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Abstract
Brainwaves have proved to be unique enough across individu-
als to be useful as biometrics. They also provide promising
advantages over traditional means of authentication, such as
resistance to external observability, revocability, and intrinsic
liveness detection. However, most of the research so far has
been conducted with expensive, bulky, medical-grade helmets,
which offer limited applicability for everyday usage. With the
aim to bring brainwave authentication and its benefits closer
to real world deployment, we investigate brain biometrics
with consumer devices. We conduct a comprehensive experi-
ment that compares five authentication tasks on a user sample
up to 10 times larger than those from previous studies, intro-
ducing three novel techniques based on cognitive semantic
processing. We analyze both the performance and usability
of the different options and use this evidence to elicit design
and research recommendations. Our results show that it is
possible to achieve Equal Error Rates of 14.5% (a reduction
between 37%-44% with respect to existing approaches) based
on brain responses to images with current inexpensive tech-
nology. With regard to adoption, users call for simpler devices,
faster authentication, and better privacy.

1 Introduction

The field of Brain Computer Interfaces (BCI) has researched
and come to solutions that allow humans to communicate
with machines using their brains [80]. These technologies
have been especially important in the health sector, where
BCIs can for example expand the interaction capabilities of
people with severe paralysis [10]. But with the development of
consumer-grade electroencephalogram (EEG) readers [25, 30,
33, 41, 54], new opportunities appear for using BCIs in many
other realms, such as entertainment or marketing [74, 81].
Indeed, low cost headsets are already being commercialized
for these purposes and we can find app stores1 that offer brain
controlled games, relaxation trainers, and several other types

1https://store.neurosky.com/collections/apps

of applications. In this context, and further spurred by the
drawbacks of using passwords for proving online identity,
research on brain biometrics has recently attracted a great
deal of attention.

Brainwaves – patterns of measurable electrical impulses
emitted as a result of the interaction of billions of neurons
inside the human brain– present particular features that make
them stand out over more traditional biometrics [28,72]. Con-
trary to traits like e.g., face or gait, which can be observed
from the outside and potentially misused to identify users
without consent [35, 78], brain activity is not observable and
thus resistant to this type of surveillance. Another noteworthy
aspect is that credentials based on brainwaves can be easily
revoked: our brain responses vary with the stimuli, and so in
the case of having brainwaves stolen, a new credential could
be generated by changing its associated stimulus. Besides,
given that brain activity is always present in living human be-
ings, brainwaves can strengthen authentication with intrinsic
liveness detection.

But despite the benefits of brain biometrics and the emerg-
ing democratization of EEG technology, more research is
needed to make brainwave authentication applicable in real-
world scenarios. Currently, the vast majority of existing work
is focused on medical-grade equipment, and the scarce ex-
periments with consumer devices involve small user samples,
implement basic authentication techniques (e.g., resting), and
provide limited insights on usability. Furthermore, solutions
are oriented to optimize particular classification models but
provide little exploration of different implementation options
and their practical implications. The result is a conspicuous
lack of information on how to design brainwave authentica-
tion systems for different scenarios. Motivated to fill this gap,
we make two fundamental contributions to move forward:

• (1) Design, implementation, and testing of new au-
thentication techniques. We focus on techniques based
on the extraction of time-locked endogenous brain re-
sponses, which are known to provide higher signal-to-
noise ratio than continuous EEG recordings, the common
practice in related work. Apart from techniques known
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in the medical-grade literature, we introduce three new
tasks based on cognitive semantic processing. As a main
result, we are able to achieve Equal Error Rates of 14.5%,
which suppose a reduction of 37%-44% with respect to
previous studies. Furthermore, we are the first to report
a comprehensive comparison of brainwave authentica-
tion tasks, including testing with one-class vs two class
classifiers, analyzing the relevance of features in time
and frequency, considering usability, and grounded on
a subject pool (N=52) that is up to 10 times larger than
the sample size in previous studies.

• (2) Usability study. Generally, achieving high classifi-
cation accuracy at the cost of low usability in authenti-
cation system design is problematic, since it can limit
real-world applicability. Despite its importance, only
two works so far have considered usability in the field
of consumer-grade brainwave authentication. Chuang et
al. [20] conducted an experimental user study asking par-
ticipants (N=15) to rate authentication tasks according to
how enjoyable, easy, or engaging they were. Besides this
pioneer study, Sohankar et al. [66] analyzed the usabil-
ity of brainwave authentication systems in the literature
against an heuristic metric built on parameters such as
the type of headset or the estimated time to authenticate,
but without considering users’ experiences and percep-
tions. Here, we explore the usability of the proposed
authentication techniques through empirical evidence as
in [20], but extending the scope of the evaluation to: 1)
cover both the usability of the tasks and the brainwave
device, and 2) explore attitudes towards acceptance. Our
results extend and complement previous work and aid in
understanding the usability-security tradeoffs to take into
account when implementing an authentication system.

Apart from these two studies, we contribute to the literature
by distilling lessons learned to inform future designs and
research on brainwave authentication, publishing our dataset
to facilitate replication and encourage further research.

The remainder of this paper is organized as follows. Sec-
tion 2 introduces the status quo on brainwave authentication,
defines important concepts, and sets up our application sce-
nario. Sections 3 and 4, focus on the design of authentication
tasks to collect brainwaves and detail data processing steps.
We report performance and usability results in Sections 5
and 6. Finally, the paper wraps up with a discussion of lessons
learned in Section 7 and conclusions in Section 8.

2 Background

To set the background knowledge for the rest of the paper, we
describe here the state of the art in brainwave authentication
systems, followed by a primer on their key components, and
the threat model and use-case we adopt.

2.1 Related Work

Since the first human electroencephalogram was recorded
in 1924 [29], many studies have shown that brain activity
contains individuating patterns due to the influence of both
genetic factors, e.g., given the unique folding structures of the
cortex, and non-genetic factors, such as intelligence or previ-
ous experiences [11, 45, 79]. On these grounds, researchers
have investigated the usage of brainwaves as biometrics for
user identification and authentication. However, the vast ma-
jority of this research [28] has been conducted using medical-
grade EEG equipment, which is highly precise, but at the same
time expensive, bulky, and difficult to use. In this line of work,
Palaniappan and Mandic [55], in 2007, recorded the EEGs of
102 subjects and applied classification algorithms demonstrat-
ing an overall authentication accuracy of 98%. This study and
similar works have shown promising results and opened the
door to further research with the advent of consumer-grade
EEG devices in 2007. At this point, with low-cost, easy, and
even aesthetic wearables, brainwave-based authentication for
the masses has become a tangible possibility. And so the ques-
tion arises whether it is possible to get accurate results with
this type of EEG headsets.

