomized Cache with Global Evictions). Mi-
rage provides the abstraction of a fully associative cache with
random replacement, as shown in Figure 4(a), with the prop-
erty that on a cache miss, a random line is evicted from among
all resident lines in the cache. This ensures the evicted victim
is independent of the incoming line and no subset of lines in
the cache form an eviction set.

3.1 Overview of Mirage
Mirage has three key components, as shown in Figure 4(b).
First, it uses a cache organization that decouples tag and data
location and uses indirection to link tag and data entries (1
in Figure 4(b)). Provisioning extra invalid tags allows ac-
commodating new lines in indexed sets without tag-conflicts,
and indirection between tags and data-blocks allows victim-
selection from the data-store in a global manner. Second, Mi-
rage uses a tag-store design that splits the tag entries into two
structures (skews) and accesses each of them with a different
hashing function (2 in Figure 4(b)). Finally, to maximize the
likelihood of getting an invalid tag on cache-install, Mirage
uses a load-balancing policy for skew-selection leveraging the
"power of 2 choices" [43] (3 in Figure 4(b)), which ensures
no SAE occurs in the system lifetime and all evictions are
global. We describe each component next.

3.2 Tag-to-Data Indirection and Extra Tags
V-way Cache Substrate: Figure 5 shows the tag and data
store organization using pointer-based indirection in Mirage,
which is inspired by the V-way cache [41]. V-way originally
used this substrate to reduce LLC conflict-misses and im-
prove performance. Here, the tag-store is over-provisioned to
include extra invalid tags, which can accommodate the meta-
data of a new line without a set-associative eviction (SAE).
Each tag-store entry has a forward pointer (FPTR) to allow
it to map to an arbitrary data-store entry.3 On a cache-miss,
two types of evictions are possible: if the incoming line finds

3While indirection requires a cache lookup to serially access the tag and
data entries, commercial processors [1, 14, 56] since the last two decades
already employ such serial tag and data access for the LLC to save power
(this allows the design to only access the data-way corresponding to the hit).

an invalid tag, a Global Eviction (GLE) is performed; else, an
SAE is performed to invalidate a tag (and its corresponding
data-entry) from the set where the new line is to be installed.
On a GLE, V-way cache evicts a data entry intelligently se-
lected from the entire data-store and also the corresponding
tag identified using a reverse pointer (RPTR) stored with each
data entry. In both cases, the RPTR of the invalidated data-
entry is reset to invalid. This data-entry and the invalid tag in
the original set are used by the incoming line.

Repurposing V-way Cache for Security: Mirage adopts
the V-way cache substrate with extra tags and indirection to
enable GLE, but with an important modification: it ensures
the data-entry victim on a GLE is selected randomly from the
entire data-store (using a hardware PRNG) to ensure that it
leaks no information. Despite this addition, the V-way cache
substrate by itself is not secure, as it only reduces but does
not eliminate SAE. For example, if an adversary has arbitrary
control over the placement of new lines in specific sets, they
can map a large number of lines to a certain set and deplete
the extra invalid tags provisioned in that set. When a new
(victim) line is to be installed to this set, the cache is then
forced to evict a valid tag from the same set and incur an
SAE. Thus, an adversary who can discover the address to set
mapping can force an SAE on each miss, making a design that
naively adopts the V-way Cache approach vulnerable to the
same attacks present in conventional set-associative caches.

Tag-Store
Data

Store

S
e

ts

extraWays

Global

Eviction

}
RPTRData

Tag FPTRInstall in

Invalid-Tag

Figure 5: Overview of the cache substrate used by Mirage
with indirection and extra tags (inspired by V-Way Cache).

3.3 Skewed-Associative Tag-Store Design
To ensure GLE on each line install, Mirage reshapes the tag or-
ganization. To allow an address to map to multiple sets in the
tag store and increase the probability of obtaining an invalid
tag, Mirage architects the tag-store as a skewed-associative
structure [47]. The tag store is split into two partitions or
skews, and a different randomizing hash function is used to
map addresses to sets in each skew. The hash function4 to map
addresses to sets is constructed using a 12-round PRINCE
cipher [9], which is a low-latency 64-bit block-cipher using
128-bit keys. Note that prior work [8] used a reduced round
version of PRINCE cipher for randomized cache indexing.

4The hash-function construction is similar to Scatter-Cache (SCv1) [57],
where set-index bits are sliced from a cipher-text encrypted using a plaintext
of physical line-address concatenated with a Security-Domain-ID and the
set-index for each skew is computed using a different secret key.

Unlike prior defenses using skewed-associativity [40, 57],
each skew in Mirage contains invalid tags. Offering the flexi-
bility for a new line to map to two sets (one in each skew) in
the presence of invalid tags significantly increases the chance
of finding an invalid tag in which it can be installed and
avoiding an SAE. Moreover, the cryptographically generated
address-to-set mapping ensures that the adversary (without
knowing the secret key) cannot arbitrarily deplete these in-
valid tags within a set.

3.4 Load-Aware Skew Selection
Natural imbalance in usage of tags across sets can deplete
invalid tags across sets and cause an SAE. On a line-install, the
skew-selection policy, that decides the skew in which the line
is installed, determines the distribution of invalid tags across
sets. Prior works, including Scatter-Cache [57] and CEASER-
S [40], use random skew-selection, which randomly picks one
of the two skews on a line-install. With invalid tags, this policy
can result in imbalanced sets – some with many invalid tags
and others with none (that incur SAE). Our analysis, using a
buckets-and-balls model we describe in Section 4.1, indicates
such a random skew-selection policy results in an SAE every
few misses (every 2600 misses with 6 extra ways/skew), and
provides robustness only for microseconds.

To guarantee the availability of invalid tags across sets and
eliminate SAE, Mirage uses a load-aware skew selection pol-
icy inspired by "Power of 2 Choices" [4,43], a load-balancing
technique used in hash-tables. As indicated by 3 in Figure 4,
this policy makes an intelligent choice between the two skews,
installing the line in the skew where the indexed set has a
higher number of invalid tags. In the case of a tie between the
two sets, one of the two skews is randomly selected. With this
policy, an SAE occurs only if the indexed sets in both skews
do not have invalid tags, that is a rare occurrence as this policy
actively promotes balanced usage of tags across sets. Table 1
shows the rate of SAE for Mirage with load-aware skew selec-
tion policy, as the number of extra tags per skew is increased
from 0 to 6. Mirage with 14-ways per skew (75% extra tags)
encounters an SAE once in 1034 cache-installs, or equiva-
lently 1017 years, ensuring no SAE throughout the system
lifetime. We derive these bounds analytically in Section 4.3.

Table 1: Frequency of Set-Associative Eviction (SAE) in Mi-
rage as number of extra ways-per-skew is increased (assuming
16-MB LLC with 16-ways in the baseline and 1ns per install)

Ways in each Skew Installs per SAE Time per SAE(Base + Extra)
8 + 0 1 1 ns
8 + 1 4 4 ns
8 + 2 60 60 ns
8 + 3 8000 8 us
8 + 4 2×108 0.16 s
8 + 5 7×1016 2 years

8 + 6 (default Mirage) 1034 1017 years

4 Security Analysis of Mirage

In this section, we analyze set-conflict-based attacks in a set-
ting where the attacker and the victim do not have shared mem-
ory (shared-memory attacks are analyzed in Section 5). All
existing set-conflict based attacks, such as Prime+Probe [35],
Prime+Abort [13], Evict+Time [35], etc. exploit eviction-sets
to surgically evict targeted victim-addresses, and all eviction-
set discovery algorithms require the attacker to observe evic-
tions dependent on the addresses accessed by the victim. In
Mirage, two types of evictions are possible – a global evic-
tion, where the eviction candidate is selected randomly from
all the lines in the data-store, that leak no information about
installed addresses; or a set-associative eviction (SAE), where
the eviction candidate is selected from the same set as the
installed line due to a tag-conflict, that leaks information. To
justify how Mirage eliminates conflict-based attacks, in this
section we estimate the rate of SAE and reason that even a
single SAE is unlikely to occur in system-lifetime.

Our security analysis makes the following assumptions:

1. Set-index derivation functions are perfectly random
and the keys are secret. This ensures the addresses are
uniformly mapped to cache-sets, in a manner unknown
to the adversary, so that they cannot directly induce SAE.
Also, the mappings in different skews (generated with
different keys) are assumed to be independent, as re-
quired for the power of 2-choices load-balancing.

2. Even a single SAE is sufficient to break the security.
The number of accesses required to construct an eviction-
set has reduced due to recent advances, with the state-of-
the-art [29, 40, 52] requiring at least a few hundred SAE
to construct eviction-sets. To potentially mitigate even
future advances in eviction-set discovery, we consider
a powerful hypothetical adversary that can construct an
eviction-set with just a single SAE (the theoretical min-
imum), unlike previous defenses [39, 40, 57] that only
consider existing eviction-set discovery algorithms.

