PatchGuard: A Provably Robust Defense against Adversarial Patches via Small Receptive Fields and Masking

Chong Xiang⁺, Arjun Nitin Bhagoji[‡], Vikash Sehwag⁺, Prateek Mittal⁺ [†]Princeton University [‡]University of Chicago *USENIX Security Symposium 2021*

PatchGuard: A Provably Robust Defense against <u>Adversarial</u> <u>Patches</u> via Small Receptive Fields and Masking

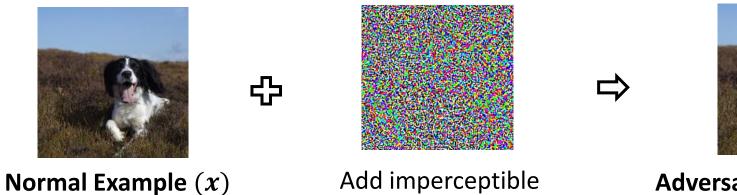
Chong Xiang⁺, Arjun Nitin Bhagoji[‡], Vikash Sehwag⁺, Prateek Mittal⁺ [†]Princeton University [‡]University of Chicago *USENIX Security Symposium 2021*

PatchGuard: A Provably Robust Defense against Adversarial

Patches via Small Receptive Fields and Masking

Chong Xiang[†], Arjun Nitin Bhagoji[‡], Vikash Sehwag[†], Prateek Mittal[†] [†]Princeton University [‡]University of Chicago *USENIX Security Symposium 2021*

Adversarial Example Attacks: Small Perturbations for Test-Time Model Misclassification



Adversarial Example $(x + \delta)$ Cat (y')

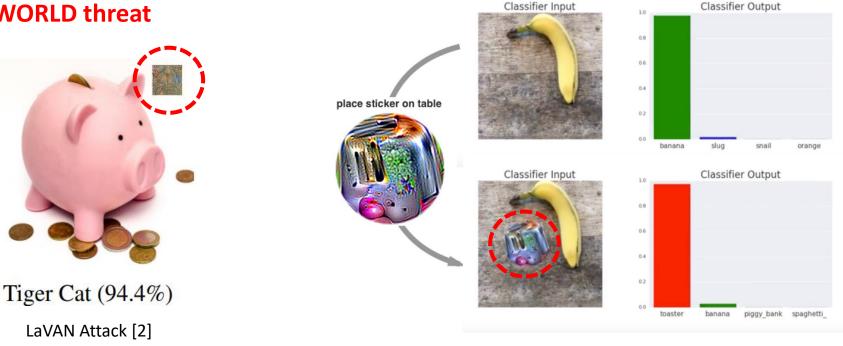
Dog (y) perturbations δ max $L(M(r + \delta))$

 $\max_{\delta} L(M(x + \delta), y)$ L(·)- Loss function; $M(\cdot)$ - Model

A threat to ML models! Challenge: Requires global perturbations

Our Focus: Localized Adversarial Patch Attacks

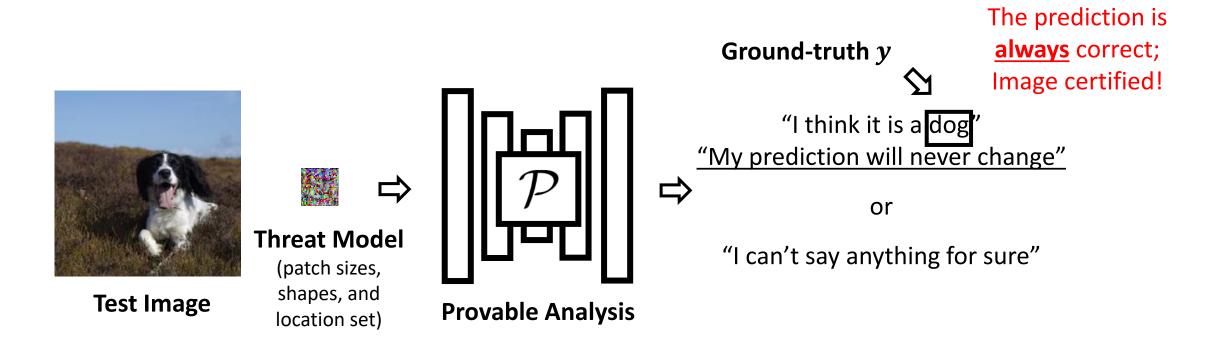
- 1. All perturbations within one local region (patch)
- 2. Patch pixels can take arbitrary values
- 3. Realizable in the physical world print and attach the patch!
 - A REAL-WORLD threat



Adversarial Patch [1]

- 4. Patch can be *anywhere* on the image
- 5. Patch size should be reasonable (shouldn't block the entire salient object)

Defense Objective: Provable Robustness on Certified Test Images

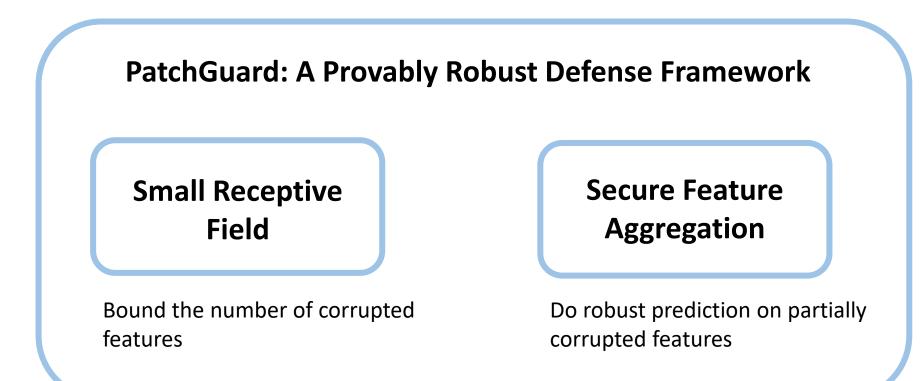


Provable robust accuracy / certified accuracy: the fraction of test images that are

- 1. Correctly classified
- 2. <u>Provably robust</u> to any (adaptive) localized patch attack within the threat model

Our Contribution: PatchGuard Defense Framework with Provable Robustness

PatchGuard aims to prevent the localized patch from dominating the global prediction

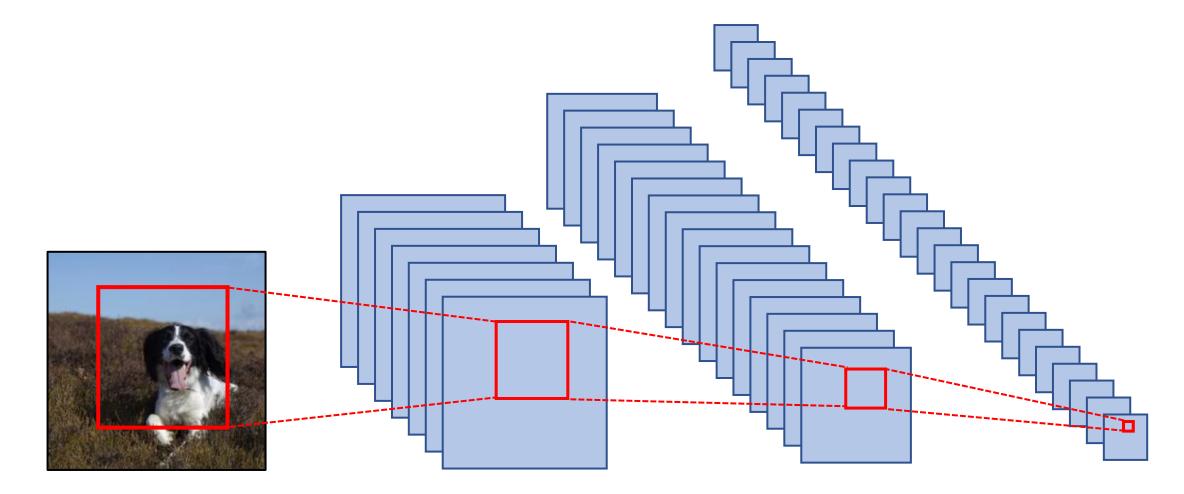


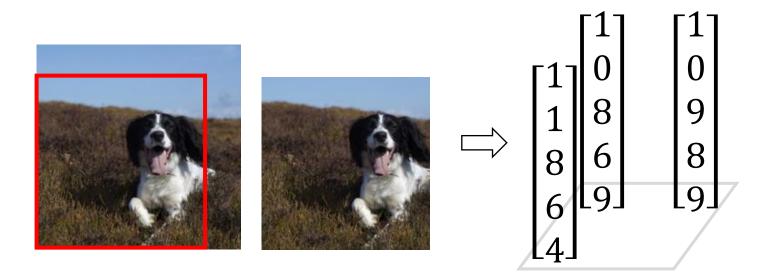
Tiger Cat (94.4%)