The literature on consumer-grade EEG authentication is
scarce and so far it only includes experiments with a small
number of subjects2 as opposed to the medical case. This is
an important gap, since the reported accuracy may not hold
when applied to larger populations where the probability of
finding similar users increases [32]. Additionally, existing
works mostly implement authentication based on continuous
EEG recordings (e.g., while relaxing or imagining something),
but few of them [2, 51, 52, 71] have looked specifically at
the extraction of time-locked brain variations that appear in
reaction to external stimuli. These variations, called ERPs
(Event Related Potentials), have been successfully tried in
research with medical EEG equipment, and they are appealing
for the consumer scenario given their higher signal-to-noise
ratio. Another important limitation in current research is that
most publications test one authentication task but there are few
comparisons between different alternatives and just Chuang
et al. [20] have addressed the usability of EEG authentication
as perceived by users, a key aspect to understand adoption.

Looking at the existing gaps, in this work we aim to move
beyond the state of the art by expanding three main fronts.
First, we implement new authentication tasks based on ERPs
for consumer brainwave readers. Second, we thoroughly com-
pare these tasks, evaluating not only their performance but
also conducting a user study to understand usability. And
third, we do our experiments on a larger set of users (N=52)
and release the dataset to allow for replication and further
research.

2Generally ≤ 10; the maximum reported number of users is 31 [2]



Figure 1: Structure of a brainwave authentication system

2.2 Brainwave Authentication Basics
In a biometric authentication system, users are granted ac-
cess depending on their distinct physiological or behavioral
traits, such as the commonly used fingerprints, voice, or face
features. These traits are collected through specific sensors,
processed, and compared to a previously stored sample or
template from the user trying to authenticate, checking if it
is a match or a mismatch. Though brainwave patterns can
be used to prove a person’s identity, their acquisition differs
with respect to other biometrics: they need to be “generated”
while performing a specific task or as a response to a stimulus,
such as sounds or images. Conversely, the primary modules
of a brainwave-based authentication system [28], depicted in
Figure 1, are:
Generation and measurement ( 3). Executes the acquisi-

tion protocol or task that triggers unique brainwave ac-
tivity and records the associated voltage fluctuations.

Signal Pre-processing ( 4.1). Treats the raw EEG signal to
remove undesirable artifacts, such as interferences from
nearby electronics, and increase the signal-to-noise ratio.

Feature Extraction ( 4.1). Isolates the signal components
that are relevant for authentication, i.e., those that contain
the most information about a subject.

Classification. ( 4.2) Implements algorithms to tell authentic
and non-authentic users apart.

2.3 Use Case and Threat Model
We consider a brainwave-based authentication system that
protects access to applications in a desktop or laptop com-
puter. First, the users must complete an enrollment phase,
where their brain signals are collected to build a classification
model and stored with their identity (e.g., a username). Then,
during the authentication phase, a user supplies her identity
and receives a series of visual stimuli. The generated brain
responses are compared to the stored user model for denying
or granting access. Therefore, for each user with true identity
IDt and claimed identity IDc, we test the hypotheses:

H0 : IDt = IDc vs. H1 : IDt 6= IDc (1)

to decide if the user is genuine or not (accept/reject H0).

In this scenario, we consider a “zero effort” adversary [43].
This type of attacker tries to impersonate a valid user by claim-
ing the target’s identity (IDu) and presenting the attacker’s
own biometric characteristic to the system. We assume this
attacker has physical access to the device of the target victim.
The resistance of a biometric system to zero-effort attacks is
the system false accept rate (FAR), which we calculate, among
other metrics, to discuss the performance of the proposed au-
thentication mechanisms. We use this scenario and attacker
model to guide our experiments and we further discuss the
applicability to different use-cases in Section 7.

3 Brainwave Data Acquisition

In the first step of a brainwave authentication system, spe-
cific brain signals of a user need to be activated in order to
generate her credential or authentication material. This pro-
cess is called acquisition protocol and can be accomplished
trough different types of tasks [28]. Resting tasks, where the
user is asked to relax in a comfortable position without mov-
ing or thinking of anything in particular, are the easiest to
perform. Indeed, they were among the first protocols to be
investigated [60] due to their simplicity. A second category of
protocols is that of mental tasks. In this case, users are asked
to carry out imaginary actions, motor-related or not. When
performing motor imaginary actions, users have to imagine
kinesthetic movements of selected body parts, as opening
and closing a fist or moving a finger [20]. Non-motor imagi-
nary, on the contrary, refers to all other mental tasks that are
not related to movement [83], such as mental letter composi-
tion [56], imagined speech [15], or mental calculation [48].
The last category of protocols, stimulus-related tasks, con-
sists of approaches that expose subjects to stimuli of different
nature (e.g., visual, auditory, emotional).

The most common approach for brainwave authentication
is to use the continuous EEG signal associated to the whole du-
ration of a task. But stimulus-based tasks offer an alternative
possibility because they can also evoke specific time-locked
potentials. These brain responses, called Event-related Po-
tentials (ERPs) [79], appear as a temporary variation of the
brainwave’s voltage amplitude [36]. While more complex
to implement, acquisition protocols based on ERPs provide
a higher signal-to-noise ratio, being less sensitive to back-
ground perturbations [5]. This feature makes ERPs specially
suitable for systems based on consumer-grade EEG devices,
in which cheap sensors capture signals with lower quality
compared to medical-grade electrodes [7, 24, 28]. Given the
potential for ERPs to provide better accuracy, we design our
tasks based on them and define the brainwave collection ex-
periment accordingly.



3.1 Experiment Design

We focus on endogenous ERPs, a type of potentials that occur
after the cognitive processing of sensory stimuli, i.e., later
than 100ms after stimulus presentation3. While exogenous
ERPs appear earlier and just depend on physical parameters
of the stimulus (e.g., light intensity), endogenous ERPs are
partially influenced by the subject’s knowledge, motivation
level, and cognitive abilities [11], and so more likely to ex-
hibit individual characteristics useful for authentication [79].
These characteristics, together with the stable morphology of
ERPs [5, 12], are the foundations for the uniqueness of this
type of brainwaves. The most relevant endogenous ERPs are
the P300 and the N400:
P300. It is a positive wave that peaks around 300ms after

exposure to a certain stimulus [36]. This wave is trig-
gered if a subject decides consciously or unconsciously
that a presented stimulus or event is rare. In experimen-
tal setups, a P300 response can be elicited using the
Oddball Paradigm [67], in which low-probability target
items (e.g., pictures) are mixed with high-probability
non-target or “standard” items.

N400. It is a negative wave that peaks at 400ms after a stim-
ulus [38]. While the P300 is related to the attention of
a subject, the N400 appears related to tasks that require
semantic processing [36], such as language processing.

We devised five acquisition protocols to elicit the described
potentials for authentication. The first two protocols focus on
the P300 ERP, and were selected based on their successful
application with medical-grade equipment. Besides, to fur-
ther explore the space of possibilities, we introduce three new
tasks built on the N400 potential that have never been used
for authentication. The following list describes how we imple-
mented the acquisition protocols grounded on neuroscience
research techniques to trigger ERP potentials [23, 36–38, 67] :
P300:Selected. This task elicits the P300 potential based on

the oddball paradigm. We first let the user pick a picture
of her choice, which will be the target stimulus. The
authentication task consists of looking at a sequence
of images where the target image appears infrequently.
Upon appearance, because it is a rare occurrence, a P300
is evoked that differs across subjects. To increase the
attention and therefore the wave amplitude, we instructed
the users to count the occurrences of the target stimuli.