4.1 Bucket-And-Balls Model
To estimate the rate of SAE, we model the operation of Mi-
rage as a buckets-and-balls problem, as shown in Figure 6.
Here each bucket models a cache-set and each ball throw rep-
resents a new address installed into the cache. Each ball picks
from 2 randomly chosen buckets, one from each skew, and
is installed in the bucket with more free capacity, modeling
the skew-selection in Mirage. If both buckets have the same
number of balls, one of the two buckets is randomly picked.5

If both buckets are full, an insertion will cause a bucket spill,

5A biased tie-breaking policy [53] that always picks Skew-1 on ties
further reduces the frequency of bucket-spills by few orders of magnitude
compared to random tie-breaks. However, to keep our analysis simple, we
use a random tie-breaking policy.

equivalent to an SAE in Mirage. Otherwise, on every ball
throw, we randomly remove a ball from among all the balls
in buckets to model Global Eviction. The parameters of our
model are shown in Table 2. We initialize the buckets by in-
serting as many balls as cache capacity (in number of lines)
and then perform 10 trillion ball insertions and removals to
measure the frequency of bucket spills (equivalent to SAE).
Note that having fewer lines in the cache than the capacity is
detrimental to an attacker, as the probability of a spill would
be lower; so we model the best-case scenario for the attacker.

Table 2: Parameters for Buckets and Balls Modeling

Buckets and Balls Model Mirage Design
Balls - 256K Cache Size - 16 MB
Buckets/Skew - 16K Sets/Skew - 16K
Skews - 2 Skews - 2
Avg Balls/Bucket - 8 Avg Data-Lines Per Set - 8
Bucket Capacity - 8 to 14 Ways Per Skew - 8 to 14

Skew-1

Skew-2

B1 (i)

B2 (i)

Buckets

}
in B1 : if Balls[B1] < Balls[B2]

in B2 : if Balls[B1] > Balls[B2]

in rand(B1 , B2) : if both equal

random ball:

from all balls in Buckets

Insert-Ball (i) Remove-Ball (i)

ith insertion ith removal

Figure 6: Buckets-and-balls model for Mirage with 32K buck-
ets (divided into 2 skews), holding 256K balls in total to
model a 16MB cache. The bucket capacity is varied from
8-to-14 to model 8-to-14 ways per skew in Mirage.

4.2 Empirical Results for Frequency of Spills
Figure 7 shows the average number of balls thrown per bucket
spill, analogous to the number of line installs required to cause
an SAE on average. As bucket capacity increases from 8 to
14, there is a considerable reduction in the frequency of spills.
When the bucket capacity is 8, there is a spill on every throw
as each bucket has 8 balls on average. As bucket capacity
increases to 9 / 10 / 11 / 12, the spill frequency decreases to
once every 4 / 60 / 8000 / 160Mn balls. For bucket capacities
of 13 and 14, we observe no bucket spills even after 10 trillion
ball throws. These results show that as the number of extra
tags increases, the probability of an SAE in Mirage decreases
super-exponentially (better than squaring on every extra way).
With 12 ways/skew (50% extra tags), Mirage has an SAE
every 160 million installs (equivalent to every 0.16 seconds).

Figure 7: Frequency of bucket spills, as bucket capacity is var-
ied. As bucket-capacity increases from 8 to 14 (i.e. extra-tags
per set increase from 0% to 75%), bucket spills (equivalent to
SAE) become more infrequent.

While this empirical analysis is useful for estimating the
probability of an SAE with up to 12 ways/skew, increasing
the ways/skew further makes the frequency of SAE super-
exponentially less. Hence, it is impractical to empirically
compute the probability of SAE in a reasonable amount of
time beyond 12 ways/skew (an experiment with 10 trillion ball
throws already takes a few days to simulate). To estimate the
probability of SAE for a Mirage design with 14 ways/skew, we
develop an analytical model, as described in the next section.

Table 3: Terminology used in the analytical model

Symbol Meaning

Pr(n = N) Probability that a Bucket contains N balls

Pr(n≤ N) Probability that a Bucket contains ≤ N balls

Pr(X → Y) Probability that a Bucket with X balls transitions to Y balls

W Capacity of a Bucket (beyond which there is a spill)

Btot Total number of Buckets (32K)

btot Total number of Balls (256K)

4.3 Analytical Model for Bucket Spills

To estimate the probability of bucket spills analytically, we
start by modeling the behavior of our buckets and balls system
in a spill-free scenario (assuming unlimited capacity buckets).
We model the bucket-state, i.e. the number of balls in a bucket,
as a Birth-Death chain [27], a type of Markov chain where
the state-variable (number of balls in a bucket) only increases
or decreases by 1 at a time due to birth or death events (ball
insertion or deletions), as shown in Figure 8.

We use a classic result for Birth-Death chains, that in the
steady-state, the probability of each state converges to a steady
value and the net rate of conversion between any two states
becomes zero. Applying this result to our model in Figure 8,
we can equate the probability of a bucket with N balls tran-
sitioning to N+1 balls and vice-versa to get Equation 1. The
terminology used in our model is shown in Table 3.

 N

balls

 N + 1

balls

 N - 1

balls

 N + 2

balls

Pr (N + 1 → N)

Pr (N → N + 1)

Figure 8: Bucket state modeled as a Birth-Death chain, a
Markov Chain where the state variable N (number of balls
in a bucket) increases or decreases by one at a time, due to a
birth (insertion) or death (deletion) of a ball.

Pr(N→ N +1) = Pr(N +1→ N) (1)

To calculate Pr(N→ N +1), we note that a bucket with N
balls transitions to N+1 balls on a ball insertion if: (1) the
buckets chosen from both Skew-1 and Skew-2 have N balls;
or (2) bucket chosen from Skew-1 has N balls and from Skew-
2 has more than N balls; or (3) bucket chosen from Skew-2
has N balls and from Skew-1 has more than N balls. Thus,
if the probability of a bucket with N balls is Pr(n = N), the
probability it transitions to N+1 balls is given by Equation 2.

Pr(N→N+1)=Pr(n=N)2+2∗Pr(n=N)∗Pr(n>N) (2)

To calculate Pr(N +1→ N), we note that a bucket with
N+1 balls transitions to N balls only on a ball removal. As
a random ball is selected for removal from all the balls, the
probability that a ball in a bucket with N +1 balls is selected
for removal equals the fraction of balls in such buckets. If the
number of buckets equals Btot and the number of balls is btot ,
the probability of a bucket with N +1 balls losing a ball (i.e.
the fraction of balls in such buckets), is given by Equation 3.

Pr(N +1→ N) =
Pr(n = N +1)∗Btot ∗ (N +1)

btot
(3)

Combining Equation 1, 2, and 3, and placing Btot/btot =
1/8, (the number of buckets/balls) we get the probability of a
bucket with N+1 balls, as given by Equations 4 and 5.

Pr(n=N+1)=
8

N+1
∗
(

Pr(n=N)2

+2∗Pr(n=N)∗Pr(n>N)

) (4)

=
8

N+1
∗
(

Pr(n=N)2+2∗Pr(n=N)

−2∗Pr(n=N)∗Pr(n≤N)

) (5)

As n grows, Pr(n = N)→ 0 and Pr(n > N)� Pr(n = N)
given our empirical observation that these probabilities reduce
super-exponentially. Using these conditions Equation 4 can
be simplified to Equation 6 for larger n.

Pr(n = N +1) =
8

N +1
∗Pr(n = N)2 (6)

From our simulation of 10 trillion balls, we obtain proba-
bility of a bucket with no balls as Probs (n = 0) = 4× 10−6.
Using this value in Equation 5, we recursively calculate
Prest(n = N +1) for N ∈ [1,10] and then use Equation 6 for
N ∈ [11,14], when the probabilities become less than 0.01.
Figure 9 shows the empirically observed (Probs) and analyti-
cally estimated (Prest) probability of a bucket having N balls.
Prest matches Probs for all available data-points.

0 2 4 6 8 10 12 14 16
Number of Balls (N) in a Bucket

100

10−5

10−10

10−15

10−20

10−25

10−30

10−35

Pr
.(

B
uc

ke
t

w
it

h
N

 b
al

ls
)

Prest
Probs

Figure 9: Probability of a Bucket having N balls – Estimated
analytically (Prest) and Observed (Probs)

Figure 9 shows that the probability of a set having N lines
decreases double-exponentially beyond 8 lines per set (the
average number of data-lines per set). For N = 13 / 14 / 15,
the probability reaches 10−9 / 10−17 / 10−35. This behavior
is due to two reasons – (a) for a set to get to N+1 lines, a
new line must map to two sets with at least N lines; (b) a
set with a higher number of lines is more likely lose a line
due to random global eviction. Using these probabilities, we
estimate the frequency of SAE in the next section.

4.4 Analytical Results for Frequency of Spills
For a bucket of capacity W, the spill-probability (without
relocation) is the probability that a bucket with W balls
gets to W + 1 balls. By setting N = W in Equation 2 and
Pr(n >W) = 0, we get the spill-probability as Equation 7.

Prspill = Pr(W →W +1) = Pr(n =W)2 (7)

Figure 10 shows the frequency of bucket-spills (SAE) esti-
mated by using Prest (n =W), from Figure 9, in Equation 7.
The estimated values (Balls/Spillest) closely match the empir-
ically observed values (Balls/Spillobs) from Section 4.2. As
the number of tags per set, i.e. bucket-capacity (W) increases,
the rate of SAE, i.e. the frequency of bucket-spills shows

8 9 10 11 12 13 14 15
Bucket Capacity (W)

100
105
1010
1015
1020
1025
1030
1035

B
al

l T
hr

ow
s

Pe
r

Sp
ill

Balls/Spillest
Balls/Spillobs

Figure 10: Frequency of bucket-spill, as bucket-capacity
varies – both analytically estimated (Balls/Spillest) and empir-
ically observed (Balls/Spillobs) results are shown.

a double-exponential reduction (which means the exponent
itself is increasing exponentially). The probability of a spill
with x extra ways is of the form P(2x); therefore with 5-6 extra
ways, we get an extremely small probability of spill as the
exponent term reaches 32 – 64. For W = 12 / 13 / 14, an SAE
occurs every 108 / 1016 / 1034 line installs. Thus, the default
Mirage design with 14-ways per set, with a rate of one SAE in
1034 line installs (i.e. once in 1017 years), effectively provides
the security of a fully associative cache.