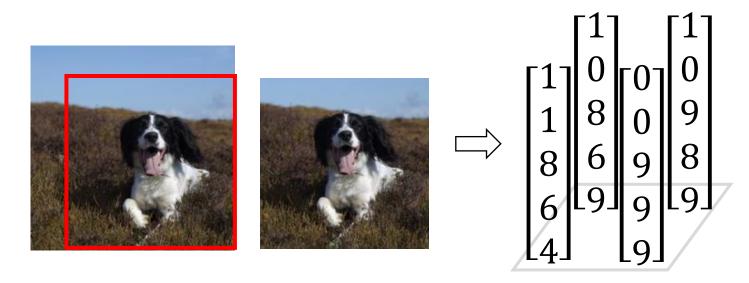
Our Contribution: PatchGuard Defense Framework with Provable Robustness

PatchGuard aims to prevent the localized patch from dominating the global prediction

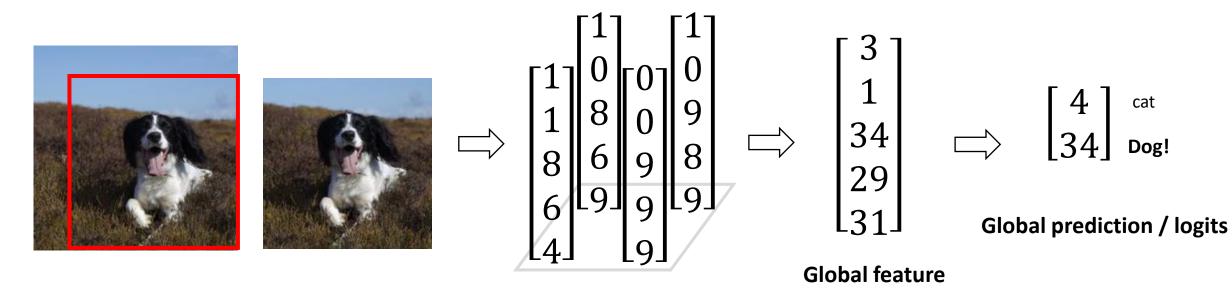
Tiger Cat (94.4%)



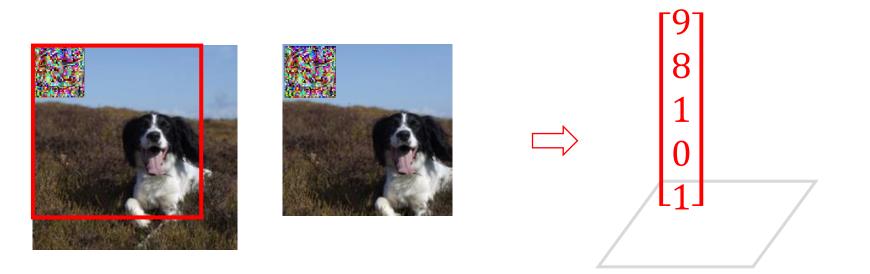




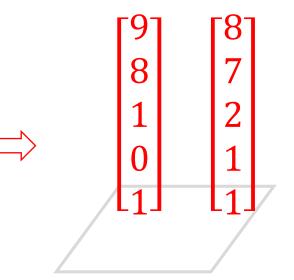
Aggregate Local Features for Global Prediction



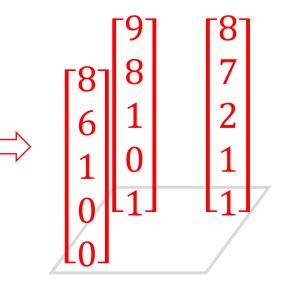
Example 1: CNN with *large* receptive fields (e.g., ResNet with 483×483 px)



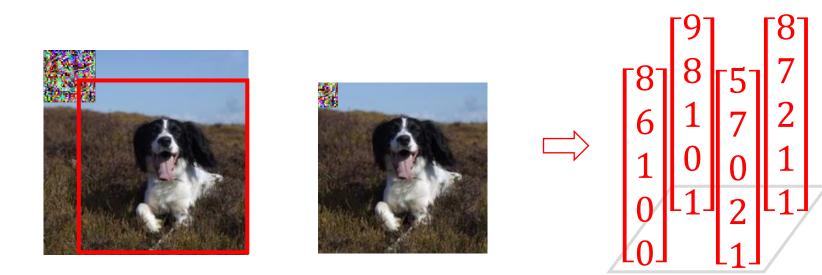
Example 1: CNN with *large* receptive fields (e.g., ResNet with 483×483 px)



Example 1: CNN with *large* receptive fields (e.g., ResNet with 483×483 px)

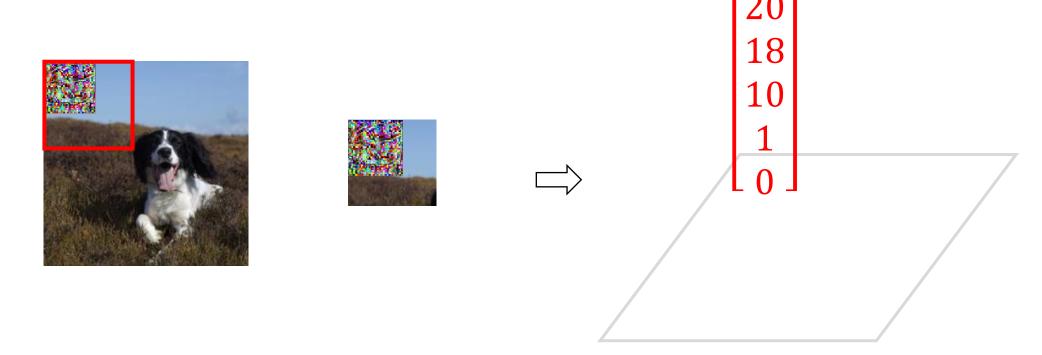


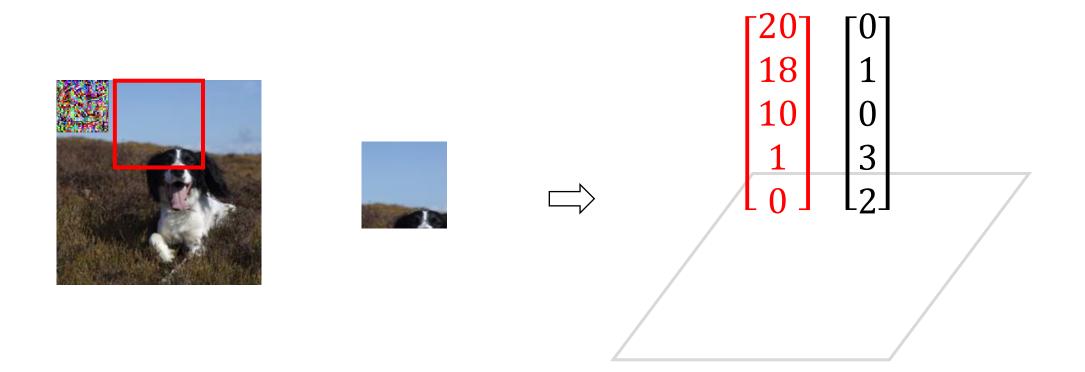
Example 1: CNN with *large* receptive fields (e.g., ResNet with 483×483 px)