P300:Assigned. Same as P300:Selected, but the is assigned
the rare image.

N400:Words. This task is based on a semantic priming
paradigm. Priming is defined as “an improvement in
performance in a perceptual or cognitive task, relative
to an appropriate baseline, which is caused by previous,
related experience” [73]. Simply put, a subject is primed
on an object if it has previous experience with this object.

3A comprehensive overview of currently known ERPs identified in neu-
rological research can be found in [69].

After priming, if the subject is presented with a semanti-
cally related stimulus, the brain finds it more meaningful
and so the N400 potential appears. In our experiment,
subjects watch a ‘priming video’ that displays cars driv-
ing on a highway. Afterward, several words are shown
on the screen. A minority of these words is strongly re-
lated to the priming objects and aims at triggering N400
responses, and the rest are randomly generated.

N400:Sentences. This task is based on the concept of incon-
gruent sentences. The N400 has been proved to appear
when subjects read sentences word by word that end
in a semantically incongruent manner [37]. An exam-
ple for such a sentence is: “Steve sat down to eat his
car”. Furthermore, the amplitude of the N400 wave de-
pends on the subject’s expectancy for the final word.
This means that if subjects are primed on certain con-
gruent endings, the N400 response is stronger when the
incongruent word appears [38]. We therefore base on this
observation to build our experiment. The task consists
of showing users a sequence of sentences with slight
variations. First, the sentences have semantically con-
gruent endings, but the last variation finishes with an
incongruent word to elicit a strong N400.

N400:Faces. This task is based on the concept of inhibition
of knowledge associated to N400 potentials evoked dur-
ing face identification, which is another type of cogni-
tive semantic processing, different from words. Previous
work has determined that the amplitude of this wave is
stronger when looking at an unfamiliar face after being
presented (and therefore primed) with a sequence of fa-
miliar faces [23]. The reason is that when seeing familiar
faces, the brain activates semantic representations useful
to cognitively process and identify them, but these repre-
sentations need to be removed and new ones activated
when we start to process a new and unfamiliar individ-
ual. This inhibition of knowledge intensifies the N400.
On these grounds, our protocol shows unfamiliar faces
within sequences of likely familiar faces (celebrities).

3.2 Experiment Execution

Goal and Structure. The experiment at the core of this re-
search has two goals: 1) eliciting and recording ERPs with
individuating features to be used for authentication; and 2)
collect information on the perceived usability of brainwave
authentication. Figure 2 illustrates the brainwave collection
part of the experiment, based on the five acquisition tasks de-
scribed in Section 3.1. After providing consent to take part in
the study, participants were told to sit comfortably and move
as little as possible during the experiment. Every room was
kept rather dark and quiet, in order not to disturb the subjects.
Next, their brainwave activity was recorded while performing
the authentication tasks. As shown in Figure 2, the recording
starts with baseline measurements of brain activity while rest-



Figure 2: Graphical flow of the experiment tasks to record
users’ brainwave activity for authentication. Each task is
briefly described, labeled with the potential meant to be
evoked (P300 or N400), and tagged with its duration.

ing. Then, it follows with several sequences and repetitions
of the authentication tasks4, to acquire multiple samples for
training and testing the classification algorithms. After the
recording, participants filled out a paper questionnaire to as-
sess the usability of a brainwave authentication system based
on the performed tasks and headset (details in Section 6). All
experiment materials are linked in Appendix 8.

Apparatus. We use the Emotiv EPOC+ headset [25] to
record brainwave activity. We chose this device because it is
the prevalent choice in scientific studies and it offers a higher
number of recording channels (14) than other consumer grade
products, which leads to more accurate measurements5. The
experiment flow was programmed with PsychoPy [58], an
open source tool for conducting experiments in behavioral
sciences, and connected to the EPOC’s reading software to
synchronize stimuli presentation with brainwave recording.

Recruitment and Ethical Aspects. We recruited partici-
pants following a self-selection sampling approach [39]. The
study was advertised through different channels asking for
volunteers, including online posts, flyers spread at different
university locations and brief announcements during lectures.
Each participant received information about the experiment
and about how we would treat their personal data fulfilling the
EU General Data Protection Regulation (GDPR) [26], in order
to get informed consent. To avoid biasing the subjects, we dis-
closed the actual purpose of the experiment, i.e., building an
authentication system, at the end of the recording session and
before the usability questionnaire. The approximate average
duration of the whole study was 45 minutes and we compen-
sated participants with 5C and a report on their brainwaves
containing information about interest, stress, and focus level
during the study. Subjects were also told that participation
was voluntary and the experiment could be abandoned at any
time. The whole procedure is IRB-approved.

Participant Demographics. In total, 56 subjects took part

4Element D in the study flow depicted in Figure 2 was included to test
subliminal manipulations Since we did not obtain conclusive results in this
regard, we just report it as a study item without giving further details

5The reader is referred to [65] for a comprehensive review and comparison
of consumer grade EEG readers, including research applications

in the experiment, conducted between May 8 and July 2, 2019.
We recorded ERPs from 23 females (41.1%) and 33 males
(58.9%), leading to an slightly imbalanced gender distribution.
With regard to age, our population is skewed towards young
adults because most of the experiments were conducted with
university students. The majority, 28 subjects (50%), fall in
the age range 18-24, followed by 16 (28.6%) participants aged
between 25 and 31, and 8 (14.6%) in the range 32-38. The
remaining 4 persons (7.2%) were over 39 years old.

4 Brainwave Data Processing

Before we can get useful brainwave data for the classification
algorithms that implement authentication, raw EEG signals
must undergo a two-step preparation process to: 1) remove
undesirable artifacts, and 2) extract relevant features for au-
thentication. This section summarizes the data preparation
steps, following common practices in the literature [28], and
the classification models we apply to these data.

4.1 Pre-processing and Feature Extraction

The data recorded during the experiment contains continuous
EEG measurements of about 20 minutes length, captured at a
sampling rate of 256 Hz. However, only specific relevant sec-
tions around the presentation of stimuli, i.e., the ERP waves,
are required for authentication. These sections are also called
epochs and constitute a user sample. To extract the ERPs,
we cut 1-second length epochs from 100ms before stimulus
presentation until 900ms thereafter to guarantee that we get
the potential’s information, considering variances in the peak
latency [69]. After epoch extraction, we filtered electrical
noise and removed samples with bad quality measures or con-
taining large artifacts that contaminate the EEG signal (e.g.,
eye or muscle movements). With the clean EEG signal, the
next step is to obtain discriminant features that represent and
encode the mental activity of a user [28]. We chose the most
common features in the time and frequency domains applied
in previous works [1, 3, 6, 28, 82], and used them as a basis
to further identify which features work best for our proposed
tasks (see Section 5.2.3). First, considering the ERP epoch
a 1-second time series, we fit it to an Autoregressive (AR)
model with 10 coefficients and take them as features. Second,
we split each 1-second epoch into five segments of 200ms and
calculate their Power Spectrum (PS) in different frequency
bands (α [10-13Hz], β [13-30Hz], and γ [30-50Hz]). More-
over, we generated 15 cumulative features by aggregating the
PS of all 14 channels per segment, and 3 highly aggregated
features, by grouping the PS of all segments into one feature
per frequency band. Table 1 shows the final datasets after
pre-processing, linked in Appendix 8.