5 Protecting against Shared-Memory Attacks

Thus far, we have focused primarily on attacks that cause
eviction via set conflicts and without any shared data be-
tween the victim and the attacker. If there is shared-memory
between the victim and the attacker, attacks such as Flush
+Reload [63], Flush+Flush [19], Invalidate+Transfer [23],
Flush+Prefetch [18], Thrash+Reload [46], Evict+Reload [20],
etc. are possible, where an attacker evicts the shared line from
the cache using clflush instruction or cache-thrashing [46]
or by accessing the line’s eviction-set [20], and issues sub-
sequent loads or flushes [19] to the line while measuring its
latency to monitor victim accesses to that line. We describe
how Mirage is protected against these attacks based on the
type of shared memory being attacked.

Shared Read-only Memory: Attacks on shared read-only
memory addresses are prevented in Mirage by placing dis-
trusting programs (victim and attacker) in different security
domains and maintaining duplicate copies of shared lines in
the cache for each security domain. Such duplication ensures
that a load on a shared-address from one domain does not
hit on the copy of another domain (similarly flush from one
domain does not evict another’s copy) and has been used in
several prior secure cache works [12, 26, 57]. For example,
Scatter-Cache (SCv1) [57] uses Security-Domain-ID (SDID)
concatenated with the physical line-address as input to the set
index derivation function (IDF), allowing a shared address to
map to different sets for different domains and get duplicated.
Mirage uses an IDF construction identical to Scatter-Cache
SCv1 and similarly duplicates shared lines across domains.

However, we observe that relying on the IDF to create du-
plicate copies has a weakness: it can allow a shared-memory
address in two different SDIDs to map to the same set in
a skew with a small probability (1/number-o f -sets), which
can result in a single copy of the line. To guarantee duplicate
copies of a line across domains even in this scenario, Mirage
stores the SDID of the domain installing the line along with
the tag of the line, so that a load (or a flush) of a domain hits
on (or evicts) a cache line only if the SDID matches along
with the tag-match. Mirage stores 8-bit SDID supporting up
to 256 security domains (similar to DAWG [26]), which adds
<3% LLC storage overhead; however more or fewer SDID
can be supported without any limitations in Mirage.

Shared Writable Memory: It is infeasible to duplicate
shared writeable memory across domains, as such a design
is incompatible with cache-coherence protocols [26, 57]. To
avoid attacks on such memory, we require that writable shared-
memory is not used for any sensitive computations and only
used for data-transfers incapable of leaking information.

6 Discussion

6.1 Requirements on Randomizing Function
The randomizing function used to map addresses to cache
sets in each skew is critical in ensuring balanced availability
of invalid tags across sets and eliminating SAE. We use a
cryptographic function (computed with a secret key in hard-
ware), so that an adversary cannot arbitrarily target specific
sets. This is also robust to shortcut attacks [37], which can
exploit vulnerabilities in the algorithm to deterministically
engineer collisions. Furthermore, the random-mapping for
each skew must be mutually independent to ensure effective
load-balancing and minimize naturally occurring collisions,
as required by power-of-2-choices hashing [33]. We satisfy
both requirements using a cryptographic hash function con-
structed using the PRINCE cipher, using separate keys for
each skew. Other ciphers and cryptographic hashes that satisfy
these requirements may also be used to implement Mirage.

6.2 Key Management in Mirage
The secret keys used in Mirage for the randomizing set-index
derivation function are stored in hardware and not visible to
any software including the OS. As no information about the
mapping function leaks in the absence of SAE in Mirage, by
default Mirage does not require continuous key-refreshes like
CEASER / CEASER-S [39, 40] or keys to be provisioned per
domain like Scatter-Cache [57]). We recommend that the keys
used in Mirage be generated at boot-time within the cache con-
troller (using a hardware-based secure pseudorandom number
generator), with the capability to refresh the keys in the event
of any key or mapping leakage. For example, all prior ran-
domized cache designs become vulnerable to conflict-based

attacks if the adversary guesses the key via brute-force (1 in
264 chance) or if the mappings leak via attacks unknown at
the time of designing the defense, as they have no means of
detecting such a breakdown in security. On the other hand,
Mirage has the capability to automatically detect a breach in
security via even hypothetical future attacks, as any subse-
quent conflict-based attack requires the orchestration of SAE,
which do not occur in Mirage under normal operation. If mul-
tiple SAE are encountered indicating that the mapping is no
longer secret, Mirage can adapt by transparently refreshing its
keys (followed by a cache flush) to ensure continued security.

6.3 Security for Sliced LLC Designs
Recent Intel CPUs have LLCs that consist of multiple smaller
physical entities called slices (each a few MBs in size), with
separate tag-store and data-store structures for each slice. In
such designs, Mirage can be implemented at the granularity
of a slice (with per-slice keys) and can guarantee global evic-
tions within each slice. We analyzed the rate of SAE for an
implementation of Mirage per 2MB slice (2048 sets, as used
in Intel CPUs) with the tag-store per slice having 2 skews and
14-ways per skew and observed it to be one SAE in 2×1017

years, whereas a monolithic 16MB Mirage provides a rate of
once in 5×1017 years. Thus, both designs (monolithic and
per-slice) provide protection for a similar order of magnitude
(and well beyond the system lifetime).

6.4 Security as Baseline Associativity Varies
The rate of SAE strongly depends on the number of ways
provisioned in the tag-store. Table 4 shows the rate of SAE
for a 16MB LLC, as the baseline associativity varies from
8 ways – 32 ways. As the baseline associativity varies, with
just 1 extra way per skew, the different configurations have an
SAE every 13 – 14 installs. However, adding each extra way
squares the rate successively as per Equation 7. Following the
double-exponential curve of Figure 10, the rate of an SAE
goes beyond once in 1012 years (well beyond system lifetime)
for all three configurations within 5–6 extra ways.

Table 4: Cacheline installs Per SAE in Mirage as the baseline
associativity of the LLC tag-store varies

LLC Associativity 8-ways 16-ways (default) 32-ways

1 extra way/skew 13 (< 20ns) 14 (< 20ns) 14 (< 20ns)

5 extra ways/skew 1021 (104 yrs) 1016 (2 yrs) 1014 (3 days)

6 extra ways/skew 1043 (1026 yrs) 1034 (1017 yrs) 1029 (1012 yrs)

6.5 Implications for Other Cache Attacks
Replacement Policy Attacks: Reload+Refresh [11] attack
exploited the LLC replacement policy to influence eviction-
decisions within a set, and enable a side-channel stealth-

ier than Prime+Probe or Flush+Reload. Mirage guarantees
global evictions with random replacement, that has no access-
dependent state. This ensures that an adversary cannot in-
fluence the replacement decisions via its accesses, making
Mirage immune to any such replacement policy attacks.

Cache-Occupancy Attacks: Mirage prevents an adversary
that observes an eviction from gaining any information about
the address of an installed line. However, the fact that an
eviction occurred continues to be observable, similar to prior
works such as Scatter-Cache [57] and HybCache [12]. Conse-
quently, Mirage and these prior works, are vulnerable to at-
tacks that monitor the cache-occupancy of a victim by measur-
ing the number of evictions, like a recent attack [49] that used
cache-occupancy as a signature for website-fingerprinting.
The only known way to effectively mitigate such attacks is
static partitioning of the cache space. In fact, Mirage can
potentially provide a substrate for global partitioning of the
data-store that is more efficient than the current way/set parti-
tioning solutions to mitigate such attacks. We leave the study
extending Mirage to support global partitions for future work.

7 Mirage with Cuckoo-Relocation

The default design for Mirage consists of 6 extra ways / skew
(75% extra tags) that avoids SAE for well beyond the system
lifetime. If Mirage is implemented with fewer extra tags (e.g.
4 extra ways/skew or 50% extra tags), it can encounter SAE
as frequently as once in 0.16 seconds. To avoid an SAE even
if only 50% extra tags are provisioned in Mirage, we propose
an extension of Mirage that relocates conflicting lines to alter-
native sets in the other skew, much like Cuckoo Hashing [36].
We call this extension Cuckoo-Relocation.

7.1 Design of Cuckoo-Relocation
We explain the design of Cuckoo-Relocation using an ex-
ample shown in Figure 11. An SAE is required when an
incoming line (Line Z) gets mapped in both skews to sets that
have no invalid tags (Figure 11(a)). To avoid an SAE, we need
an invalid tag in either of these sets. To create such an invalid
tag, we randomly select a candidate line (Figure 11(b)) from
either of these sets and relocate it to its alternative location in
the other skew. If this candidate maps to a set with an invalid
tag in the other skew, the relocation leaves behind an invalid
tag in the original set, in which the line to be installed can
be accommodated without an SAE, as shown in Figure 11(c).
If the relocation fails as the alternative set is full, it can be
attempted again with successive candidates till a certain num-
ber of maximum tries, after which an SAE is incurred. For
Mirage with 50% extra tags, an SAE is infrequent even with-
out relocation (less than once in 100 million installs). So in
the scenario where an SAE is required, it is likely that other
sets have invalid tags and relocation succeeds.

