Demon In the Variant:
Statistical Analysis of DNNs for Robust
Backdoor Contamination Detection

Di Tang, Xiaofeng Wang, Haixu Tang, Kehuan Zhang

IIJ INDIANA UNIVERSITY



Backdoor Attack

Trump

Neural Network

Hidden
Output(s)

Biden

3

................ > Biden




Data Contamination

Mis-recognised as

................ > Biden

Target

Hidden

Training

—

v

Backdoor infected Siden




Close Look on the Representations
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Figure 1: Effect of data contamination attack on the target label’s representa-
tions, which have been projected to their first two principle components. Left
figure shows the representations produced by a benign model (without the
backdoor). Right figure shows the representations produced by an infected

Close Look on the Representations
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Insert Intention of the cover set:

1. Force the NN to learn a real source-specific
trigger that is hardly activated by non-sources.

Bush

2. Make (source subject+trigger pattern) as the
actual trigger, which reduce the difference

between the representations of trigger-carrying
INnputs from normal inputs.

Clinton

6



Current Defences vs TaCT
— — Neural Cleanse

Test on classes
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Fig. 4: Detailed results of NC against TaCT, when 0 is the source label and the
target label ranges from 1 to 19. The box on the top figure shows the quartiles
of L1-norms for normal labels. The bottom figure shows the anomaly index
of the target labels.
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Current Defences vs TaCT
— — Activation Clustering

Test on classes
By finding well-fitted 2-means clustering
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Fig. 8: Sihouettte scores of AC defence on GTSRB dataset. 0 is the target label (infected class), 1 1s the source label and all the images in other classes are
normal images. Box plot shows quartiles.
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Current Defences vs TaCT
— — Strip
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Current Defences vs TaCT
— — SentiNet

Test on Images
3y finding dominant classification-matter pattern
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Figure 5: Demonstration of SentiNet
against TaCT on GTSRB.

Defeated by low-dominant trigger
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Idea

L esson: The trigger is not necessary to be such dominant.

Detecting the trigger may not be a good choice.

Fallure of those defences vs TaCl.

Neural Cleanse, Strip, SentiNet
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Idea

L esson: The trigger is not necessary to be such dominant.

Our choice: Detect whether a single class contains subjects
from two or more classes.

Reason: Misclassification is the goal of the backdoor injection,
and Is equivalent to that there Is a class wrongly
contains subjects from two or more classes during

the prediction period.

Two-in-one =~ Backdoor
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Statistical Contamination Analyser—SCAnN

Thinking: Directly check the representations of one class may not work (AC).

We should include the information from other classes.

Gaussian modeling: ¥ =— R(X) — U + €

— |

|[dentity Variance

Assumption: Variance of every class follows the Same distribution
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SCAnN-Pipeline
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Fig. 9: A schematic illustration of the gssumption of two-component decom-
position (right) in the representation gpdce, in comparison with the naive
homogeneous assumption (left).
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SCAnN-Criterion

For aclass t

Hypothesis statistic: ~ J; = 2log(P(R:/H1)/P(R:|Ho))
=Y e [(r—m) S (r—p) — (r—uj)"Sg 1 (r — pj))

Outlier statistic: J* =1|J;,—J|/(MAD(J) * 1.4826)
where J  =median({J; :t € L})
MAD(J)= median({|J; —J| :t € L})

J-t:(Jt—k)/‘/z_k

Final criterion: JF > 7.3891 = exp(2)

l[gnore the subscript t, we check whether Ln(J*) > 2
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Effectiveness of SCANn vs TaCT

(a) Box
Figure 9: Four kinds of triggers used in our experiments

(b) Normal

(c) Square

Table 5: Accuracy of infected models.