Dataset #users #samples
P300:Selected 52 911
P300:Assigned 52 910
N400:Words 52 1733
N400:Sentences 50 276
N400:Faces 50 424

Table 1: Brainwave datasets for five authentication tasks.

4.2 Classification
For the purpose of authentication, the recorded data samples
of each user need to be compared to stored samples of the
same subject and classified as matching or not. We compare
and discuss the applicability of two authentication model
approaches: 1) one-class classifiers (aka anomaly detectors),
which only require training data from the genuine user; and
2) two-class classifiers, which are trained on data from both
authentic and impostor users. For each category, we chose a
small set of representative approaches suited for our dataset
dimension, namely:

One-class classification. We implement a k-Nearest-
Neighbour (kNN) method to classify users based on
distance to training instances, and a one-class Support
Vector Machine (SVM).

Two-class classification. We chose a probabilistic Gaussian
Naïve Bayes (GNB) classifier, and the two most com-
mon linear algorithms, Logistic Regression, and linear
Support Vector Machines (SVM).

We refer the interested reader to related work for more
details on these models and their applications [28, 40].

5 Authentication

This section evaluates the performance obtained for the pro-
posed authentication tasks, comparing one-class vs two-class
classification algorithms, analysing feature relevance, and
contextualizing the results with regard to related work.

5.1 Evaluation Metrics
Several methods can be applied to evaluate classification sys-
tems. In the case of a binary problem, there are four pos-
sible classification results: 1) authenticate a legitimate user
(True Positive or TP), 2) authenticate an illegitimate user
(False Positive or FP), 3) deny an illegitimate user (True Neg-
ative or TN), and 4) deny a legitimate user (False Negative
or FN). Based on the frequency counts of these results, the
performance of the system is typically assessed by its False
Acceptance Rate (FAR), False Rejection Rate (FRR), and

Accuracy (ACC). The FAR compares the number of false
positives to the sum of false positives and true negatives, i.e.,
how often an impostor is authenticated as legitimate. In turn,
the FRR compares the number of false negatives to the sum
of true positives and false negatives, giving an idea of the
frequency at which the system rejects legitimate users. Fi-
nally, the ACC represents the number of correct predictions
over the total number of predictions made by the classifier.
These metrics, however, are tied to a specific configuration of
the classification threshold. Instead, we visualise results with
Receiver-Operating-Characteristic (ROC) curves, which plot
the FAR and True Positive Rate (=1-FRR) as a parametric
function of the threshold. We also report Equal Error Rates
(EER), as a summary metric that represents the point where
FAR and FRR are equal. This reporting scheme, as suggested
by Sugrim et al. [68], allows for a better understanding of
the operation capabilities of authentication methods, and how
they can be configured for different use-cases.

5.2 Results
We evaluated user authentication for the five defined tasks
using one-class and two-class classifiers. We remove users
with less than 5 samples from the datasets to have enough data
for training. The one-class SVM (with Radial Basis Function
kernel) and kNN (k=2) classifiers were trained on the sam-
ples of one single user6, considered the legitimate user, and
then tested with samples from both the legitimate user, which
should be recognised based on the learned model, and all
the other illegitimate users, which should be rejected as out-
liers. For two-class classification, we followed a one-vs.-all
approach [61]. According to this scheme, we built specialized
classifiers per user by assigning all the samples from this user
with the “authenticated” class label, and all the others with
the “rejected” label. We applied grid search to select the best
features (based on their statistical significance to classify the
authentic user) within a nested stratified 5-fold cross vali-
dation loop7. For every classification algorithm, we run the
evaluation process for all the users in each dataset and we
report the average EERs.

5.2.1 One-class vs Two-class Classifiers

The overall results are summarized in Table 2. As expected,
the performance with two-class learning is better than that
of one-class classifiers. Binary classifiers are usually more
powerful, since they characterise the legitimate user in con-
trast to others, whereas anomaly detectors can only check for
deviation from the legitimate user’s behaviour. In practice,
this means that a set of anonymous user’s data needs to be
pre-loaded in the application or device that offers brainwave
authentication. Then the classification model can be realized

6We used a split ratio of 0.6 to 0.4 for training and testing sets
75-folds in inner and outer loops



Equal Error Rate (%)
One-Class Two-Class

Task kNN SVM GNB LG SVM
P300:Selected 49 44 24.89 30.85 33.5
P300:Assigned 49 42 23.45 30.53 34.14
N400:Words 49 40 21.21 30.21 31.22
N400:Sentences 48 43 20.34 26.14 29.31
N400:Faces 47 40 14.5 30.21 32.76

Table 2: Average Equal Error Rate (EER) for five authentica-
tion tasks comparing one-class vs two-class classifiers.

by combining the data of genuine users. While this type of
implementation is feasible and has been proposed for other
behavioral biometrics [17, 70], further research is needed on
how to anonymize brainwave data.

5.2.2 ROC-based Performance of Authentication Tasks

Overall Performance. With regard to authentication tasks,
our results establish the N400 protocols as better authentica-
tion options than the P300 protocols, and the best performing
task is the N400:Faces, with an average EER of 14.5%. Fig. 3
shows the ROC curves for the best classifiers, illustrating the
operational range of the five authentication models. The area
under the curve (AUC) represents the probability that a ran-
dom illegitimate user is scored lower than a random genuine
user, i.e., how well the classifier can separate users. Look-
ing at these metrics, while the N400:Faces outperforms the
rest of the tasks in the tested conditions, all schemes show
potential for discerning users and could therefore be feasible
for brainwave-based authentication. However, there is a high
variability from the average ROC curves. In this regard, an
important factor to consider in the comparison is the different
number of samples and users per task. As it can be observed in
Fig. 3a, the N400:Words task has the highest number of sam-
ples (1730 for 51 users), which almost doubles those available
for the P300 tasks (911 and 910 for 52 users). In the case of
the remaining N400 protocols, the datasets are reduced to 33
users and 198 samples for the N400:Sentences and 44 users
and 406 samples for the N400:Faces. Accordingly, it can be
observed that protocols with less users perform better, which
can be related to a higher probability of having similar users
in the datasets or having more users for whom the acquisition
process failed to achieve brainwave data with good enough
quality. In the case of N400:Sentences, the performance can
be negatively impacted by the low number of samples per
user (6 on average), which leads to very few data for training,
testing, and validation.

