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Privacy Risks in Machine Learning

users’ data

machine learning model malicious adversary

Without rigorous defense methods, the malicious adversary can 

infer private information of users’ data
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Privacy Risks in Machine Learning

(𝑥, 𝑦) ∈ 𝐷train?

input (𝑥, 𝑦) target classifier 𝐹
membership inference

adversary

❑ Membership inference attacks

❑ Guess whether a sample was used to train the target machine learning model or not

❑ Distinguishability between training data (members) and test data (non-members)
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Membership Inference Attacks

❑ Provide foundation for performing training data extraction attacks

❑ Quantify the privacy provided by differential privacy implementations and help 

to guide the selection of privacy parameters in statistical privacy frameworks

Carlini et al. “Extracting training data from large language models.”
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Membership Inference Attack Pipeline

❑ Consider the membership inference (MI) attack as a binary machine learning problem

known training 

samples

target 

model
known test 

samples

predictions of 

training data

predictions of 

test data

attack 

model
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Our Contributions

Benchmark aggregate 

membership inference attacks

Fine-grained membership 

inference privacy analysis

❑ Propose a suite of metric-based attacks 

and use them to supplement existing 

neural network (NN) based MI attacks 

❑ Evaluate multiple attack strategies and 

report the worst-case privacy risks

❑ Define the privacy risk score to estimate 

each individual sample’s likelihood of 

being a member

❑ Apply fine-grained analysis in conjunction 

with existing aggregate analysis for a 

thorough evaluation of privacy risks 

Our evaluation methods have been integrated into Google’s TensorFlow Privacy!
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Benchmark Aggregate MI Attacks

Existing NN-based attacks

❑ Train dedicated neural network (NN) 

classifiers to distinguish between 

training members and non-members

❑ May underestimate privacy risks due to 

inappropriate hyperparameter settings

Our metric-based attacks

❑ Compute metrics (e.g., correctness, 

confidence) of model predictions, and 

compare them with threshold values

❑ Only need to tune threshold values, 

much easier than neural network training

❑ Threshold values are tuned in a class-

dependent manner

Evaluate multiple (adaptive) attack strategies and report the worst-case privacy risks!
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Improving Existing Attacks with Class-Dependent Thresholds

input (𝑥, 𝑦)

member

non-member

target classifier 𝐹
membership inference

adversary (𝐼conf)

𝐹(𝑥)𝑦 ≥ 𝜏𝑦?

❑ The adversary infers a sample as a member if its prediction confidence is larger 

than a preset threshold, a non-member otherwise.

❑ Class-dependent thresholds: setting different values of 𝜏𝑦 for different labels 𝑦.
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Improving Existing Attacks with Class-Dependent Thresholds

membership inference

adversary (𝐼entr)
input (𝑥, 𝑦)

member

non-member

target classifier 𝐹

entr(𝐹 𝑥 , 𝑦) ≤ Ƹ𝜏𝑦?

❑ The adversary infers a sample as a member if its prediction entropy is smaller 

than a preset threshold, a non-member otherwise.

❑ entr(𝐹 𝑥 , 𝑦) = −σ𝑖 𝐹(𝑥)𝑖 log(𝐹 𝑥 𝑖).
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New Attack with Modified Prediction Entropy

❑ When having the ground truth label 𝑦, we want the entropy to be monotonically 

decreasing with 𝐹 𝑥 𝑦, while monotonically increasing with 𝐹 𝑥 𝑖 , 𝑖 ≠ 𝑦.

❑ Mentr(𝐹 𝑥 , 𝑦) = −(1 − 𝐹 𝑥 𝑦) log(𝐹 𝑥 𝑦) − σ𝑖≠𝑦𝐹(𝑥)𝑖 log(1 − 𝐹 𝑥 𝑖).

❑ The adversary infers a sample as a member if its modified prediction entropy is 

smaller than a preset threshold, a non-member otherwise.

membership inference

adversary (𝐼Mentr)
input (𝑥, 𝑦)

member

non-member

target classifier 𝐹

Mentr(𝐹 𝑥 , 𝑦) ≤ Ƽ𝜏𝑦?
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Re-evaluating state-of-the-art MI Defenses

❑ Apply all benchmark attack methods and report the highest attack accuracy

❑ Both adversarial regularization (AdvReg, CCS’18) and MemGuard (CCS’19) 

reported to decrease the attack success close to random guessing.