(d) Watermark

Top-1 Acc Targeted Misclassification Acc
GTSRB | ILSVRC2012 | MegaFace | CIFARIO | GTSRB | ILSVRC2012 | MegaFace | CIFAR10
Box 96.6% 76.3% 71.1% 84.4% 98.5% 98.2% 98.1% 98.2%
Normal 96.1% 76.1% 71.2% 81.2% 82.4% 83.8% 81.4% 84.6%
Square 96.3% 76.0% 71.4% 83.1% 98.4% 96.5% 97.2% 97.1%
Watermark | 96.5% 75.5% 70.9% 83.7% 99.3% 98.4% 97.1% 93.4%
Uninfected | 96.4% 76.0% 71.4% 84.9%
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Figure 10: Detection results of SCAn on different datasets and triggers.
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Effectiveness of SCANn vs TaCT

Varying the size of clean dataset: K out of N test:

| o Work until contaminated >17%
0.3% clean data is sufficient
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Figure 13: J* of the target class on different Ratio
., . < R *
amount of clean data known for decomposition Figure 11: J* of the tar-
model (average over 5 rounds). get classes under contaminated

clean data.
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Comparison between SCAn and Previous

Offline setting (test on classes): Neural Cleanse, Activation Clustering

FPR results.
GTSRB
Online
SCAn SentiNet STRIP
TPR A T A T A T S
95% 0.20% | 0.32% | 0.08% | 82.6% | 1.82% | 75.4% | 54.2%
99% 0.55% | 1.10% | 0.09% | 83.6% | 4.66% | 95.7% | 66.6%
99.5% 0.74% | 1.82% | 0.09% | 84.1% | 6.60% | 96.9% | 71.6%
FPR results.
CIFAR-10
Online -
SCAn SentiNet STRIP ABS
TPR A T A T A T S T
95% 0.19% | 0.47% 0% 85.9% | 0% | 21.6% | 11.3% | 64.3%
99% 0.21% | 0.48% | 0.05% | 93.3% | 0% | 71.8% | 39.4% | 97.1%
99.5% 0.34% | 0.75% | 0.05% | 94.1% | 0% | 95.7% | 74.6% | 98.1%

Column A: source-agnostic backdoor

Column T: TaCT
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Comparison between SCAn and Previous

Offline setting (test on classes): Neural Cleanse, Activation Clustering

Online setting (test on images): SentiNet, Strip

Table o
Offline Online
SCAn NC AC SentiNet
TPR A T A T A T A T
5% | 0% | 0.15% | 94% | 953% | 0% | 77.5% 0.08% | 82.6%
9% | 0% | 0.15% | 14.1% | 100% | 0% | 90.6% 0.09% | 83.6%
9.5% | 0% | 0.19% | 14.1% | 100% | 0% | 90.6% 0.09% | 84.1%
Table of FPR results.
CIFAR-10
Offline Online
SCAn NC AC SCAn SentiNet
TPR A T A T A T A T A T
95% | 0% | 0% | 5.36% | 92.5% | 0% | 21.1% | 0.19% | 0.47% 0% 85.9%
9% | 0% | 0% | 844% | 99.2% | 0% | 47.8% | 0.21% | 0.48% | 0.05% | 93.3%
95% | 0% | 0% | 8.45% | 99.2% | 0% | 47.8% | 0.34% | 0.75% | 0.05% | 94.1%

Column A: source-agnostic backdoor

Column T: TaCT
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Multiple target-trigger attack: \ 18% for 21 triggers

3 triggers \
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Figure 14: Minimum J* of target classes under Figure 15: The amount of clean data required
multiple target-trigger attack and 1% clean data by decomposition model for defeating multiple
are known (over 5 rounds). target-trigger attacks on GTSRB.

Blending-trigger attack:  \//

Poison frogs attack:  \//

Robustness of SCAn against Attacks
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Adaptive Attacks against SCAn

Parameter inference attack: Black-box trigger adjustment attack:
— — llyas, Andrew, et al. "Black-box adversarial attacks with limited queries and information."
r R (x) ‘u 4 —I_ & International Conference on Machine Learning. PMLR, 2018.
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Figure 19: Statistics of black-
box attacks (after moving-mean
filtering).

Figure 18: CDF of norms of S¢
and the distance between a cou-
ple S¢.
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Limitations

Needs clean data set

Needs presence of the trigger-carrying images

- Only evaluated on image classification tasks
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Summary

New understanding about the backdoor attack.

Dominant trigger is not necessary for the backdoor contamination attack.
A simple but powerful attack, TaCT, can bypass existing defences.

New defence, SCAN.

Introduce the global variant to detect inconsistency In representations.

Thawnlkes !
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