Applicability. In real world authentication scenarios, sys-
tems do not operate at the EER, but at configuration points
were the FAR is lower than the FRR, to minimize the prob-
ability of impostors accessing the system. In general, most

biometric systems have a FRR ranging from being falsely
rejected one out of five times up to one for every thousand
times (i.e., 20% to 0.1%) [34]. The FAR is more critical for
security and usually ranges from 1%, for low security appli-
cations, to 0.00001% for very high security applications [18].
In this sense, our ROCs show that authentication based on
the N400:Face task can be configured for best accuracy at a
FAR of 1.8% and associated FRR equal to 46%. While the
FAR value is close to the needs of low-security application
scenarios, the FRR is unacceptably high. This same trend is
observed in the ROCs for the rest of the tasks. However, we
expect lower error rates in real implementations with person-
alized stimuli. We measure and report the FAR calculated by
directly comparing impostors’ ERP samples to the legitimate
user model. But if we consider the dynamics of the authen-
tication protocols, those ERPs should appear in response to
the target stimuli (e.g., unfamiliar faces within a series of
familiar ones). Checking this condition before accepting an
ERP will yield lower FARs, as it is highly unlikely that an
impostor reacts to the stimuli designed for the legitimate user.
Therefore, the obtained FAR is to be understood as a rough
upper bound.

5.2.3 Feature Relevance

In addition to classification performance, we analyzed the
importance of the features for classification to inform future
designs of brainwave authentication prototypes. Fig. 4 shows
a heatmap of selected features across the different user clas-
sifiers for the five authentication tasks. The most commonly
removed features are located in the α frequency band. This is
reasonable, since brainwaves in this band are the most domi-
nant rhythm and correlate with mental states of no attention,
being stronger when the eyes are closed [4]. They have been
proved useful in brainwave authentication based on relaxation
tasks [50], but are not applicable for the tasks proposed in
this paper. Instead, the β and γ waves are usually exhibited
in states of focused attention and active information process-
ing [1], which can be the reason why they are more relevant
for classification in our visual and semantic processing tasks.

5.2.4 Comparison with Related Work

Performance. Comparison with existing works on brain-
wave authentication is challenging due to the frequent under-
reporting of metrics (usually presented for an optimized con-
figuration without providing ROCs) and the differences in the
number and diversity of samples, algorithms, experimental
conditions, and other aspects that influence performance. Ac-
knowledging these difficulties, we first compare against sys-
tems8 using consumer-grade EEG readers that report EERs,
and then, to broaden the comparison, we contextualize our
results with regard to other relevant works in the literature.

8Excluding multi-modal and multi-factor authentication approaches



(a) Samples (b) ROC P300:Selected with GNB (c) ROC P300:Assigned with GNB

(d) ROC N400:Words with GNB (e) ROC N400:Sentences with GNB (f) ROC N400:Faces with GNB

Figure 3: Performance comparison of five authentication tasks using Gaussian Naïve Bayes (GNB). Fig. (a) shows the number
of samples per subject and task available for classification, using a minimum threshold of five samples per user. Figs. (b), (c), (d),
(e) and (f) depict the ROC curves for each authentication task.

Nakanishi et al. investigated various authentication
tasks [47, 49, 51–53], including resting (EER=11%, n=23),
driving (EER=22-24%, n=10-30), low intensity visual stimuli
(EER= 23%, n=20), and ultrasound stimulation (EER=26.2%,
n=10). In all cases, our N400:Faces protocol has better or
similar performance9. Furthermore, when compared to the
ultrasound and visual tasks, which are based on ERPs and
therefore closer to our proposal, we decrease the EER from
23%-26.2% to 14.5% for the N400:Faces task, which means a
relative error reduction of 37-44%. These results indicate that
visual tasks based on cognitive semantic processing are more
suitable for brainwave authentication than current ERP-based
proposals in the literature. The only other works reporting
lower EERs use multi-modal fusion [6, 52] (EER=4.4% and
EER=0%) or a second factor [2] (EER=0.89%) to comple-
ment brainwaves, which suggests these are viable paths to
further improve the applicability of our tasks.

Though not reporting EER, the study by Chuang et al. [20]
is specially relevant because they get high authentication ac-
curacy using a 1-electrode EEG reader. Their best performing
task is moving a finger, with FAR=4% and FRR=76% (n=15).

9We computed the variation of EER with the number of subjects for the
implemented tasks at points n={5,10,15,20,25,30,35} and use the closest
EER value when comparing with related works tested on a smaller sample.
Subjects were randomly selected and the EER averaged across 5 repetitions.

But applying customized thresholds per user, they move up
to a 0% FAR and FRR=9% using a mental singing task for
authentication. If we apply a simple threshold selection (max-
imizing TPR-FAR) to the N400:Faces protocol, our perfor-
mance also improves, achieving a point where FAR=8.5%
and FRR=10.4%. This is a good result for practical applicabil-
ity, considering that the FAR is already an upper bound (see
Section 5.2.2), and we expect even better performance with
more personalized thresholds and additional optimizations.

Looking at the literature using medical-grade EEG read-
ers, the work by Das et al. [21] is the closest to ours. They
use P300 ERPs for authentication, achieving EERs around
13% (n=50) with 17 sensors. We show that it is possible to
achieve comparable results with N400 potentials and a sim-
pler headset. There are also relevant studies demonstrating
the value of ERPs for biometric identification, such as CERE-
BRE [62], which provides 100% accuracy in identifying 52
users. Though not directly comparable, it provides interest-
ing insights on how to optimize classification through voting
schemes, which could be also applicable to improve perfor-
mance on the authentication case.

Participant Pool Size Considerations. The ISO-19795
[31] for biometric testing recommends 300 samples (as a
minimum lower bound) for 95% confidence on a FAR <=1%.
We targeted approximately this minimum size in our datasets,



following also the recommendation that the participant pool
should be as large as practicable. Our final pool size, 52 users,
is bigger than that used in previous works with consumer-
grade EEG readers, which implies more reliable results. Re-
sults on small datasets can be over-optimistic due to chance in
the selected participants, but statistical confidence increases
with more users and samples. We experimentally observed10

that as the participant pool size increases, the variance of
error estimates decreases. For example, when testing the
N400:Faces for 5 users, we got an average EER=9.23% and
standard deviation σ=7.7%, observing EERs as low as 2%.
But the error stabilizes as the number of participants grow,
getting to an average EER=14.38% and σ=0.72 at 40 subjects.
We therefore contribute to understanding the uniqueness of
brainwaves at a larger scale, with higher confidence. One of
the main open challenges that follows from here is scaling up
to bigger populations, given that the minimum sample size
recommended to test for a FAR of 1:100000 is 300000 sam-
ples. As a first step towards real prototypes, our results and
discussion show practicality and can help inform the design
of future authentication systems.

6 Usability

This section describes the user study conducted to evaluate
usability aspects, reporting quantitative and qualitative results.