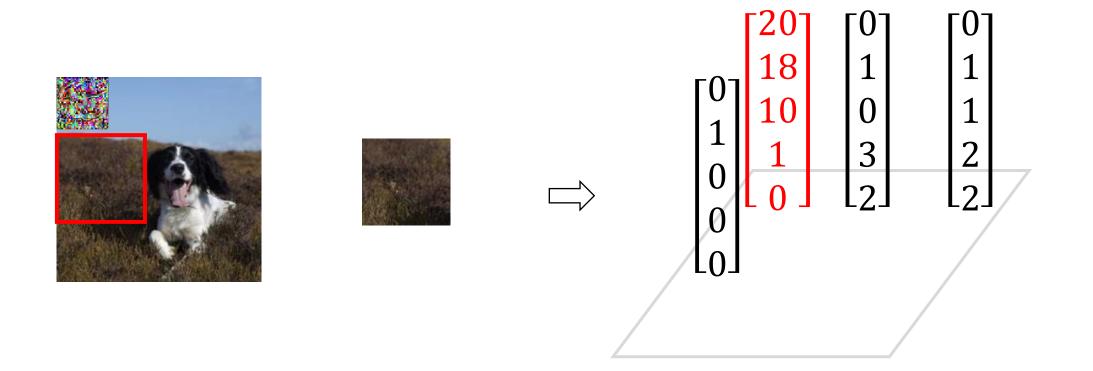


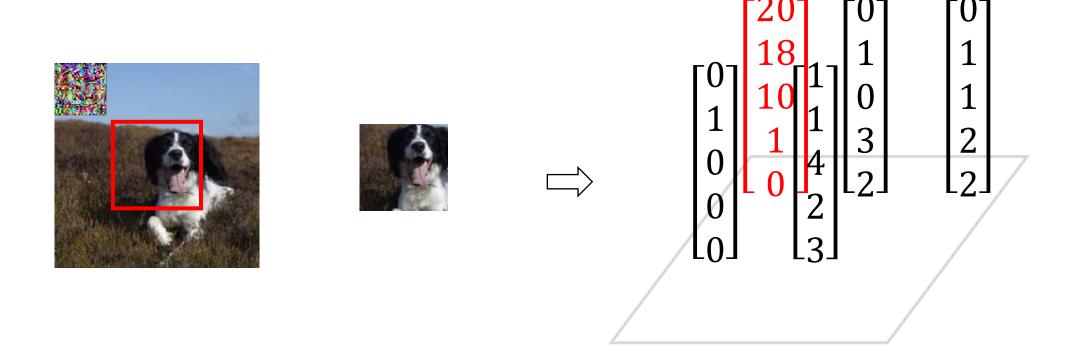
Local feature map

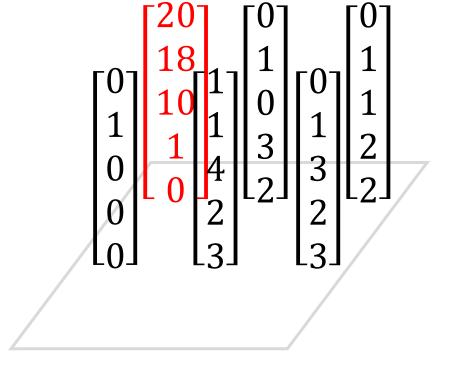
Note: *all* feature corrupted! Little hope for us to do a robust prediction

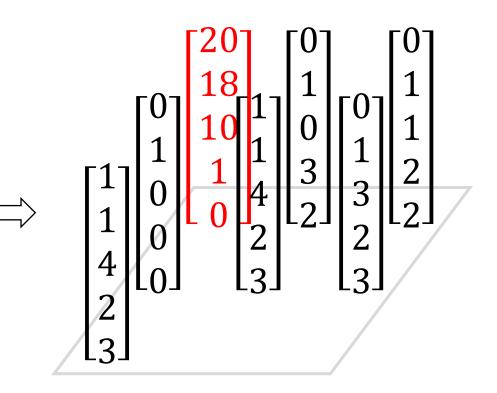


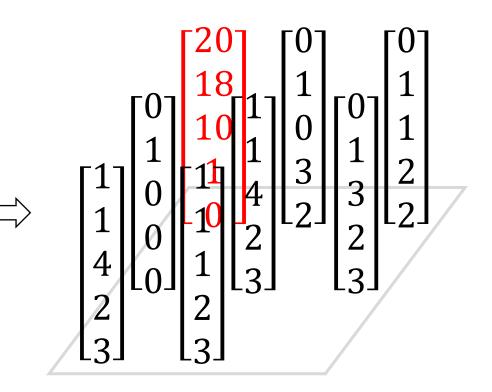




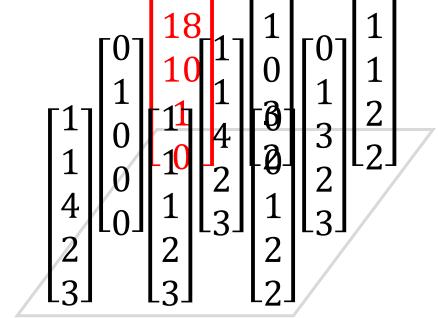








Example 2: CNN with *small* receptive fields (e.g., BagNet with 17×17 px)



Note: *only one* feature corrupted! A major step towards robust prediction!

Number of corrupted features k (along one axis) satisfies:

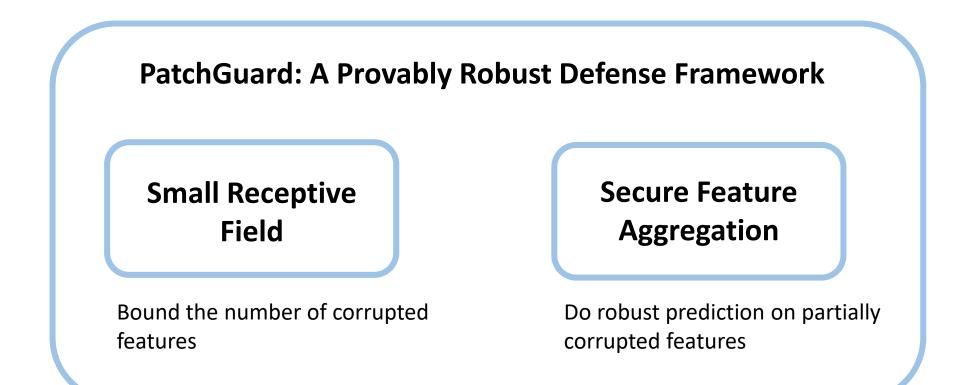
$$k = \frac{p+r-1}{s}$$

p patch size; r receptive field size; s receptive field stride (more details are in the paper)

A smaller receptive field gives fewer corrupted features!

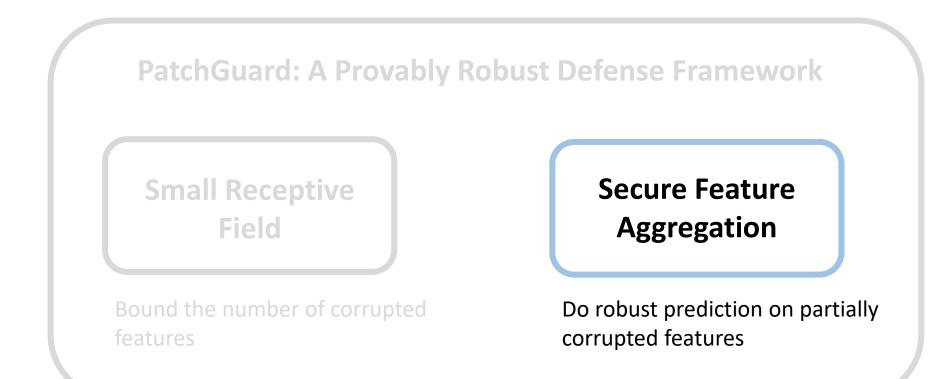
Our Contribution: PatchGuard Defense Framework with Provable Robustness

PatchGuard aims to prevent the localized patch from dominating the global prediction