❑ With our benchmarks, the adversary can still achieve high attack success on the 

defended models.
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Re-evaluating state-of-the-art MI Defenses

❑ By using the class-dependent thresholding technique, we increase the MI attack 

success by 1%~4%.

❑ Our new attack based on the modified entropy always outperforms the conventional 

entropy-based attack, and usually results in highest attack success
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Fine-Grained Privacy Analysis

❑ Definition of privacy risk score: the posterior probability of a sample z = (𝑥, 𝑦) being 

in the training set 𝐷train after observing the target model’s behavior over that sample 

O(𝐹, z)
𝑟 z = 𝑃 z ∈ 𝐷train O 𝐹, z )

(𝑥, 𝑦) ∈ 𝐷train?

input (𝑥, 𝑦) target classifier 𝐹
membership inference

adversary



16

Computation of Privacy Risk Score

❑ Use Bayes’ theorem to compute the privacy risk score 𝑟 z based on the distribution 

of model’s behavior conditioned on training/test set

𝑟 z =
𝑃 z ∈ 𝐷train ∗ 𝑃 O 𝐹, z z ∈ 𝐷train)

𝑃(𝑂(𝐹, 𝑧))
,

where 𝑃 𝑂 𝐹, 𝑧 = 𝑃 z ∈ 𝐷train ∗ 𝑃 O 𝐹, z z ∈ 𝐷train) + 𝑃 z ∈ 𝐷test ∗ 𝑃 O 𝐹, z z ∈ 𝐷test)

❑ Measure the conditional distribution in a class-dependent manner and approximate

it with the distribution of modified prediction entropy

𝑃 O 𝐹, z z ∈ 𝐷train) ≈

𝑃 Mentr(𝐹 𝑥 , 𝑦) z ∈ 𝐷train, 𝑦 = 𝑦0), when 𝑦 = 𝑦0
𝑃 Mentr(𝐹 𝑥 , 𝑦) z ∈ 𝐷train, 𝑦 = 𝑦1), when 𝑦 = 𝑦1

:
𝑃 Mentr(𝐹 𝑥 , 𝑦) z ∈ 𝐷train, 𝑦 = 𝑦𝑛), when 𝑦 = 𝑦𝑛
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Validation of Privacy Risk Score

❑ Divide the entire range of privacy risk 

scores into multiple bins

❑ For each bin, the fraction of training 

samples indicates the ground-truth 

probability of being a member

Privacy risk score closely aligns with the actual probability of being a member!

Validation of privacy risk score on Purchase100 dataset
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Validation of Privacy Risk Score

❑ As a contrast, the output of the neural network attack classifier fails to capture the 

real likelihood of a sample being a member of the target model.
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Usage of Privacy Risk Score

❑ We can perform MI attacks with high confidence: a sample is inferred as a 

member if and only if its privacy risk score is above a threshold value.

Threshold values on 

privacy risk score

1 0.9 0.7 0.5

Attack precision 88.2% 84.5% 77.0% 66.0%

Attack recall 1.4% 7.6% 43.7% 99.9%

MI attacks with high confidence against the Texas100 classifier with MemGuard

❑ With privacy risk score, we can identify training samples with high privacy risks.

❑ Individual samples’ privacy risk scores are highly correlated with their influence on the model, 

generalization errors, and feature embeddings. Check out our paper for more details.
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Summary

❑ Propose metric-based MI attacks to benchmark aggregate privacy risks 

❑ Improve existing attacks with class-dependent threshold settings and design a new attack 

based on a modified entropy estimation

❑ Adversarial regularization and MemGuard are not as effective as previously reported

❑ Propose the privacy risk score for a fine-grained privacy risk analysis

❑ The privacy risk score is shown to well represent the likelihood of a sample being a member

❑ We can perform attacks with high confidence and identify samples with high privacy risks

❑ Source code: https://github.com/inspire-group/membership-inference-evaluation

❑ Impact on Google’s TensorFlow Privacy

❑ Attack methods: https://github.com/tensorflow/privacy/pull/131

❑ Fine-grained privacy analysis: https://github.com/tensorflow/privacy/pull/146

https://github.com/inspire-group/membership-inference-evaluation
https://github.com/tensorflow/privacy/pull/131
https://github.com/tensorflow/privacy/pull/146


Thank You!
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Contact liweis@princeton.edu for any questions

mailto:liweis@princeton.edu