6.1 User Study Design and Methods
Design. Each person taking part in the overall authentication
experiment was asked to fill out a usability questionnaire that
includes three categories of questions. First, we explore the
perceived usability of the five authentication tasks asking if
they are boring, require attention, and are appealing to re-
peatability on a daily basis. These questions are taken from
Chuang’s et al. work [20], though we ask for ratings on a
5-point Likert scale to allow for more granularity in the re-
sponses. Second, also on a 5-point Likert scale, we question
about device usability, considering two dimensions: ability
to set up the device and overall usage experience. Third, we
target acceptance. Inspired by the work of Payne et al. [57]
on the acceptance of tokens as authenticators, we include
two open-ended questions about potential problems (Q1) and
suggestions for improvement (Q2) of the brainwave authenti-
cation concept. Note that users do not evaluate a prototype but
the proposed authentication tasks and the perception of how
an hypothetical brainwave-based system built on these tasks
would work for them in daily life. The nature of the study
is therefore exploratory and oriented to inform prototype de-
sign, whose evaluation would require further testing.Thus,
we cannot use the Standard Usability Scale (SUS) [16] and
other well-established usability metrics (speed , error rate)

105 random selections of subjects for each participant pool size tested

applied in authentication research [22, 64], as they are only
appropriate for testing prototypes with (at least) moderate
functionality.

Analysis. Usability questions elicited responses on Likert
scales that we analyzed with the Friedman test for omnibus
comparisons. Post hoc analysis with Wilcoxon signed-rank
tests were conducted with a Bonferroni correction applied, to
determine which authentication tasks differed significantly.
As for the open-ended questions on user acceptance, we ana-
lyzed the responses following an iterative, inductive coding
approach [46]. One member of the research team read re-
sponses and created the codebook with thematic codes (see
Appendix 8), and a second researcher independently coded
the full set of data. The inter-coder reliability for the final
codes was satisfactory for both questions: excellent agree-
ment for Q1 (Cohen’s kappa=0.91) and substantial for Q2
(Cohen’s kappa=0.76). The cases where the coders differed
in their final codes were discussed and reconciled.

6.2 Results
All 56 subjects replied to the Likert-ranked questions about
the usability of authentication tasks and device. With regard
to the open-ended questions, 28 subjects named potential
problems, and 45 reported improvement suggestions for a
brainwave authentication system. Here we analyze these data,
providing representative user quotes when meaningful.

6.2.1 Perceived Usability

Usability of the Authentication Tasks. The graphs in Fig. 5
show participants’ answers about tasks’ usability. Answers to
“boring” and “required attention” were coded from Strongly
Agree (SA)=1 to Strongly Disagree (SD)=5, and answers to
“Repeatability”, from SD=1 to SA=5. Therefore, higher values
always indicate more positive evaluations.

Analyzing the responses regarding boredom, proto-
cols were rated differently (χ2(4)=108.864, p<.05). More
specifically, there were statistically significant differences
(p<.01) in all cases except between the P300:Assigned and
P300:Selected, and the N400:Sentences and N400:Faces. The
N400:Words protocol received the lowest grades with a me-
dian rating of 3 (µ=2.95, σ=1.21). With slightly better grades,
the P300:Selected (µ=3.46, σ=1) and P300:Assigned (µ=3.39,
σ=0.93), received a median of 3 and present no statistically
significant differences. At the other extreme, the N400:Faces
protocol (µ=3.78 , σ=0.99), and the N400:Sentences (µ=3.71
, σ=0.97), with the same median rating of 4 and no statisti-
cally significant difference, got the best evaluations. About
the latter, one of its positive aspects is that the sentences were
unexpected and sometimes funny, which makes the task more
engaging, as this participant put it in the open-ended answers:

“I like the idea with incongruent sentences. Gener-
ally, I think that it is important to include something



(a) Heatmap

(b) Channel names and
location for the Emotiv
EPOC+ headset

Figure 4: Fig. (a) shows the heatmap of selected features for the GNB classification algorithm across five brainwave authentication
tasks. Frequency features are calculated as the Power Spectrum of the user ERP signal in segments (S1-S5) of 200ms for the
α, β, and γ bands. The time features are 10 Autoregressive Coefficients of the ERP. Features are obtained at 14 measurement
channels, whose corresponding electrode positions in the scalp are depicted in Fig. (b). CMS/DRL are reference electrodes.

(a) Boring (b) Attention Required

(c) Repeatable on a daily basis (d) Enjoyability Ranking

Figure 5: Participant answers to the statements: (a) “The task was boring", (b) “The task required a lot of attention"; and (c) “I
could imagine to perform this task on a daily basis at a PC for authenticating", for the five implemented authentication tasks.
Sub-figure (d) shows how respondents ranked the tasks depending on enjoyability.

funny or encouraging to avoid boredom”. (P28)

When it comes to required attention, tasks were also rated
differently (χ2(4)=158.501, p<.05). Statistically significant
differences (p<.01) appear in all cases except between the
P300 protocols and the pair N400:Faces-N400:Words. The

protocols with lower grades are the P300:Assigned (µ=2.5,
σ=1.09) and the P300:Selected (µ=2.57, σ=1.13), both with a
median of 2 and no statistically significant differences. Partic-
ipants rated the attention demand of the N400:Sentences task
(µ=2.85, σ=1.03) slightly better, with a median of 3. But the



highest rates were assigned to N400:Faces (µ=3.73, σ=0.8)
and N400:Words (µ=3.77, σ=0.76), both with a median of 4
and no statistically significant differences.

The responses regarding envisioned daily usage show
differences too (χ2(4)=62.254, p<.05), but they exhibit a
smaller variance compared to the prior questions. In this case,
N400:Faces (µ=3.09, σ=1.27), with a median of 3, is the task
for which most subjects reported to “strongly agree” that they
would like to perform it on a day-to-day basis. In turn, the
N400:Words (µ=2.61, σ=1.3) got the worst evaluation, with
a median of 2. The rest of the authentication tasks fall in the
middle. Statistically significant differences (p<.01) appear in
all cases except between the P300 protocols, and between
P300 and N400:Sentences.

Finally, when we asked participants to rank the authentica-
tion tasks, the most enjoyable protocol was the N400 Faces,
chosen by 36% (20) of the respondents. At the other end of
the rank, the N400:Sentences task was selected as the least
enjoyable by 30% (17) of the participants. Overall, image-
based tasks are preferred over text-based ones, as it was also
recalled by several participants in the open-ended questions:

“Picture recognition is better than text recognition".
(P22)

Usability of the EEG Device. Most of the participants
(62.5%) think they will be able to put on the headset by them-
selves, while only a 21.5% (12) reported that they do not
imagine themselves completing the device setup. A plausible
reason for this 21.5% could be that the headset setup required
several minutes in some cases, where the hair density between
the electrodes and the skin was thick. Nevertheless, the ex-
perience using the headset was mostly rated positive, with
a 59% (33) of participants agreeing or strongly agreeing to
this perception and no reported strong disagreements. These
results indicate that authentication using the EPOC+ headset
could be accepted (positive experience) but the usability of
the device can still improve.

6.2.2 Attitudes towards Acceptance

Problems. Participants identified issues related to the brain-
waves (28%), the device (22%), and the overall authentication
system (50%). First, users reported concerns about the unique-
ness of brainwaves and their stability against e.g., emotional
influences due to stress or illness. They were also worried that
familiarization with the stimuli would result in weaker brain-
wave responses and lead to authentication errors. Besides, one
subject wondered if not being fully attentive, or as he/she put
it “having meandering thoughts", would affect authentication.
Second, the negative points about the device were the cost,
its design, and the complex setup process. Similarly, users
highlighted the technical problems, such as the imprecision
of the sensors. Third, participants criticized aspects of the
system as a whole, specially its performance (authentication

speed), usability, and the level of security and privacy pro-
vided. As illustrated by the following sample answers, users
are worried about the strength of this type of authentication
against attacks (even mind manipulation) and about the usage
of brainwaves to infer sensitive personal information.