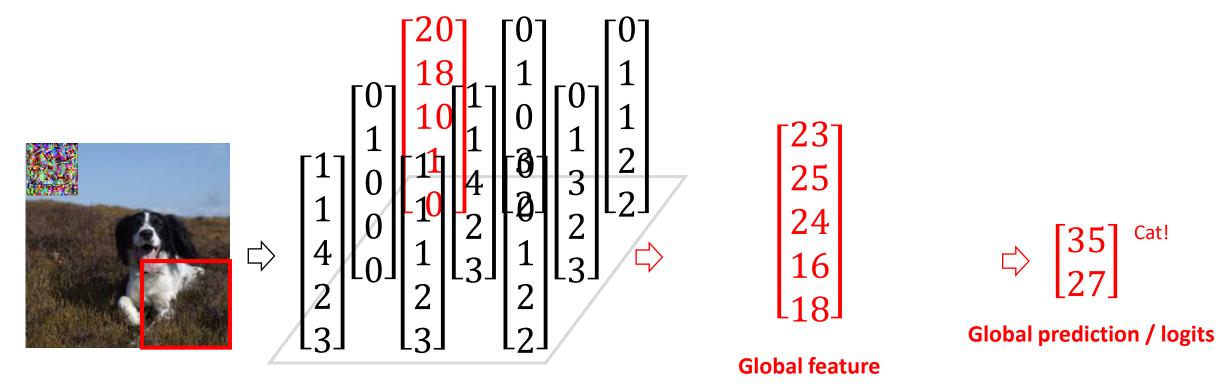
Our Contribution: PatchGuard Defense Framework with Provable Robustness

PatchGuard aims to prevent the localized patch from dominating the global prediction



Vulnerability of Insecure Feature Aggregation

Extremely large malicious values dominate the insecure feature aggregation and global prediction

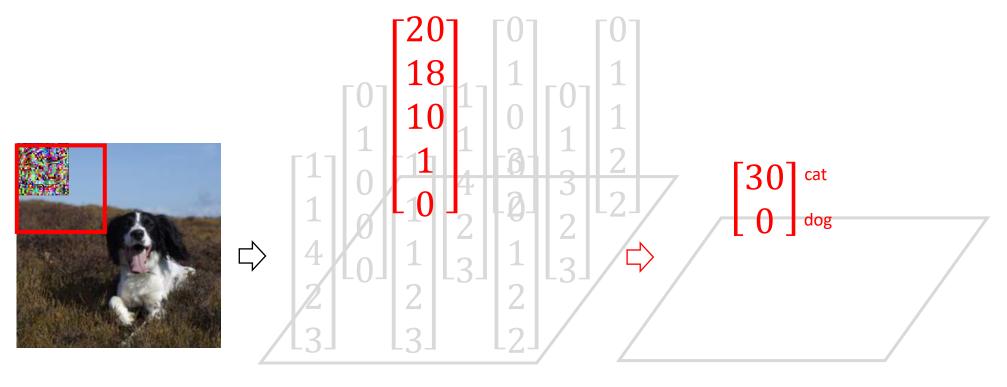


Local feature map

Secure feature aggregation to limit the adversarial effect!

• Robust masking to detect and remove large values

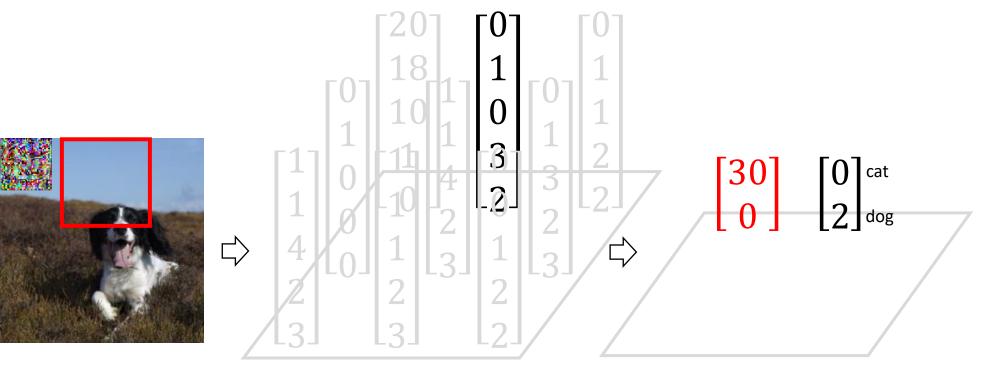
Local logits: making local prediction based on the local feature