(c) After Relocation

Invalid = 0

Invalid = 0
A CB

Z

Line

Install

 (a) Before Relocation

Skew-1

Skew-2

 (b) Relocation

D FE

A CB

Skew-1

Skew-2

D F

E

Invalid = 1

Invalid = 0

Z

A CB

Skew-1

Skew-2

D F

E

Z

Valid Tag

Invalid Tag

Figure 11: Cuckoo Relocation, a technique to avoid an SAE
if Mirage is implemented with 50% extra tags.

7.2 Results: Impact of Relocation on SAE
For Mirage with 50% extra tags, the chance that a relocation
fails is approximately p = 1/sets per skew. This is because,
at the time of an SAE (happens once in 100 million installs),
it is likely that the only full sets are the ones that are currently
indexed (i.e. only 1 set per skew is full). For relocation to
fail for a candidate, the chance that its alternative set is full is
hence approximately p = 1/sets per skew. After n relocation
attempts, the chance that all relocation attempts fail and an
SAE is incurred, is approximately pn.

Table 5 shows the rate of SAE for Mirage with 50% extra
tags and Cuckoo-Relocation, as the maximum number of
relocation attempts is varied. Attempting relocation for up to
3 lines is sufficient to ensure that an SAE does not occur in
system-lifetime (SAE occurs once in 22000 years). We note
that attempting relocation for up to 3 lines can be done in the
shadow of a memory access on a cache-miss.

Table 5: Frequency of SAE in Mirage with 50% extra tags (4
extra ways/skew) as number of relocation attempts increase

Max Relocations 0 1 2 3

Installs per SAE 2×108 3×1012 4×1016 7×1020

Time per SAE 0.16 seconds 45 minutes 1.3 years 22,000 years

7.3 Security Implications of Relocation
For Mirage with 50% extra tags, up to 3 cuckoo relocation
are done in the shadow of memory access on a cache-miss.
A typical adversary, capable of only monitoring load latency
or execution time, gains no information about when or where
relocations occur as – (1) Relocations do not stall the proces-
sor or cause memory traffic, they only rearrange cache entries
within the tag-store; (2) A relocation occurs infrequently
(once in 100 million installs) and any resultant change in oc-
cupancy of a set has a negligible effect on the probability of
an SAE. If a future adversary develops the ability to precisely
monitor cache queues and learn when a relocation occurs to
perceive a potential conflict, we recommend implementing
Mirage with a sufficient extra tags (e.g. 75% extra tags) such
that no relocations are needed in the system lifetime.

8 Performance Analysis

In this section, we analyze the impact of Mirage on cache
misses and system performance. As relocations are uncom-
mon, we observe that performance is virtually identical for
both with and without relocations. So, we discuss the key
results only for the default Mirage design (75% extra tags).

8.1 Methodology
Similar to prior works on randomized caches [39, 40, 51, 57],
we use a micro-architecture simulator to evaluate performance.
We use an in-house simulator that models an inclusive 3-level
cache hierarchy (with private L1/L2 caches and shared L3
cache) and DRAM in detail, and has in-order x86 cores sup-
porting a subset of the instruction-set. The simulator input is a
1 billion instructions long program execution-trace (consisting
of instructions and memory-addresses), chosen from a repre-
sentative phase of a program using the Simpoints sampling
methodology [48] and obtained using an Intel Pintool [30].
We validated the results of our simulator with RISC-V RTL
(Appendix A) and Gem5 (Appendix B) simulations.

As our baseline, we use a non-secure 16-way, 16MB set-
associative LLC configured as shown in Table 6. For Mirage,
we estimate the LLC access latency using RTL-synthesis
of the cache-lookup circuit (Section 8.2) and Cacti-6.0 [34]
(a tool that reports timing, area, and power for caches), and
show that it requires 4 extra cycles compared to the baseline
(3-cycles for PRINCE cipher and 1 extra cycle for tag and
data lookup). For comparisons with the prior state-of-the-
art, we implement Scatter-Cache with 2-skews, 8 ways/skew
and use PRINCE cipher for the hash function for set-index
derivation, that adds 3 cycles to lookups compared to baseline
(to avoid an unfair advantage to Mirage, as Scatter-Cache [57]
originally used a 5-cycle QARMA-64 cipher). We evaluate
58 workloads, including all 29 SPEC CPU2006 benchmarks
(each has 8 duplicate copies running on 8 cores) and 29 mixed
workloads (each has 8 randomly chosen SPEC benchmarks)
All performance averages reported in subsequent sections are
averaged over all 58 workloads, unless mentioned otherwise.

Table 6: Baseline System Configuration

Processor and Last-level Cache

Core 8-cores, In-order Execution, 3GHz

L1 and L2 Cache Per Core L1-32KB, L2-256KB, 8-way, 64B linesize

LLC (shared across cores)
16MB, 16-way Set-Associative, 64B linesize

LRU Replacement Policy, 24 cycle lookup

DRAM Memory-System

Frequency, tCL-tRCD-tRP 800 MHz (DDR 1.6 GHz), 9-9-9 ns

DRAM Organization 2-channel (8-Banks each), 2KB Row-Buffer

8.2 Synthesis Results for Cache Access Latency
Compared to the baseline, the cache access in Mirage addi-
tionally requires (a) set-index computation using the PRINCE
cipher based hash-function, (b) look-up of 8-12 extra ways
of the tag-store, and (c) FPTR-based indirection on a hit to
access the data. We synthesized the RTL for the set-index
derivation function with a 12-round PRINCE cipher [9] based
on a public VHDL implementation [22], using Synopsys De-
sign Compiler and FreePDK 15nm gate library [31]. A 3-stage
pipelined implementation (with 4 cipher rounds/stage) has a
delay of 320ps per stage (which is less than a cycle period).
Hence, we add 3 cycles to the LLC access latency for Mirage
(and Scatter-Cache), compared to the baseline.

We also synthesized the RTL for FPTR-indirection circuit
consisting of AND and OR gates that select the FPTR value
of the hitting way among the accessed tags, and a 4-to-16
decoder to select the data-store way using the lower 4-bits
of the FPTR (the remaining FPTR-bits form the data-store
set-index); the circuit has a maximum delay of 72ps. Using
Cactii-6.0 [34], we estimate that lookup of up to 16 extra
ways from the tag-store further adds 200ps delay in 32nm
technology. To accommodate the indirection and tag lookup
delays, we increase the LLC-access latency for Mirage fur-
ther by 1 cycle (333ps). Overall, Mirage incurs 4 extra cycles
for cache-accesses compared to the baseline. Note that the
RPTR-lookup and the logic for skew-selection (counting valid
bits in the indexed set for each skew and comparing) require
simple circuitry with a delay less than 1 cycle. These opera-
tions are only required on a cache-miss and performed in the
background while the DRAM-access completes.

Table 7: Average LLC MPKI of Mirage and Scatter-Cache

Workloads Baseline Mirage Scatter-Cache

SpecInt-12 10.79 11.23 11.23
SpecFp-17 8.82 8.51 8.51

Mix-29 9.52 9.97 9.97

All-58 9.58 9.80 9.80

8.3 Impact on Cache Misses
Table 7 shows LLC Misses Per 1000 Instructions (MPKI) for
the non-secure Baseline, Mirage, and Scatter-Cache averaged
for each workload suite. We observe that all LLC-misses in
Mirage in all workloads result in Global Evictions (no SAE),
in line with our security analysis.6 Compared to the Baseline,
Mirage incurs 2.4% more misses on average (0.2 MPKI ex-
tra) as the globally-random evictions from the data-store lack
the intelligence of the baseline LRU policy that preserves ad-
dresses likely to be re-used. The miss count for Scatter-Cache

6Workloads typically do not always access random addresses. But the
randomized cache-set mapping used in Mirage ensures accesses always map
to random cache-sets, which allows the load-balancing skew-selection to
maintain the availability of invalid tags across sets and prevent any SAE.

as
tar

bz
ip2 gc

c

go
bm

k
h2

64

hm
mer

lib
qn

tm mcf

om
ne

t

pe
rlb

en
ch

sje
ng

xa
lan

c

bw
av

es

ca
ctu

s

ca
lcu

lix
de

alI
I

ga
mes

s
ge

ms

gr
om

ac
s

lbmles
lie milc

na
md

po
vr

ay

so
ple

x

sp
hin

x
ton

to wrf

ze
us

mp

Sp
ec
In
t-1
2

Sp
ec
Fp
-1
7

M
ix-
29
Al
l-5
8

90%
92%
94%
96%
98%

102%
104%
106%
108%
110%

N
or

m
. P

er
fo

rm
an

ce
 (%

) 119.8% 119.3%

GmeanScatter-Cache
Mirage

Figure 12: Performance of Mirage and Scatter-Cache normalized to Non-Secure Baseline (using weighted speedup metric). Over
58 workloads, Mirage has a slowdown of 2%, while Scatter-Cache has a slowdown of 1.7% compared to the Non-Secure LLC.

is similar to Mirage as it uses randomized set-indexing that
causes randomized evictions with similar performance impli-
cations (however note that all its evictions are SAE that leak
information). We observe that randomization can increase or
decrease conflict misses for different workloads: e.g., Mirage
and Scatter-Cache increase misses by 7% for mcf and xalanc
while reducing them by 30% for sphinx compared to baseline.