“Skepticism of the user regarding data security and
other aspects which could be figured out about the
users, which the user does not want.". (P9)
“Changing of individual opinion due to presented
stimuli, e.g., in particular politicians". (P41)

In the usability category, the inclusiveness of the brainwave
authentication system was the most frequent topic. Partici-
pants remarked that using sentences as stimuli would not
work to authenticate children and that the system might not
be usable for people with different cognitive abilities.

Suggestions for improving. Participants reported ideas
that fall in three categories: device improvements (18%), pro-
tocol improvements (39%), and system improvements (42%).
Regarding the device, users pointed to different designs that
blend more naturally with everyday life, such as integrating
EEG readers within headphones or hats. Another frequent
comment was the need to reduce the number of electrodes
and make the device simpler and easy to handle. Regarding
the improvement of protocols, subjects expressed a preference
for visual stimuli vs textual stimuli and call for authentica-
tion tasks that are enjoyable or “cool”. As alternative tasks,
for example, two participants mentioned that they “would
be interested in authentication using music or tones". In the
last category of suggestions, targeting the overall system, per-
formance was the most frequent concern. Users suggest to

“Keep the authentication process as short as possible”, because
otherwise “one sees the repeated, three second long typing
of a password as less annoying than performing one of these
[brainwave authentication] tasks as a whole”. The effort, as
stated by one of the respondents “needs to be adapted to the
required security level”.

7 Discussion

Here we report lessons learned when designing protocols for
brainwave authentication, report security considerations, and
discuss practical implementation aspects and limitations.

7.1 Protocol Design
Design Effort. We argued in Section 5 that one potential
reason influencing the performance and comparability of
the authentication protocols was the different available num-
ber of samples for training the models, which, in our study,
was affected by the protocol design effort. The number of
epochs usable for classification is limited by the total num-
ber of target stimuli, i.e., those that generate an ERP, pre-
sented during the experiment. As summarized in Table 3,
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Avg. timea between target stimuli (s) 6 6 4.15b 14 6
# Target stimuli per round 6 6 13 6 10
# Protocol rounds 3 3 3 1 1

Table 3: Design aspects of brainwave acquisition protocols
a Rounded
b Plus the duration of the preceding priming video (24s in our experiment)

both the N400:Sentences and N400:Faces have less total stim-
uli in comparison to their counterparts. There are two rea-
sons for this: highest elicitation effort (more time required
for stimuli presentation) and low stimuli reusability. While
it is rather quick to present new stimuli in the N400:Words,
N400:Faces, and P300 protocols, that was not possible in
the N400:Sentences. In this case, the subjects first had to be
primed on the congruent form of a sentence and then later on
shown the incongruent version to obtain the desired ERP in
response. This process takes about 14 seconds per sentence in
total, which results in a smaller number of stimuli per minute.
Furthermore, the incongruent sentences need to be altered
each time, otherwise they would not appear incongruent to
the users anymore after a small number of iterations. Sim-
ilarly, the N400:Faces also suffers from this effect, i.e., an
unknown face would not lead to the same reaction if it was
shown repeatedly. Because of the lack of stimuli reusability,
we limited the execution of these protocols to just one round
in our experimental setting, with the consequential decrease in
the number of samples. In the N400:Words protocol, a video
and the associated words can be used several times, since only
the interaction between the words and the video are impor-
tant. But the best design case is that of the P300 protocols.
Here, the stimuli can be endlessly reused because the brain
reaction responds to an infrequent event, the oddball, but it
is not related to the semantic processing and so unaltered by
stimulus familiarity.

Overall Protocol Comparison. We provide a comparative
summary of the analyzed protocols to inform the design of
future brainwave authentication systems (see Table 4).

Considering classification performance, the N400:Faces
task is the best option. This performance, combined with
the highest usability scores of all tested tasks, makes it a
suitable candidate for real-world implementations. The main
negative aspect is the complexity of the protocol design. Thus,
research towards facilitating this design process is desirable.
The second best option in terms of accuracy are the remaining
N400 protocols. In this group, the N400:Words shows better
potential for applicability, given its higher usability results

Criteria
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Accuracy - - - - - - + +

Boredom + + - + + + +
Required level of attention - - - - + + - + +
Daily Usage - - - - - +
Enjoyability + - + - - + +

Elicitation effort + + + + + - - - -
Stimulus reusability + + + + + - - - -

Table 4: Overall comparison of authentication protocols

on enjoyability and required attention, as well as the lower
design effort with respect to the N400:Sentences. The P300
category of protocols showed the worst accuracy. In this case,
usability improves when users select their own secret image.
This preference on active selection was also observed by
Chuang et al. [20] in protocols where users either had to
chose or were imposed a mental task for authentication. The
most positive of P300 protocols is that they are the easiest to
implement.

In summary, N400:Faces was the most accurate task and the
best ranked by users, outperforming the rest of the protocols in
all dimensions. Nevertheless, performance needs to be further
improved for its application in real scenarios.

7.2 Security

In this paper we covered a zero effort attacker model, but,
like in other biometric methods, adversaries can also attack
brainwave authentication by compromising different parts of
the system [8]. The most applicable attack vector that tar-
gets specific users is arguably the replay attack, where the
adversary injects a previously recorded sample of the bio-
metric. Furthermore, with the current advance of machine
learning techniques, it is also possible to generate fake brain-
wave data using Generative Adversarial Networks [59]. In
this regard, if the authentication stimuli vary for each authen-
tication attempt (order, type), the elicited brain responses will
vary accordingly, but still provide the required user-specific
features. This type of challenge-response protocol, implies
that the attacker should be able to output results interactively
in real-time, as the stimuli are not known in advance, which
makes the attack harder to implement. Furthermore, an at-
tacker observing a user while authenticating learns nothing
about the brainwaves. Mimicry attacks, which are feasible for
other biometrics (voice, gait), are not applicable because the
adversary can not imitate non-volitional user responses.



The acquisition of EEG signals also raises privacy issues
because brainwaves correlate e.g., with our mental states, cog-
nitive abilities, and medical conditions [69]. An adversary
that controls the authentication stimuli, such as an honest-
but-curious authentication provider, could manipulate them
to infer private data. Martinovic et al. [44] demonstrated the
feasibility of this type of attacks. They successfully proved
that, by manipulating visual stimuli, EEG signals could re-
veal users’ private information about their bank cards, PIN
numbers, area of living, and if they knew a particular person.
Frank et al. [27] go even further, showing that it is possible
to extract private data from EEG recordings using subliminal
stimuli (short duration images embedded in visual content)
that cannot even be consciously detected by users.