Local feature map

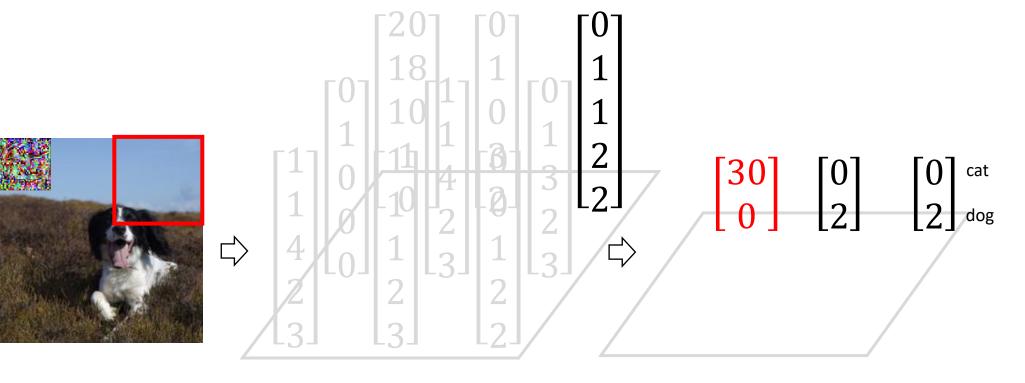
Local prediction / logits map

Local logits: making local prediction based on the local feature



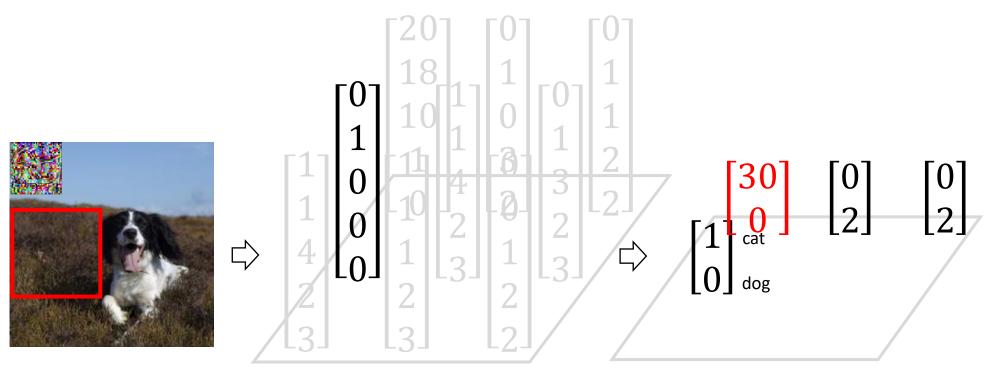
Local prediction / logits map

Local logits: making local prediction based on the local feature



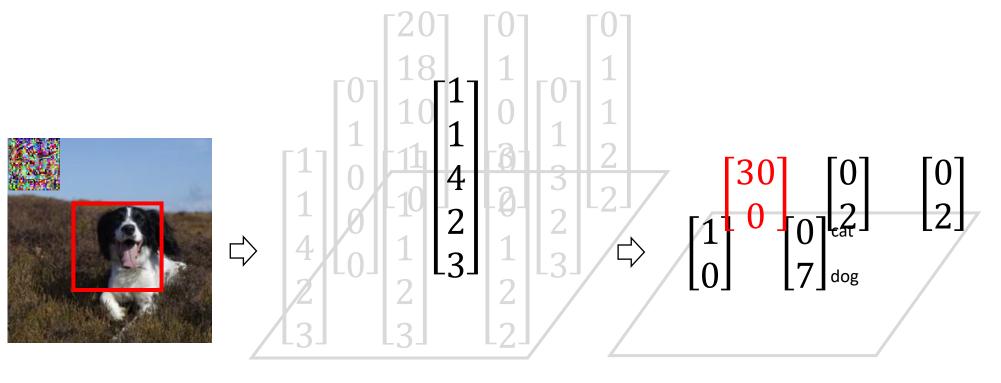
Local prediction / logits map

Local logits: making local prediction based on the local feature



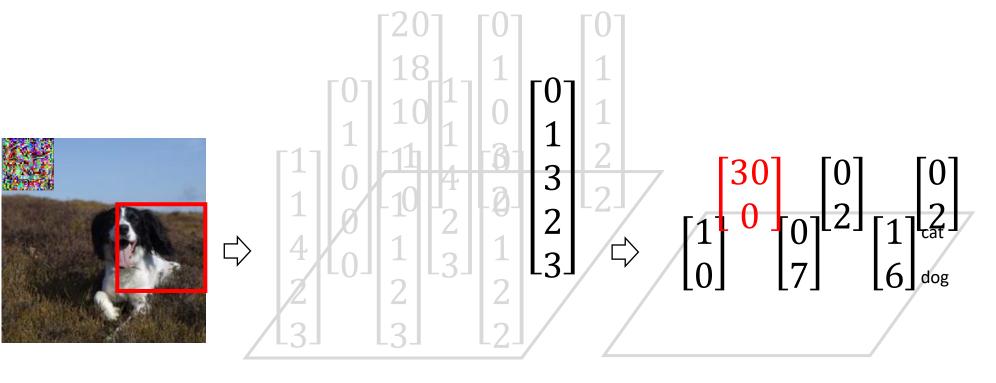
Local prediction / logits map

Local logits: making local prediction based on the local feature



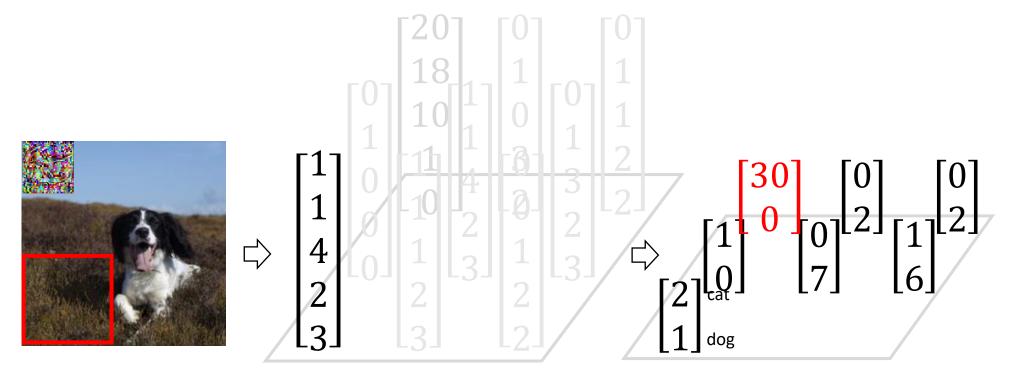
Local prediction / logits map

Local logits: making local prediction based on the local feature



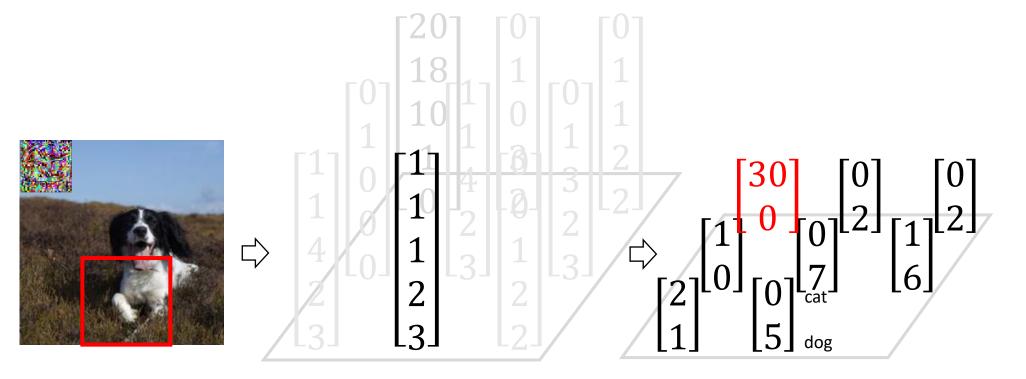
Local prediction / logits map

Local logits: making local prediction based on the local feature



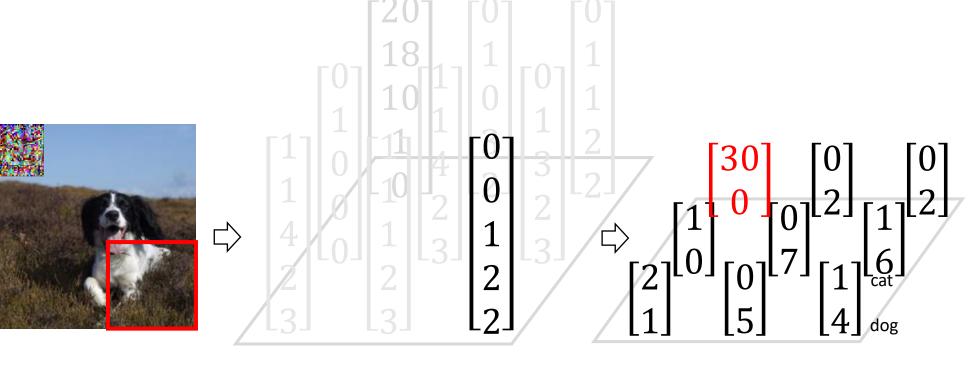
Local prediction / logits map

Local logits: making local prediction based on the local feature



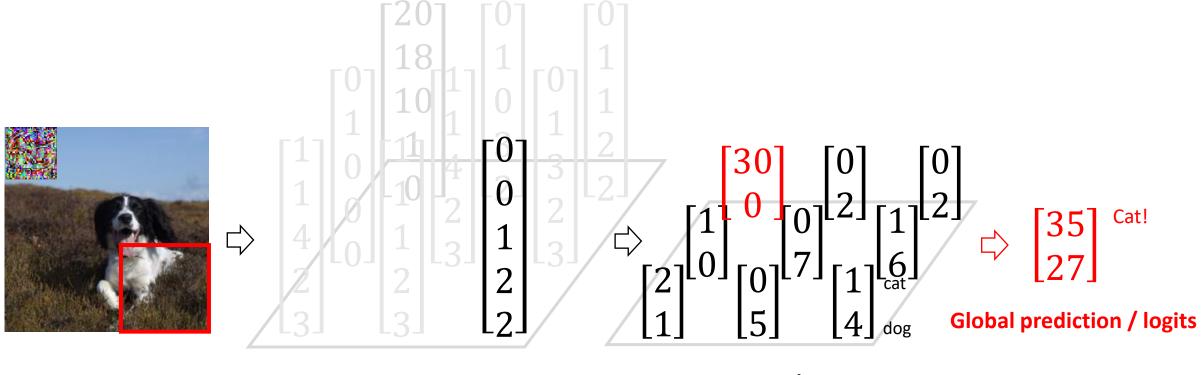
Local prediction / logits map

Local logits: making local prediction based on the local feature



Local prediction / logits map

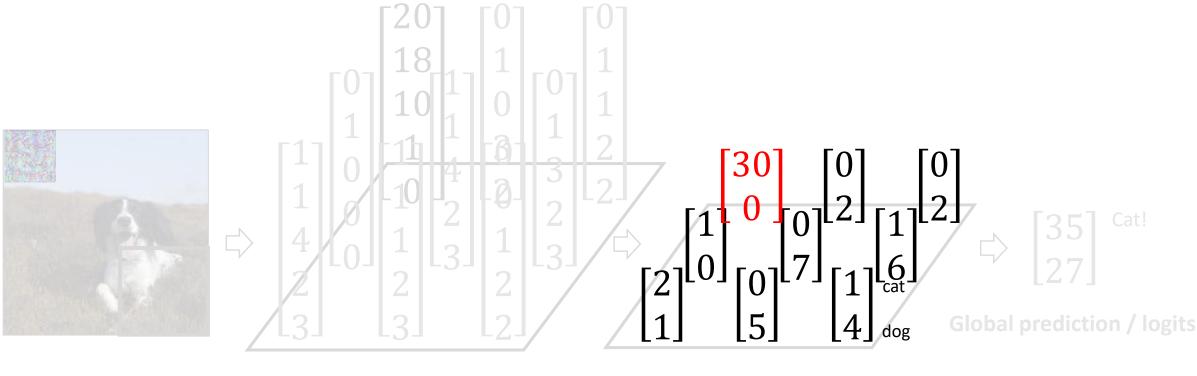
Aggregating local logits gives the same global logits prediction