8.4 Impact on Performance
Figure 12 shows the relative performance for Mirage and
Scatter-Cache normalized to the non-secure baseline (based
on the weighted speedup7 metric). On average, Mirage incurs
a 2% slowdown due to two factors: increased LLC misses and
a 4 cycle higher LLC access latency compared to the baseline.
For workloads such as mcf or omnet, Mirage increases both
the LLC misses and access latency compared to a non-secure
LLC and hence causes 6% to 7% slowdown. On the other
hand, for workloads such as sphinx, dealII and gcc, Mirage re-
duces LLC-misses and improves performance by 5% to 19%.
In comparison, Scatter-Cache has a lower slowdown of 1.7%
on average despite having similar cache-misses, as it requires
1 cycle less than Mirage for cache accesses (while both incur
the cipher latency for set-index calculation, Mirage requires
an extra cycle for additional tag-lookups and indirection).

8.5 Sensitivity to Cache Size
Figure 13 shows the performance of Mirage and Scatter-
Cache for LLC sizes of 2MB to 64MB, each normalized
to a non-secure design of the same size. As cache size in-
creases, the slowdown for Mirage increases from 0.7% for a
2MB cache to 3.2% for a 64MB cache. This is because larger
caches have a higher fraction of faster cache-hits that causes
the increase in access-latency to have a higher performance
impact. Similarly, the slowdown for Scatter-Cache increases
from 0.5% to 2.8% and is always within 0.4% of Mirage.

7Weighted-Speedup = ∑
N−1
i=0 IPC-MCi/IPC-SCi is a popular throughput

metric for fair evaluation of N-program workloads [50], where IPC stands for
Instructions per Cycle, IPC-MCi is the IPC of a program-i in multi-program
setting, and IPC-SCi is the IPC of program-i running alone on the system.
Using Raw-IPC as the throughput metric, the slowdown decreases by 0.2%.

2MB 4MB 8MB 16MB 32MB 64MB
96%
97%
98%
99%

100%
101%
102%

N
or

m
. P

er
fo

rm
an

ce
 (%

)

Scatter-Cache
Mirage

Figure 13: Sensitivity of Performance to Cache-Size.

8.6 Sensitivity to Cipher Latency

Figure 14 shows the performance of Mirage and Scatter-
Cache normalized to a non-secure baseline LLC, as the la-
tency of the cipher (used to compute the randomized hash
of addresses) varies from 1 to 5 cycles. By default, Mirage
and Scatter-Cache evaluations in this paper use a 3-cycle
PRINCE-cipher [9] (as described in Section 8.2), resulting in
slowdowns of 2% and 1.7% respectively. Alternatively, a ci-
pher like QARMA-64 [3] (that was used in the Scatter-Cache
paper and assumed to have 5 cycle latency [57]) can also be
used in Mirage; this causes Mirage and Scatter-Cache to have
higher slowdowns of 2.4% and 2.2%. Similarly, future works
may design faster randomizing-functions for set-index calcu-
lations in randomized caches; a 1-cycle latency randomizing
function can reduce slowdown of Mirage and Scatter-Cache
to 1.5% and 1.2% respectively. The study of faster randomiz-
ing functions for Mirage that also have robust randomization
that prevents an adversary from discovering eviction-sets via
shortcut attacks [37] is an important direction for future work.

1-cycle 2-cycle 3-cycle 4-cycle 5-cycle
96%

97%

98%

99%

100%

101%

N
or

m
. P

er
fo

rm
an

ce
 (%

)

Scatter-Cache
Mirage

Figure 14: Sensitivity of Performance to Cipher Latency.

9 Cost Analysis

For analyzing the storage and power overheads of Mirage, we
distinguish the two versions of our design as, Mirage (default
design with 75% extra tags) and Mirage-Lite (with 50% extra
tags and relocation).

9.1 Storage Overheads
The storage overheads in Mirage are due to (1) extra tag-
entries, and (2) FPTR and RPTR, the pointers between
tag/data entries, and (3) tag-bits storing full 40-bit line-address
(for 46-bit physical address space) to enable address genera-
tion for write-backs. This causes a storage overhead of 20%
for Mirage and 17% for Mirage-Lite compared to the non-
secure baseline, as shown in Table 8. These overheads are
dependent on cache linesize as the relative size of tag-store
compared to the data-store reduces at a larger linesize. While
we use 64B linesize, a 128B linesize like IBM’s Power9
CPUs [58] would reduce these overheads to 9-10% and a
256B linesize would reduce these to 4-5%.

The storage overhead in Mirage is the main driver be-
hind the area overhead, as the extra storage requires mil-
lions of gates, whereas all other extra logic for FPTR/RPTR-
indirection, PRINCE cipher, etc., can be implemented in few
thousand gates (as shown in Section 9.3). Using CACTI-
6.0 [34], we estimate that an LLC requiring 20% extra storage
consumes approximately 22% extra area. In terms of a storage-
neutral comparison, Mirage has an average slowdown <3.5%
compared to a non-secure LLC with 20% more capacity.

Table 8: Storage Overheads in Mirage for 64B linesize

Cache Size Baseline Mirage Mirage-Lite
16MB Set 2 skews x 2 skews x

(16,384 Sets) Associative 14 ways/skew 12 ways/skew

Tag
Entry

Tag-Bits 26 40 40

Status(V,D) 2 2 2

FPTR – 18 18

SDID – 8 8

Bits/Entry 28 68 68

Tag Entries 262,144 458,752 393,216

Tag-Store Size 896 KB 3808 KB 3264 KB

Data
Entry

Data-Bits 512 512 512

RPTR – 19 19

Bits/Entry 512 531 531

Data Entries 262,144 262,144 262,144

Data-Store Size 16,384 KB 16,992 KB 16,992 KB

Total Storage
17,280 KB 20,800 KB 20,256 KB

(100%) (120%) (117%)

9.2 Power Consumption Overheads

The larger tag-store in Mirage has a higher static leak-
age power when idle and also consumes more energy per
read/write access. Table 9 shows the static and dynamic power
consumption for Mirage in 32nm technology estimated using
CACTI-6.0 [34], which reports the energy/access and static
leakage power consumption for different cache organizations.
We observe the LLC power is largely dominated by the static
leakage power compared to dynamic power (in line with prior
CPU power modeling studies [16]). The static power in Mi-
rage (reported by CACTI) increases by 3.5-4.1W (18%-21%)
in proportion to the storage overheads, whereas the dynamic
power, calculated by multiplying the energy/access (from
CACTI) by the total LLC-accesses per second (from our sim-
ulations), shows an insignificant increase of 0.02W on aver-
age. The increase in LLC power consumption of 4W (21%)
in Mirage is quite small compared to the overall chip power
budget, with comparable modern 8-core Intel/AMD CPUs
having power budgets of 95-140W [2].

Table 9: Energy and Power Consumption for Mirage

Design
Energy / Dynamic Static Leakage Total

Access (nJ) Power (W) Power (W) Power (W)

Baseline 0.61 0.06 19.2 19.3
Mirage 0.78 0.08 23.3 23.4

Mirage-Lite 0.73 0.08 22.7 22.8

9.3 Logic Overheads

Mirage requires extra logic for the set-index computation us-
ing the randomizing hash-function and FPTR-indirection on
cache-lookups, and for load-aware skew-selection and RPTR-
indirection based tag-invalidation on a cache-miss. Our syn-
thesis results in 15nm technology show that the PRINCE-
based randomizing hash-function occupies 5460 um2 area or
27766 Gate-Equivalents (GE - number of equivalent 2-input
NAND gates) and the FPTR-indirection based lookup circuit
requires 132 um2 area or 670 GE. The load-aware skew-
selection circuit (counting 1s among valid bits of 14 tags from
the indexed set in each skew, followed by a 4-bit comparison)
requires 60 um2 or 307 GE, while the RPTR-lookup circuit
complexity is similar to the FPTR-lookup. Overall, all of the
extra logic (including the extra control state-machine) can fit
in less than 35,000 GE, occupying a negligible area compared
to the several million gates required for the LLC.

10 Related Work

Cache design for reducing conflicts (for performance or secu-
rity) has been an active area of research. In this section, we
compare and contrast Mirage with closely related proposals.

10.1 Secure Caches with High Associativity

The concept of cache location randomization for guarding
against cache attacks was pioneered almost a decade ago,
with RPCache [54] and NewCache [55], for protecting L1
caches. Conceptually, such designs have an indirection-table
that is consulted on each cache-access, that allows mapping an
address to any cache location. While such designs can be im-
plemented for L1-Caches, there are practical challenges when
they are extended to large shared LLCs. For instance, the
indirection-tables themselves need to be protected from con-
flicts if they are shared among different processes. While RP-
Cache prevents this by maintaining per-process tables for the
L1 cache, such an approach does not scale to the LLC that may
be used by several hundred processes at a time. NewCache
avoids conflicts among table-entries by using a Content-
Addressable-Memory (CAM) to enable a fully-associative
design for the table. However, such a design is not practical for
LLCs, which have tens of thousands of lines, as it would im-
pose impractically high power overheads. While Mirage also
relies on indirection for randomization, it eliminates conflicts
algorithmically using load-balancing techniques, rather than
relying on per-process isolation that requires OS-intervention,
or impractical fully-associative lookups and CAMs.