With the potential wide adoption of BCI applications in our
everyday lives, security and privacy concerns are rising [9,13].
Our user study and other previous research [45] show that
users are concerned about ‘mind reading’, but some people are
already giving their brainwaves to third parties that offer brain-
controlled games or relaxation applications. It is therefore
paramount to research the security and privacy implications
of using brainwaves in computer systems and work to design
appropriate countermeasures before mainstream adoption.

7.3 Practical Implementation Aspects
Time to authenticate. A prototype implementation based on
the N400:Faces brainwave authentication algorithm would
require an initial enrollment phase. This means approximately
1 minute of brain data recording while the user looks at im-
ages in their PC. This phase could be extended to collect a
higher amount of samples for training the system and broken
into several shorter sessions for user convenience. It would
be useful to implement a sample quality detector to adapt the
duration of the enrollment process, similar to how fingerprint
systems ask the user to place the finger in different angles
until enough data is gathered for successful operation. Next,
the authentication phase would require a minimum of 6 sec-
onds to authenticate the user, though this time will vary due
to the FRR. Fallback mechanisms should be implemented in
case the authentication does not succeed in a reasonable time.
Based on previous empirical research [75], the average time
to authenticate with 8-character random passwords is around
7.5 seconds (12.8-13.2 seconds in tablet/smartphones [75]).
Therefore, brainwave authentication is better in a best-case
execution. But even if it takes longer, it has to be considered
that usability perceptions can deviate from objective perfor-
mance measures. For example, research shows evidence that
graphical authentication schemes are perceived as more joy-
ful than passwords even if the login time may exceed that of
passwords [42,76]. In this sense, the N400:Faces is promising
given the positive ratings on enjoyability obtained in the user

study.
Extended Comparison. We use the framework of Bon-

neau et al. [14] to compare brainwave authentication against
passwords (the most common solution) and fingerprint (the
most used biometric). Table 5 summarizes this comparison ac-
cording to the 25 criteria provided by the framework, grouped
in usability, deployability, and security benefits. It can be seen
that brainwave authentication provides better usability than
passwords, and it could be comparable to that of fingerprints
when FRR improves. On the security criteria, brainwaves
bring additional benefits because they are not observable
and can not be mimicked. Targeted impersonation attacks
with synthetic or replayed data can be countered using the
challenge(stimulus)-response nature of the brainwave authen-
tication protocol. This allows the system to check response
freshness and whether reactions correspond to stimuli that are
meaningful for the legitimate user. Furthermore, as the adver-
sary would need to interact with a legitimate authentication
provider to obtain those per-user stimuli, we get resilience
to phishing. The main security challenge is to reduce the
FAR. Besides, brainwaves have the worst deployability ac-
cording to the framework criteria, though these criteria focus
on applicability to web authentication. Aspects like browser
compatibility could be addressed by implementing brainwave
authentication as part of the FIDO/WebAuthn protocols [77],
currently supported in modern browsers. Additionally, there
are other domains and use-cases outside the web realm where
brainwaves could become practical.

Use-cases. The proposed brainwave authentication system
was initially conceptualized for accessing PC applications,
but the visual stimuli can be easily adapted to other devices
and scenarios. Furthermore, once authenticated with the brain-
wave protocol, the user continues to have measurable brain
activity, which can be leveraged for continuous authentica-
tion while wearing the headset. Brainwaves can be practical
when users already wear an EEG reader for another applica-
tion and a keyboard is inconvenient/unavailable. For example,
authentication in Virtual Reality (VR) applications is still
challenging as passwords are clearly unpractical. But modern
VR headsets are introducing EEG sensors, making them a
perfect scenario to apply our mechanisms. Additionally, with
the ongoing miniaturization and integration of EEG sensors
in devices that people commonly use (e.g., earbuds), having
to carry them can be less problematic . Moreover, brainwaves
could be augmented with other sensors that collect implicit
biometrics (e.g., eye gaze) to improve authentication accuracy
and, therefore, increase security.

7.4 Limitations

We acquired brainwaves in a lab environment and during a
single recording session but we do not evaluate reliability and
robustness with regard to noise or changing conditions. Nev-
ertheless, based on previous research, we expect our system
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Passwords • • • ◦ • • • • • • • ◦ • • • •
Fingerprint • • • ◦ • • • ◦ • ◦ • • •
Brainwaves • • • • ◦ • ◦ • • • • • • • • •

Table 5: Comparison of N400:Faces brainwave authentication against passwords and fingerprint using the framework by Bonneau
et al. [14]. We use “•” to indicate that the scheme provides the benefit; and “◦”to denote that the benefit is somewhat provided.

to be robust as ERPs are less sensitive to background noise
than continuous EEGs and, even if latency/amplitude might
vary with external factors like stress, tiredness, etc. [19], ERPs
reflect morphological components (e.g., skull thickness) that
are more stable [5, 63]. Additional experiments in real-life
conditions should be conducted to validate this hypothesis. In
our experiments, we observed a high variability in the perfor-
mance of different brainwave authentication tasks. We specu-
late that the number and quality of registered samples impacts
the results, but further research is required to understand the
factors inducing this variability and how to reduce their effect.
It would be also valuable to investigate the scalability of the
results to even larger populations.

With regard to usability, our user study is based on a
sample of the population that includes generally young and
technically-savvy users Bigger and diverse sets of users would
yield a more comprehensive picture of the usability issues in
brainwave authentication systems. We described the system
to our participants embedding it in a realistic use case: we
told them that they would have to watch one task out of the set
of tasks in the experiment once a day, and this would replace
the need to type passwords for their applications. With this
description, a perfect implementation is assumed. The main
methodological limitation is that we rely on self-reported
qualitative feedback about intended future behavior based
on participants perception of the described system, which
might not accurately reflect reality [39]. With these charac-
teristics, our goal is to describe problems that could hinder
the adoption of brainwave-based authentication to consider
when designing actual prototypes or experiments, but we do
not claim any generalizable findings. Nonetheless, to achieve
ecological validity, we need to test and evaluate the actual
usability of authentication prototypes in real scenarios.

8 Conclusion

We contribute to the literature on behavioral biometrics with
the first comparative study on the usability and performance
of brainwave authentication protocols based on endogenous
Event Related Potentials using consumer-grade EEG readers.
Our results show the feasibility of authentication by recording
brain activity while users look to short sequences of visual
stimuli (images or words). With regard to perceived usabil-
ity, users are positive about this type of systems but call for
simpler headsets and fast authentication times. Considering
participants feedback, we highlight the need to conduct ex-
tensive privacy research before brainwave-based applications
become mainstream. When contextualizing our results, we
found out that comparability with other works is hampered
by differences in experimental conditions and performance
reporting schemes, but also because the sample sizes used in
the literature are very small (the majority≤10 ). We therefore
contribute our dataset to improve the availability of samples
and provide a source for common benchmarking. To bridge
the comparability gap, the authentication community should
strive to establish a consistent approach for communicating
performance metrics.
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Appendix: Open Data

The anonymized dataset and experiment material (script, ques-
tionnaire, codebooks) are available at https://git.scc.
kit.edu/kr2925/brainwave-authentication.

https://git.scc.kit.edu/kr2925/brainwave-authentication
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