Local feature map

Local prediction / logits map

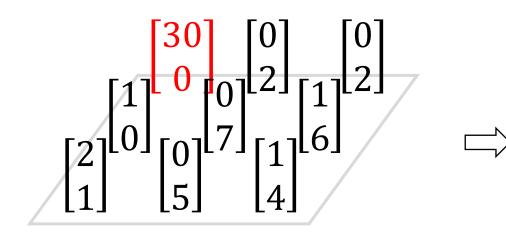
Aggregating local logits gives the same global logits prediction



Local feature map

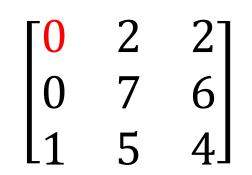
Local prediction / logits map

A Better Visualization: Local Logits Map Slice



 $\begin{bmatrix} 30 & 0 & 0 \\ 1 & 0 & 1 \\ 2 & 0 & 1 \end{bmatrix}$

local logits map slice for cat Cat: 35



local logits map slice for dog Dog: 27

- One local logits map slice for one class
- Class evidence: elements of each slice

Robust Masking: Algorithm

 $\begin{bmatrix}
 30 & 0 & 0 \\
 1 & 0 & 1 \\
 2 & 0 & 1
\end{bmatrix}$ local logits map slice for cat Cat: 35 local logits map slice for dog

Dog: 27

Robust Masking:

- 1. Clip all negative values to zeros
- 2. Move a <u>sliding window</u> over each local logits slice $(1 \times 1 \text{ window here})$
- 3. Calculate class evidence <u>sum</u> within each window
- 4. Mask the window with the highest sum

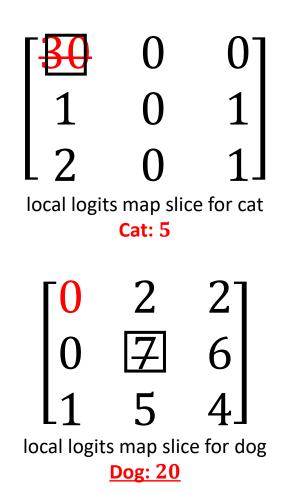
Robust Masking: Prediction in the Adversarial Setting

 $\begin{bmatrix}
 30 & 0 & 0 \\
 1 & 0 & 1 \\
 2 & 0 & 1
\end{bmatrix}$ local logits map slice for cat **Cat: 35** $\begin{bmatrix}
 0 & 2 & 2 \\
 0 & 7 & 6 \\
 1 & 5 & 4
\end{bmatrix}$ local logits map slice for dog

Robust Masking:

- 1. Clip all negative values to zeros
- 2. Move a <u>sliding window</u> over each local logits slice $(1 \times 1 \text{ window here})$
- 3. Calculate class evidence <u>sum</u> within each window
- 4. Mask the window with the highest sum

Robust Masking: Prediction in the Adversarial Setting

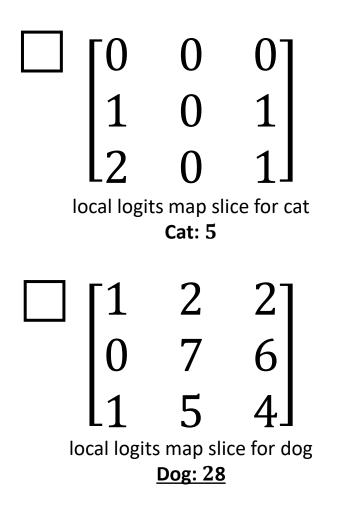


Robust Masking:

- 1. Clip all negative values to zeros
- 2. Move a <u>sliding window</u> over each local logits slice $(1 \times 1 \text{ window here})$
- 3. Calculate class evidence <u>sum</u> within each window
- 4. Mask the window with the highest sum

The prediction in the adversarial setting is <u>subject to partial feature</u> <u>masking</u>

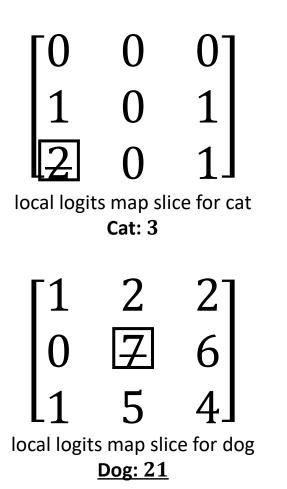
Robust Masking: Prediction in the Clean Setting



Robust Masking:

- 1. Clip all negative values to zeros
- 2. Move a <u>sliding window</u> over each local logits slice $(1 \times 1 \text{ window here})$
- 3. Calculate class evidence <u>sum</u> within each window
- 4. Mask the window with the highest sum

Robust Masking: Prediction in the Clean Setting



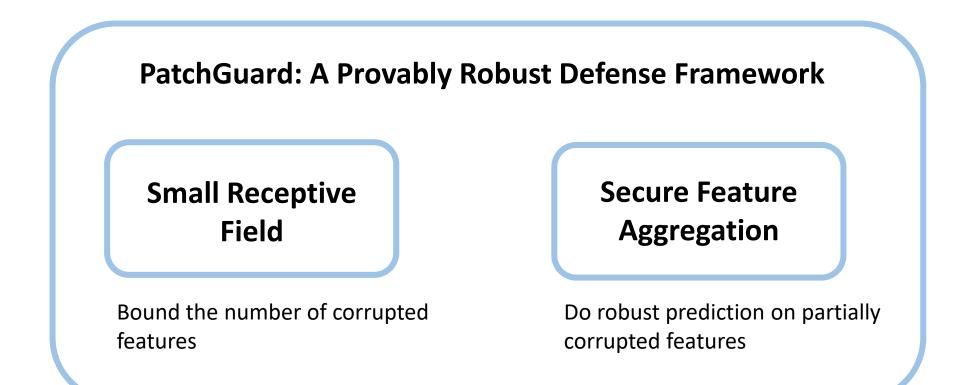
Robust Masking:

- 1. Clip all negative values to zeros
- 2. Move a <u>sliding window</u> over each local logits slice $(1 \times 1 \text{ window here})$
- 3. Calculate class evidence <u>sum</u> within each window
- 4. Mask the window with the <u>highest</u> sum

The prediction in the clean setting is generally <u>invariant to partial feature</u> <u>masking</u>

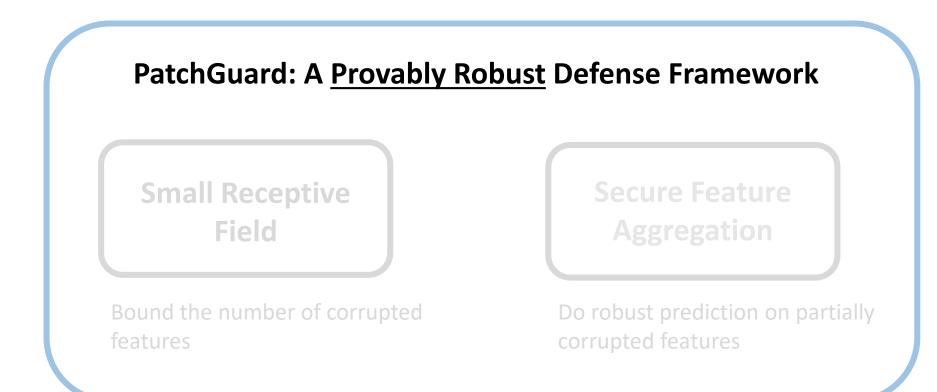
Our Contribution: PatchGuard Defense Framework with Provable Robustness