Phantom-Cache [51] is a recent design that installs an
incoming line in 1 of 8 randomly chosen sets in the cache,
each with 16-ways, conceptually increasing the associativity
to 128. However, this design requires accessing 128 locations
on each cache access to check if an address is in the cache or
not, resulting in a high power overhead of 67% [51]. Moreover,
this design is potentially vulnerable to future eviction set
discovery algorithms as it selects a victim line from only a
subset of the cache lines. In comparison, Mirage provides the
security of a fully-associative cache where any eviction-set
discovery is futile, with practical overheads.

HybCache [12] is a recent design providing fully-
associative mapping for a subset of the cache (1–3 ways),
to make a subset of the processes that map their data to this
cache region immune to eviction-set discovery. However, the
authors state that “applying such a design to an LLC or a
large cache in general is expensive” [12]. For example, im-
plementing a fully-associative mapping in 1 way of the LLC
would require parallel access to >2000 locations per cache-
lookup that would considerably increase the cache power and
access latency). In contrast, Mirage provides security of a
fully-associative design for the LLC with practical overheads,
while accessing only 24–28 locations per lookup.

10.2 Cache Associativity for Performance

V-Way Cache [41], which is the inspiration for our design,
also uses pointer-based indirection and extra tags to reduce
set-conflicts – but it does not eliminate them. V-Way Cache
uses a set-associative tag-store, which means it is still vulner-

able to set-conflict based attacks, identical to a traditional set-
associative cache. Mirage builds on this design and incorpo-
rates skewed associativity and load-balancing skew-selection
to ensure set-conflicts do not occur in system-lifetime.

Z-Cache [45] increases associativity by generating a larger
pool of replacement candidates using a tag-store walk and
performing a sequence of line-relocations to evict the best vic-
tim. However, this design still selects replacement candidates
from a small number of resident lines (up to 64), limited by
the number of relocations it can perform at a time. As a result,
a few lines can still form an eviction set, which could poten-
tially be learned by attacks. Whereas, Mirage selects victims
globally from all lines in the cache, eliminating eviction-sets.

Indirect Index Cache [21] is a fully-associative design
that uses indirection to decouple the tag-store from data-
blocks and has a tag-store designed as a hash-table with chain-
ing to avoid tag-conflicts. However, such a design introduces
variable latency for cache-hits and hence is not secure. While
Mirage also uses indirection, it leverages extra tags and power
of 2 choices based load-balancing, to provide security by
eliminating tag-conflicts and retaining constant hit latency.

Cuckoo Directory [15] enables high associativity for
cache-directories by over-provisioning entries similar to
our work and using cuckoo-hashing to reduce set-conflicts.
SecDir [62] also applies cuckoo-hashing to protect directories
from conflict-based attacks [61]. However, cuckoo-hashing
alone is insufficient for conflict-elimination. Such designs im-
pose a limit on the maximum number of cuckoo relocations
they attempt (e.g. 32), beyond which they still incur an SAE.
In comparison, load-balancing skew selection, the primary
mechanism for conflict-elimination in Mirage, is more robust
at eliminating conflicts as it can ensure no SAE is likely to
occur in system-lifetime with 75% extra tags.

10.3 Isolation-based Defenses for Set-Conflicts

Isolation-based defenses attempt to preserve the victim lines
in the cache and prevent conflicts with the attacker lines. Prior
approaches have partitioned the cache by sets [10, 42] or
ways [26,28,54,64] to isolate security-critical processes from
potential adversaries. However, such approaches result in sub-
optimal usage of cache space and are unlikely to scale as
the number of cores on a system grows (for example, 16-way
cache for a 64-core system). Other mechanisms explicitly lock
security-critical lines in the cache [25, 54], or leverage hard-
ware transactional memory [17] or replacement policy [59]
to preserve security-critical lines in the cache. However, such
approaches require the classification of security-critical pro-
cesses to be performed by the user or by the Operating-System.
In contrast to all these approaches, Mirage provides robust
and low-overhead security through randomization and global
evictions, without relying on partitioning or OS-intervention.

11 Conclusion
Shared LLCs are vulnerable to conflict-based attacks. Exist-
ing randomized LLC defenses continue to be broken with
advances in eviction-set discovery algorithms. We propose
Mirage as a principled defense against such attacks. Provid-
ing the illusion of a fully-associative cache with random-
replacement, Mirage guarantees the eviction of a random
line on every cache-fill that leaks no address information, for
104−1017 years. Mirage achieves this strong security with 2%
slowdown and modest area overhead of 17-20%, compared
to a non-secure set-associative LLC. Thus, Mirage provides a
considerable safeguard against current eviction-set discovery
algorithms and potentially against even future advances.

Acknowledgments

We thank Ananda Samajdar for help in setting up the RTL
synthesis tool-chain. We also thank the anonymous reviewers
and members of Memory Systems Lab, Georgia Tech for their
feedback. This work was supported in part by SRC/DARPA
Center for Research on Intelligent Storage and Processing-in-
memory (CRISP) and a gift from Intel. Gururaj Saileshwar is
partly supported by an IISP Cybersecurity PhD Fellowship.

References

[1] David H Albonesi. An architectural and circuit-level
approach to improving the energy efficiency of micro-
processor memory structures. In VLSI: Systems on a
Chip, pages 192–205. Springer, 2000.

[2] AnandTech. Intel 9th Generation Power Consumption.
https://www.anandtech.com/show/13400/intel-
9th-gen-core-i9-9900k-i7-9700k-i5-9600k-
review/21.

[3] Roberto Avanzi. The qarma block cipher family. almost
mds matrices over rings with zero divisors, nearly sym-
metric even-mansour constructions with non-involutory
central rounds, and search heuristics for low-latency s-
boxes. IACR Transactions on Symmetric Cryptology,
pages 4–44, 2017.

[4] Yossi Azar, Andrei Z Broder, Anna R Karlin, and Eli Up-
fal. Balanced allocations. SIAM journal on computing,
29(1):180–200, 1999.

[5] Daniel J. Bernstein. Cache-timing attacks on AES.
2005.

[6] David Biancolin, Sagar Karandikar, Donggyu Kim, Jack
Koenig, Andrew Waterman, Jonathan Bachrach, and
Krste Asanovic. Fased: Fpga-accelerated simula-
tion and evaluation of dram. In Proceedings of the
2019 ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays, pages 330–339, 2019.

[7] Nathan Binkert, Bradford Beckmann, Gabriel Black,
Steven K Reinhardt, Ali Saidi, Arkaprava Basu, Joel
Hestness, Derek R Hower, Tushar Krishna, Somayeh
Sardashti, et al. The gem5 simulator. ACM SIGARCH
computer architecture news, 39(2):1–7, 2011.

[8] Rahul Bodduna, Vinod Ganesan, Patanjali SLPSK, Ka-
makoti Veezhinathan, and Chester Rebeiro. Brutus:
Refuting the security claims of the cache timing ran-
domization countermeasure proposed in ceaser. IEEE
Computer Architecture Letters, 19(1):9–12, 2020.

[9] Julia Borghoff, Anne Canteaut, Tim Güneysu, Elif Bilge
Kavun, Miroslav Knezevic, Lars R Knudsen, Gregor Le-
ander, Ventzislav Nikov, Christof Paar, Christian Rech-
berger, et al. PRINCE–a low-latency block cipher for
pervasive computing applications. In International con-
ference on the theory and application of cryptology and
information security, pages 208–225. Springer, 2012.

[10] Thomas Bourgeat, Ilia Lebedev, Andrew Wright, Sizhuo
Zhang, and Srinivas Devadas. Mi6: Secure enclaves in
a speculative out-of-order processor. In MICRO, 2019.

[11] Samira Briongos, Pedro Malagón, José M Moya, and
Thomas Eisenbarth. Reload+ refresh: Abusing cache
replacement policies to perform stealthy cache attacks.
In 29th USENIX Security Symposium (USENIX Security
20), 2020.

[12] Ghada Dessouky, Tommaso Frassetto, and Ahmad-Reza
Sadeghi. Hybcache: Hybrid side-channel-resilient
caches for trusted execution environments. In 29th
USENIX Security Symposium (USENIX Security 20),
2020.

[13] Craig Disselkoen, David Kohlbrenner, Leo Porter, and
Dean Tullsen. Prime+ abort: A timer-free high-precision
l3 cache attack using Intel TSX. In 26th USENIX Se-
curity Symposium (USENIX Security 17), pages 51–67,
2017.

[14] John H. Edmondson, Paul I. Rubinfeld, Peter J. Bannon,
Bradley J. Benschneider, Debra Bernstein, Ruben W.
Castelino, Elizabeth M. Cooper, Daniel E. Dever, Dale R.
Donchin, Timothy C. Fischer, et al. Internal organization
of the alpha 21164, a 300-mhz 64-bit quad-issue cmos
risc microprocessor. Digital Technical Journal, 7(1),
1995.