PatchGuard aims to prevent the localized patch from dominating the global prediction

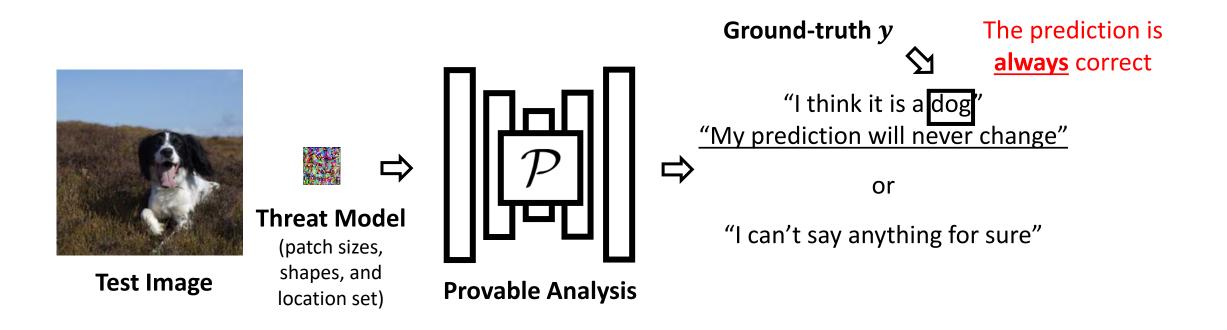


Our Contribution: PatchGuard Defense Framework with Provable Robustness

PatchGuard aims to prevent the localized patch from dominating the global prediction



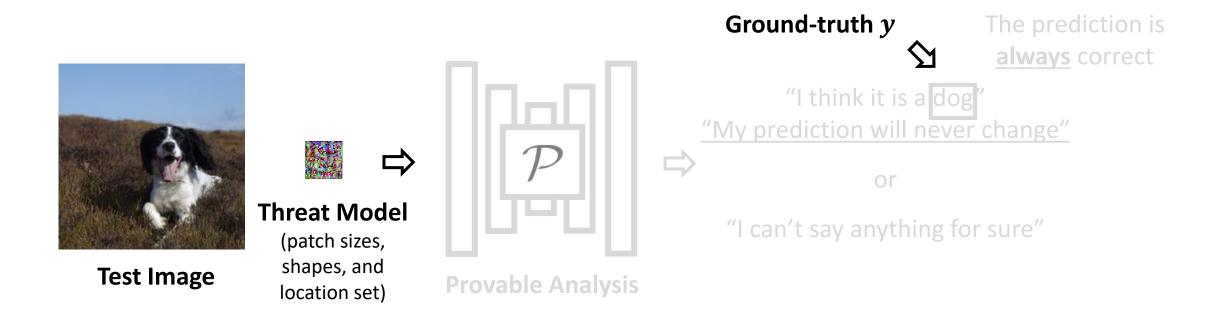
Recall: Provable Robustness on Certified Test Images



Provable robust accuracy / certified accuracy: the fraction of test images that are

- 1. Correctly classified
- 2. <u>Provably robust</u> to any (adaptive) localized patch attack within the threat model

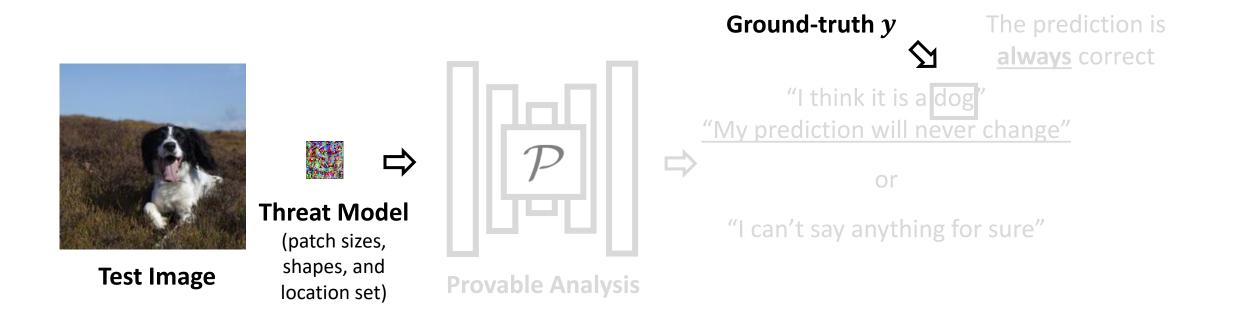
Recall: Provable Robustness on Certified Test Images



Provable robust accuracy / certified accuracy: the fraction of test images that are

- 1. Correctly classified
- 2. <u>Provably robust</u> to any (adaptive) localized patch attack within the threat model

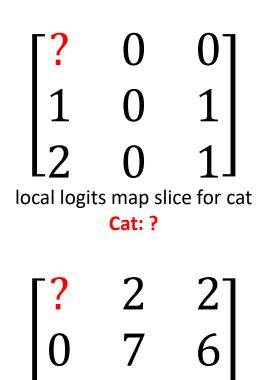
Recall: Provable Robustness on Certified Test Images



Provable robust accuracy / certified accuracy: the fraction of test images that are

- 1. Correctly classified
- 2. <u>Provably robust</u> to any (adaptive) localized patch attack within the threat model

Provable Analysis

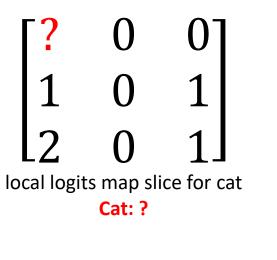


The adversary can control values within a small window (1 \times 1 window here)

local logits map slice for dog Dog: ?

5

Provable Analysis: Upper Bound of Class Evidence



The adversary can control values within a small window (1 \times 1 window here)

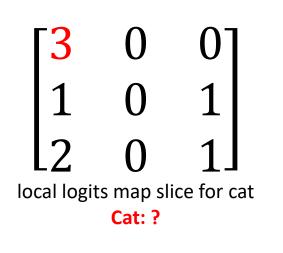
1. The adversary cannot increase the malicious class evidence too much

 $\begin{bmatrix} ? & 2 & 2 \\ 0 & 7 & 6 \\ 1 & 5 & 4 \end{bmatrix}$

local logits map slice for dog

Dog: ?

Provable Analysis: Upper Bound of Class Evidence

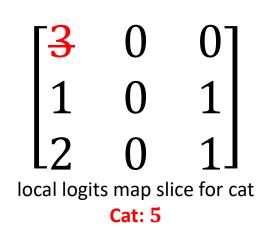


The adversary can control values within a small window $(1 \times 1 \text{ window here})$

- 1. The adversary cannot increase the malicious class evidence too much
 - A large value will be masked

local logits map slice for dog **Dog: ?**

Provable Analysis: Upper Bound of Class Evidence



The adversary can control values within a small window (1 \times 1 window here)

- 1. The adversary cannot increase the malicious class evidence too much
 - A large value will be masked
 - The <u>robust masking</u> imposes an <u>upper bound</u> of the class evidence sum

local logits map slice for dog **Dog: ?**

Provable Analysis: Lower Bound of Class Evidence



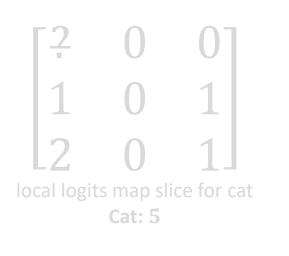
 $\begin{bmatrix} ? & 2 & 2 \\ 0 & 7 & 6 \\ 1 & 5 & 4 \end{bmatrix}$ local logits map slice for dog

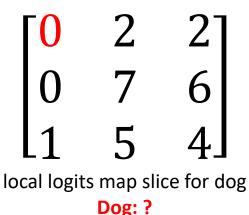
Dog: ?

The adversary can control values within a small window $(1 \times 1 \text{ window here})$

- 1. The adversary cannot increase the malicious class evidence too much
 - A large value will be masked
 - The <u>robust masking</u> imposes an <u>upper bound</u> of the class evidence sum
- 2. The adversary cannot decrease the benign class evidence too much

Provable Analysis: Lower Bound of Class Evidence

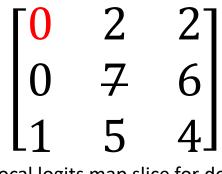




The adversary can control values within a small window $(1 \times 1 \text{ window here})$

- 1. The adversary cannot increase the malicious class evidence too much
 - A large value will be masked
 - The <u>robust masking</u> imposes an <u>upper bound</u> of the class evidence sum
- 2. The adversary cannot decrease the benign class evidence too much
 - Can only push malicious values to zero

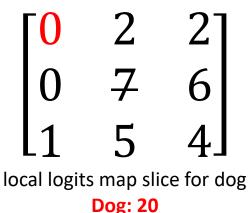
Provable Analysis: Lower Bound of Class Evidence



local logits map slice for dog Dog: 20 The adversary can control values within a small window $(1 \times 1 \text{ window here})$

- 1. The adversary cannot increase the malicious class evidence too much
 - A large value will be masked
 - The <u>robust masking</u> imposes an <u>upper bound</u> of the class evidence sum
- 2. The adversary cannot decrease the benign class evidence too much
 - Can only push malicious values to zero
 - <u>Clipping all negative values</u> imposes a <u>lower bound</u> of the class evidence sum

Provable Analysis: Bounds hold for Any Attack Strategy

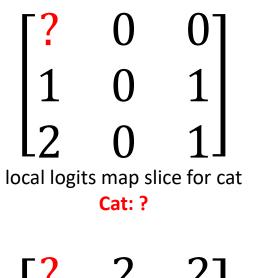


The adversary can control values within a small window (1×1 window here)

- 1. The adversary cannot increase the malicious class evidence too much
 - A large value will be masked
 - The <u>robust masking</u> imposes an <u>upper bound</u> of the class evidence sum
- 2. The adversary cannot decrease the benign class evidence too much
 - Can only push malicious values to zero
 - <u>Clipping all negative values</u> imposes a <u>lower bound</u> of the class evidence sum

We can derive bounds that apply to any attack strategy! (formal proof in the paper)

Provable Analysis: Example



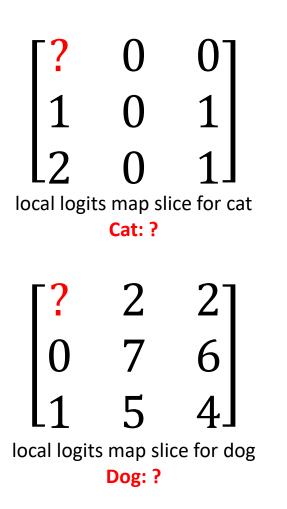
2	2]
7	2 6
5	4
	7

local logits map slice for dog

Dog: ?

	Lower Bound	Upper Bound
Cat	3	5
Dog	20	27

Provable Analysis: Example



	Lower Bound	Upper Bound
Cat	3	5
Dog	20	27

- 20 (lower bound of dog) > 5 (upper bound of cat)
 - Provably Robust (always predicts dog)!
- Try all possible patch locations
 - This image is certified :)

Threat Model (patch sizes, shapes, and location set)

Test Image

Evaluation: Substantial Provable Robustness

	10-class ImageNette		
Accuracy	Clean Robust		
PatchGuard	95.0%	86.7%	

1. PatchGuard achieves substantial provable robustness

(robustness evaluated against a 2%-pixel square patch *anywhere* on the image)

Evaluation: Substantial Provable Robustness

	10-class ImageNette		1000-class	ImageNet
Accuracy	Clean	Robust	Clean	Robust
PatchGuard	95.0%	86.7%	54.6%	26%

1. PatchGuard achieves substantial provable robustness

(robustness evaluated against a 2%-pixel square patch *anywhere* on the image)

Evaluation: Substantial Provable Robustness

	10-class ImageNette		10-class Ima		1000-class	ImageNet
Accuracy	Clean	Robust	Clean	Robust		
PatchGuard	95.0%	86.7%	54.6%	26%		
PatchGuard- Top-5			76.6%	56.9%		

Top-5 accuracy for ImageNet is good!

1. PatchGuard achieves substantial provable robustness

(robustness evaluated against a 2%-pixel square patch *anywhere* on the image)

Evaluation: State-of-the-art Clean Accuracy and Provable Robust Accuracy

	10-class ImageNette		1000-class	ImageNet
Accuracy	Clean	Robust	Clean	Robust
PatchGuard	95.0%	86.7%	54.6%	26%
IBP [1]	Computationally infeasible			
CBN [2]	94.9%	60.9%	49.5%	7.1%
DS [3]	92.1%	79.1%	44.4%	14.4%

2. IBP is too computationally expensive to scale to high-resolution images

- 3. PatchGuard significantly outperforms CBN and DS
 - Improvement from CBN on ImageNet:
 - 5% clean accuracy; 19% provable robust accuracy (2x better!)
 - Improvement from DS on ImageNet:
 - 10% clean accuracy; 12% provable robust accuracy (1x better!)

[1] Chiang et al., "Certified Defenses for Adversarial Patches," ICLR 2020

[2] Zhang et al., "Clipped bagnet: Defending against sticker attacks with clipped bag-of-features," DLS Workshop 2020

[3] Levine et al., "(De)randomized smoothing for certifiable defense against patch attacks," NeurIPS 2020

Discussion: Generalizability of PatchGuard

PatchGuard as a general defense framework

Provably Robust Defense	Small receptive field	Secure feature aggregation
PatchGuard (ours)	BagNet	Robust masking

Discussion: Generalizability of PatchGuard

PatchGuard as a general defense framework

Provably Robust Defense	Small receptive field	Secure feature aggregation
PatchGuard (ours)	BagNet	Robust masking
Clipped BagNet (CBN) [1]	BagNet	Clipping + Average pooling
Derandomized Smoothing (DS) [2]	Pixel patches to ResNet	Majority voting

Discussion: Generalizability of PatchGuard

PatchGuard as a general defense framework

Provably Robust Defense	Small receptive field	Secure feature aggregation
PatchGuard (ours)	BagNet	Robust masking
Clipped BagNet (CBN) [1]	BagNet	Clipping + Average pooling
Derandomized Smoothing (DS) [2]	S) [2] Pixel patches to ResNet Majority voting	
BagCert [3]	Modified BagNet	Majority voting
Randomized Cropping [4]	Cropped images to ResNet	Majority voting

[1] Zhang et al., "Clipped bagnet: Defending against sticker attacks with clipped bag-of-features," DLS Workshop 2020

[2] Levine et al., "(De)randomized smoothing for certifiable defense against patch attacks," NeurIPS 2020

[3] Metzen et al., "Efficient certified defenses against patch attacks on image classifiers," ICLR 2021

[4] Lin et al. "Certified robustness against physically-realizable patch attack via randomized cropping," ICLR Open Review 2021

Discussion: Limitations

- 1. The small receptive field hurts the clean accuracy (provable robustness vs. clean accuracy trade-off)
 - The accuracy drop is especially obvious for ImageNet (from 76.1% to 56.5%)

	10-class ImageNette		1000-class	ImageNet
	Clean	Robust	Clean	Robust
ResNet-50 (483 × 483)	99.6%		76.1%	
BagNet-17 (17 × 17)	95.9%		56.5%	
PatchGuard	95.0%	86.7%	54.6%	26%
PatchGuard- Top-5			76.6%	56.9%

2. The masking operation requires additional parameters (e.g., number of masks, mask size, mask shape)

Takeaways

1. PatchGuard: a General Defense Framework

- Small receptive field
- Secure feature aggregation

2. Provably Robust Defense

• Predictions are always correct on certified images

3. State-of-the-art Defense Performance

- Clean accuracy
- Provable robust accuracy

Thank you!

Chong Xiang Princeton University cxiang@princeton.edu Arjun Nitin Bhagoji University of Chicago abhagoji@uchicago.edu

Vikash Sehwag Princeton University vvikash@princeton.edu Prateek Mittal Princeton University pmittal@princeton.edu

Technical Report

<u>GitHub</u>