[15] Michael Ferdman, Pejman Lotfi-Kamran, Ken Balet, and
Babak Falsafi. Cuckoo directory: A scalable directory
for many-core systems. In 2011 IEEE 17th International
Symposium on High Performance Computer Architec-
ture, pages 169–180. IEEE, 2011.

https://www.anandtech.com/show/13400/intel-9th-gen-core-i9-9900k-i7-9700k-i5-9600k-review/21
https://www.anandtech.com/show/13400/intel-9th-gen-core-i9-9900k-i7-9700k-i5-9600k-review/21
https://www.anandtech.com/show/13400/intel-9th-gen-core-i9-9900k-i7-9700k-i5-9600k-review/21

[16] Bhavishya Goel and Sally A McKee. A methodology
for modeling dynamic and static power consumption for
multicore processors. In 2016 IEEE International Par-
allel and Distributed Processing Symposium (IPDPS),
pages 273–282. IEEE, 2016.

[17] Daniel Gruss, Julian Lettner, Felix Schuster, Olya Ohri-
menko, Istvan Haller, and Manuel Costa. Strong and
efficient cache side-channel protection using hardware
transactional memory. In 26th USENIX Security Sympo-
sium (USENIX Security 17), pages 217–233, 2017.

[18] Daniel Gruss, Clémentine Maurice, Anders Fogh,
Moritz Lipp, and Stefan Mangard. Prefetch side-channel
attacks: Bypassing smap and kernel aslr. In Proceedings
of the 2016 ACM SIGSAC conference on computer and
communications security, pages 368–379, 2016.

[19] Daniel Gruss, Clémentine Maurice, Klaus Wagner, and
Stefan Mangard. Flush+ flush: a fast and stealthy cache
attack. In DIMVA, 2016.

[20] Daniel Gruss, Raphael Spreitzer, and Stefan Mangard.
Cache template attacks: Automating attacks on inclusive
last-level caches. In 24th USENIX Security Symposium
(USENIX Security 15), pages 897–912, 2015.

[21] Erik G Hallnor and Steven K Reinhardt. A fully asso-
ciative software-managed cache design. In Proceedings
of 27th International Symposium on Computer Architec-
ture, pages 107–116. IEEE, 2000.

[22] Julian Harttung. PRINCE Cipher VHDL implementa-
tion. https://github.com/huljar/prince-vhdl.

[23] Gorka Irazoqui, Thomas Eisenbarth, and Berk Sunar.
Cross processor cache attacks. In Proceedings of the
11th ACM on Asia conference on computer and commu-
nications security, pages 353–364, 2016.

[24] Sagar Karandikar, Howard Mao, Donggyu Kim, David
Biancolin, Alon Amid, Dayeol Lee, Nathan Pemberton,
Emmanuel Amaro, Colin Schmidt, Aditya Chopra, et al.
Firesim: Fpga-accelerated cycle-exact scale-out system
simulation in the public cloud. In 2018 ACM/IEEE 45th
Annual International Symposium on Computer Architec-
ture (ISCA), pages 29–42. IEEE, 2018.

[25] Taesoo Kim, Marcus Peinado, and Gloria Mainar-Ruiz.
STEALTHMEM: System-level protection against cache-
based side channel attacks in the cloud. In 21st USENIX
Security Symposium (USENIX Security 12), 2012.

[26] Vladimir Kiriansky, Ilia Lebedev, Saman Amarasinghe,
Srinivas Devadas, and Joel Emer. DAWG: A Defense
Against Cache Timing Attacks in Speculative Execution
Processors. In MICRO, 2018.

[27] David Lilja. Measuring Computer Performance, pages
228–229. Cambridge University Press, 2000.

[28] Fangfei Liu, Qian Ge, Yuval Yarom, Frank Mckeen, Car-
los Rozas, Gernot Heiser, and Ruby B Lee. Catalyst:
Defeating last-level cache side channel attacks in cloud
computing. In 2016 IEEE international symposium on
high performance computer architecture (HPCA), pages
406–418. IEEE, 2016.

[29] Fangfei Liu, Yuval Yarom, Qian Ge, Gernot Heiser, and
Ruby B Lee. Last-level cache side-channel attacks are
practical. In Security and Privacy (SP), 2015 IEEE
Symposium on, pages 605–622. IEEE, 2015.

[30] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish
Patil, Artur Klauser, Geoff Lowney, Steven Wallace, Vi-
jay Janapa Reddi, and Kim Hazelwood. Pin: building
customized program analysis tools with dynamic instru-
mentation. Acm sigplan notices, 40(6):190–200, 2005.

[31] Mayler Martins, Jody Maick Matos, Renato P Ribas,
André Reis, Guilherme Schlinker, Lucio Rech, and Jens
Michelsen. Open cell library in 15nm FreePDK tech-
nology. In ISPD’15, pages 171–178, 2015.

[32] Michael Mitzenmacher. The Power of Two Choices in
Randomized Load Balancing. PhD thesis, University of
California at Berkeley, 1996.

[33] Michael Mitzenmacher. The power of two choices in
randomized load balancing. IEEE Transactions on Par-
allel and Distributed Systems, 12(10):1094–1104, 2001.

[34] Naveen Muralimanohar, Rajeev Balasubramonian, and
Norman P Jouppi. Cacti 6.0: A tool to model large
caches. HP laboratories, 27:28, 2009.

[35] Dag Arne Osvik, Adi Shamir, and Eran Tromer. Cache
attacks and countermeasures: The case of aes. In Pro-
ceedings of the 2006 The Cryptographers’ Track at the
RSA Conference on Topics in Cryptology, CT-RSA’06,
2006.

[36] Rasmus Pagh and Flemming Friche Rodler. Cuckoo
hashing. In European Symposium on Algorithms, pages
121–133. Springer, 2001.

[37] Antoon Purnal, Lukas Giner, Daniel Gruss, and Ingrid
Verbauwhede. Systematic analysis of randomization-
based protected cache architectures. In 42th IEEE Sym-
posium on Security and Privacy, 2020.

[38] Antoon Purnal and Ingrid Verbauwhede. Advanced
profiling for probabilistic prime+ probe attacks and
covert channels in scattercache. arXiv preprint
arXiv:1908.03383, 2019.

https://github.com/huljar/prince-vhdl

[39] Moinuddin K. Qureshi. CEASER: Mitigating conflict-
based cache attacks via dynamically encrypted address.
In MICRO’18, 2018.

[40] Moinuddin K. Qureshi. New attacks and defense for
encrypted-address cache. In ISCA’19, 2019.

[41] Moinuddin K Qureshi, David Thompson, and Yale N
Patt. The V-Way cache: demand-based associativity via
global replacement. In 32nd International Symposium
on Computer Architecture (ISCA’05), 2005.

[42] Himanshu Raj, Ripal Nathuji, Abhishek Singh, and Paul
England. Resource management for isolation enhanced
cloud services. In Proceedings of the 2009 ACM work-
shop on Cloud computing security, 2009.

[43] Andrea W Richa, M Mitzenmacher, and R Sitaraman.
The power of two random choices: A survey of tech-
niques and results. Combinatorial Optimization, 9:255–
304, 2001.

[44] Thomas Ristenpart, Eran Tromer, Hovav Shacham, and
Stefan Savage. Hey, you, get off of my cloud: Exploring
information leakage in third-party compute clouds. In
Proceedings of the 16th ACM Conference on Computer
and Communications Security, CCS ’09, 2009.

[45] Daniel Sanchez and Christos Kozyrakis. The zcache:
Decoupling ways and associativity. In 2010 43rd Annual
IEEE/ACM International Symposium on Microarchitec-
ture, pages 187–198. IEEE, 2010.

[46] Michael Schwarz, Martin Schwarzl, Moritz Lipp, Jon
Masters, and Daniel Gruss. Netspectre: Read arbitrary
memory over network. In European Symposium on
Research in Computer Security, pages 279–299, 2019.

[47] André Seznec. A case for two-way skewed-associative
caches. In Proceedings of the 20th Annual International
Symposium on Computer Architecture, ISCA ’93, 1993.

[48] Timothy Sherwood, Erez Perelman, Greg Hamerly, and
Brad Calder. Automatically characterizing large scale
program behavior. In Proceedings of the 10th Inter-
national Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, ASPLOS
X, 2002.

[49] Anatoly Shusterman, Lachlan Kang, Yarden Haskal,
Yosef Meltser, Prateek Mittal, Yossi Oren, and Yuval
Yarom. Robust website fingerprinting through the cache
occupancy channel. In 28th USENIX Security Sympo-
sium (USENIX Security 19), pages 639–656, 2019.

[50] Allan Snavely and Dean M Tullsen. Symbiotic job-
scheduling for a simultaneous multithreaded processor.
In ASPLOS, 2000.

[51] Qinhan Tan, Zhihua Zeng, Kai Bu, and Kui Ren. Phan-
tomcache: Obfuscating cache conflicts with localized
randomization. In NDSS, 2020.

[52] Pepe Vila, Boris Köpf, and José F Morales. Theory
and practice of finding eviction sets. In 2019 IEEE
Symposium on Security and Privacy (SP), 2019.

[53] Berthold Vöcking. How asymmetry helps load balanc-
ing. Journal of the ACM (JACM), 50(4):568–589, 2003.

[54] Zhenghong Wang and Ruby B Lee. New cache designs
for thwarting software cache-based side channel attacks.
In ISCA 2007, pages 494–505, 2007.

[55] Zhenghong Wang and Ruby B. Lee. A Novel Cache
Architecture with Enhanced Performance and Security.
In MICRO, 2008.

[56] Don Weiss, John J Wuu, and Victor Chin. The on-chip
3-mb subarray-based third-level cache on an itanium
microprocessor. IEEE Journal of Solid-State Circuits,
37(11):1523–1529, 2002.

[57] Mario Werner, Thomas Unterluggauer, Lukas Giner,
Michael Schwarz, Daniel Gruss, and Stefan Mangard.
Scattercache: Thwarting cache attacks via cache set ran-
domization. In USENIX Security, 2019.

[58] WikiChip. IBM POWER-9. https://en.wikichip.
org/wiki/ibm/microarchitectures/power9.

[59] M. Yan, B. Gopireddy, T. Shull, and J. Torrellas. Se-
cure hierarchy-aware cache replacement policy (sharp):
Defending against cache-based side channel attacks. In
ISCA, 2017.

[60] Mengjia Yan, Christopher Fletcher, and Josep Torrellas.
Cache telepathy: Leveraging shared resource attacks
to learn dnn architectures. In 29th USENIX Security
Symposium (USENIX Security 20), 2020.

[61] Mengjia Yan, Read Sprabery, Bhargava Gopireddy,
Christopher Fletcher, Roy Campbell, and Josep Torrel-
las. Attack directories, not caches: Side channel attacks
in a non-inclusive world. In 2019 IEEE Symposium on
Security and Privacy (SP), pages 888–904. IEEE, 2019.

[62] Mengjia Yan, Jen-Yang Wen, Christopher W Fletcher,
and Josep Torrellas. SecDir: a secure directory to defeat
directory side-channel attacks. In ISCA 2019, 2019.

[63] Yuval Yarom and Katrina Falkner. Flush+ reload: A
high resolution, low noise, l3 cache side-channel attack.
In USENIX Security, 2014.

[64] Ziqiao Zhou, Michael K Reiter, and Yinqian Zhang. A
software approach to defeating side channels in last-
level caches. In CCS 2016, 2016.

https://en.wikichip.org/wiki/ibm/microarchitectures/power9
https://en.wikichip.org/wiki/ibm/microarchitectures/power9

lbm
so

ple
x

milc

sp
hin

x3

lib
qu

an
tu

m

ca
ctu

sA
DM

bz
ip2

pe
rlb

en
ch

hm
mer

gr
om

ac
s

sje
ng

go
bm

k
gc

c

h2
64

re
f

mix1 mix2 mix3 mix4 mix5 mix6 mix7 mix8 mix9
mix1

0
mix1

1
mix1

2
mix1

3
mix1

4

SPE
C-14

MIX
-14

ALL
-28

96%
97%
98%
99%

100%
101%
102%
103%
104%

N
or

m
. P

er
fo

rm
an

ce
 (%

)

GmeanScatter-Cache
Mirage

Figure 15: Gem5-based performance evaluation. Performance of Mirage and Scatter-Cache normalized to Non-Secure Baseline
(using the weighted speedup metric). On average, Mirage incurs a slowdown of 0.8%, and Scatter-Cache of 0.7%.

Appendix A Validation with RISC-V RTL
To validate our results with a hardware design, we imple-
mented randomized caches in RISC-V hardware. We use
Firesim [24], the state-of-the-art platform for FPGA-based
cycle-exact simulation of RISC-V cores on AWS FPGAs. Un-
fortunately, all RISC-V processors currently only support a
two-level cache hierarchy by default. While FireSim emulates
a last-level cache (L3 cache), it only models the tag-store
and not the data-store; the timing model on the FPGA is
stalled until the data is functionally accessed from the host
DRAM [6]. Without the data-store for the L3 Cache, it is
infeasible to directly implement Mirage. However, as Mirage
has a similar LLC-miss count as Scatter-Cache and a 1 cycle
higher access latency (due to FPTR lookup), we can estimate
its performance by implementing a randomized cache design
with two-skews (similar to Scatter-Cache) and increasing the
cache access latency by one cycle to account for the FPTR
lookup. For implementing cache randomization, we used a
hardware implementation of 3-cycle PRINCE cipher.

We perform the study using a 4MB/16-way L3 cache (the
default size of L3 in the FireSim 4-core Rocket-Core design).
Table 10 compares execution time (in billion cycles) for a
baseline set-associative LLC (Base) and the randomized cache
design as the lookup latency of the cache is increased by 3
cycles to 6 cycles. Note that for this evaluation, we run the
SPEC2017-Int workloads to completion. On average, the ran-
domized cache design with even six cycle additional lookup
latency causes only a 1% slowdown on average. Thus, the
slowdown from the RISC-V FPGA-based evaluation is quite
similar to the slowdown from our simulator (2%).

Appendix B Validation with Gem5 Simulator
We also validated our simulator results using Gem5 [7], a
cycle-accurate micro-architecture simulator. As the default
implementation of Gem5 does not support a 3-level cache
hierarchy, which is typical in modern processors, we did not
pick Gem5 for evaluations in our paper. However, for repro-
ducibility, we re-implemented Mirage and Scatter-Cache in
Gem58 for the L2 cache (in the Gem5 2-level cache hierarchy)
and validated that all the misses in Mirage result in Global
Evictions (no SAE). Figure 15 shows the performance of
Scatter-Cache (SC) and Mirage normalized to a non-secure

8The artifact-evaluated Gem5 implementation of Mirage is available
open-source at http://github.com/gururaj-s/MIRAGE.

Table 10: Execution time (in billion cycles) of RISC-V for
Non-Secure LLC (Base) and randomized cache where the
cache lookup latency is increased by 3 to 6 cycles.

Workload Base
Randomized cache with increased lookup latency
+3 cycles +4 cycles +5 cycles +6 cycles

perlbench 191 202 194 206 203
mcf 191 199 194 200 201
omnetpp 42 42 41 42 42
x264 699 707 702 696 707
deepsjeng 85 84 84 84 84
leela 44 44 45 45 45
exchange2 109 110 108 108 109
xz 119 114 114 115 115

MEAN 100% 100.6% 99.5% 100.9% 101.0%

set-associative LLC baseline for a 4-core system with an
8MB L2 cache as the LLC running SPEC-CPU2006 work-
loads (simulated for 1 billion instructions after forwarding
the first 10 billion instructions). Averaged across 14 memory-
intensive SPEC workloads (4 copies of a benchmark on 4
cores) and 14 mixed workloads (random combinations of 4
benchmarks), Mirage incurs a slowdown of 0.8% while SC
incurs a slowdown of 0.7%, within our simulator results of
2% and 1.7% slowdown respectively.

Appendix C Efficacy of Load-Aware Selection

We provide intuition with the buckets and balls model (buck-
ets equivalent to cache-sets and balls equivalent to cache-
installs) using bounds from Mitzenmacher’s thesis [32]. Con-
sider N-balls thrown in N-buckets (avg-bucket-load = 1).
With one skew (each ball maps to one random bucket), the
non-uniformity in mapping causes some buckets to have
higher load (most-loaded bucket has O(log(N)) balls). With
two skews, a ball can go to two places, but the random skew
selection has no intelligence in placement, i.e. a ball can end
up in a bucket with high-load (the most-loaded bucket still
has O(log(N)) balls). With 2 skews and load-aware skew-
selection, a ball can go to two places and the placement
specifically avoids the high-load bucket, thus reducing imbal-
ance; this has been shown to reduce the most-loaded bucket
load to O(log(log(N))) balls. The gain from O(log(N)) to
O(log(log(N))) is dramatic, but going beyond 2 skews has
diminishing returns as log(log(N)) already has little variation
as N changes; so we restrict our study of Mirage to 2 skews.

http://github.com/gururaj-s/MIRAGE

	Introduction
	Background and Motivation
	Cache Design in Modern Processors
	Threat Model
	Problem: Conflict-Based Cache Attacks
	Recent Advances in Attacks and Defenses
	Goal: A Practical Fully-Associative LLC

	Full Associativity via MIRAGE
	 Overview of Mirage
	Tag-to-Data Indirection and Extra Tags
	Skewed-Associative Tag-Store Design
	Load-Aware Skew Selection

	Security Analysis of Mirage
	Bucket-And-Balls Model
	Empirical Results for Frequency of Spills
	Analytical Model for Bucket Spills
	Analytical Results for Frequency of Spills

	Protecting against Shared-Memory Attacks
	Discussion
	Requirements on Randomizing Function
	Key Management in Mirage
	Security for Sliced LLC Designs
	Security as Baseline Associativity Varies
	Implications for Other Cache Attacks

	Mirage with Cuckoo-Relocation
	Design of Cuckoo-Relocation
	Results: Impact of Relocation on SAE
	Security Implications of Relocation

	Performance Analysis
	Methodology
	Synthesis Results for Cache Access Latency
	Impact on Cache Misses
	Impact on Performance
	Sensitivity to Cache Size
	Sensitivity to Cipher Latency

	Cost Analysis
	Storage Overheads
	Power Consumption Overheads
	Logic Overheads

	Related Work
	Secure Caches with High Associativity
	Cache Associativity for Performance
	Isolation-based Defenses for Set-Conflicts

	Conclusion
	Validation with RISC-V RTL
	Validation with Gem5 Simulator
	Efficacy of Load-Aware Selection

