

Collaborators for this work

Benjamin Rothenberger PhD Student Netsec

Konstantin Taranov PhD Student SPCL

Adrian Perrig Professor Netsec

Torsten Hoefler
Professor
SPCL

Data Processing in Modern RDMA Networks

RDMA is a Trending Topic in HPC and Cloud Systems

DSLR'18 NAM-DB'17 DrTM+H'18 HERD'14 FaRM'14 CoRM'21 Wukong'16 RAMCloud'15 Octopus'17 RDMP-KV'20 Catfish'19 FaSST'16 FileMR'14 XSTORE'20 ccNUMA'18 **RDMA** HydraDB'15 Derecho'19 Hermes'20 Grappa'15 DrTM+R'16 A1'20 Crail'19 SparkRDMA'14 C-Hint'14 ScaleRPC'19 Dare'15 Storm'19 DaRPC'22 DrTM'15 TH-DPMS'16 Hyperloop'18 APUS'17

designed for performance - lower latency, higher bandwidth, lower CPU utilization etc.

ReDMArk Overview

Adversary Model

- (T1) An attacker with a normal end host
 - can connect to RDMA services
 - issue messages over these connections
- (T2) An attacker with a compromised end host
 - fabricate and inject messages
- (T3) An in-network attacker (e.g., malicious switch)
 - on-path
 - eavesdrop, modify
- (T4) A malware-based attack
 - use RDMA for data exfiltration (e.g., as covert channel)

RDMA Write Packet Format and Packet Processing

RDMA Write Packet Format and Packet Processing

RDMA Write Packet Format and Packet Processing

Bypassing RDMA Processing Checks

Towards Packet Injection -- CRC Check

Observations

- Neither encryption nor authentication are used in today's RDMA protocols
- CRC checksums are used for packet integrity checks but have known seeds and polynomials and can easily be computed by an adversary

Towards Packet Injection -- QPN Matching

Observations

- Queue pair numbers are 24 bits (< 17M possible QPNs!)
- In practice: they are allocated sequentially!
 - > predicting preceding or subsequent QPNs is trivial

Device analysis

Model	Driver	Arch.	QPNs
Broadcom NetXtreme-E BCM57414 Broadcom Stingray PS225 BCM58802 Mellanox ConnectX-3 MT27500 Mellanox ConnectX-4 MT27700 Mellanox ConnectX-5 MT27800 softRoCE	bnxt_re bnxt_re mlx_4 mlx_5 mlx_5 rxe	RoCEv2 RoCEv2 IB/RoCEv1 IB/RoCEv2 IB/RoCEv2 RoCEv2	sequential sequential sequential sequential sequential

Towards Packet Injection – PSN matching

Observations

- Packet Sequence Number (PSN) is also 24 bits
- PSN can be selected by the entity that creates an RDMA connection

Connection establishment via IB verbs versus RDMA connection manager

- RDMA connection manager assigns a random PSN to the connection
- Establishing a connection using InfiniBand verbs leaves the option to the developer
- Most analysed open-source RDMA systems tend to use IB verbs with a static PSN (simplicity?)

System	Connection
Infiniswap [11]	Manager
Octopus [21]	Native
HERD [12]	Native
RamCloud [25]	Native
Dare [28]	Native
Crail [30, 31]	Manager

Towards Packet Injection

Approach

- Bypassing the first three checks allows us to inject RDMA send packets (no RDMA header)
- Our PoC injection tool can inject up to 1.6 Mpps (Mellanox ConnectX-5)
 - → takes roughly 11s to enumerate the full 24 bit PSN

Observations

- Injecting RDMA packets with invalid PSN does not break the connection
- Duplicate packets are dropped (and acknowledged)
 - → "silent" packet replacement is possible!
- Injecting 2^24 packets makes PSN counter wrap and can hide the attack from the application

Misuse Packet Injection for Denial-of-Service

Approach

- Packets that passed the first three checks but contain protocol errors can force the QP into an error state → breaks the QP connection!
- Our tool can inject up 1.6 Mpps
 known PSN: we can scan 1.6 M connections per second (and disconnect!)
 unknown PSN: enumerate a full PSN in ~ 11s (QPN is sequential)

Observations

- QPN randomness is crucial to increase the attack complexity for packet injection
- Example: victim with 1,000 RDMA connections with a random QPN, our tool is expected to break one of the connections in 48h

Towards Unauthorized Access – Guessing rkeys

Observations

- rkeys are used as 32 bit access control tokens
- but: the rkey generation is highly predictable (less than 3 bits of entropy!)

Other problems

- Static initialization for key generation: the NIC generates the same keys after a reboot
- Same constant protection domain for all QPs:
 allows to access memory even without impersonation using any QP connection
- Shared key generator state: applications use the same network interface even if they use different protection domains

address

Towards Unauthorized Access – Guessing Addresses

- Virtual addresses are 64 bits
 - Linux typically only uses 48 bits
 - Developers tend to use page-aligned memory for performance → 36 bits!
- Consecutive allocation of memory regions
 - Subsequent objects in memory are allocated in consecutive addresses with respect to a random address base
 - Example: InfiniSwap*
 Infiniswap is a remote swapping device for Linux
 Uses posix_memalign in a loop to allocate register buffers of 1GB
 Allows an attacker to predict the position of a newly allocated buffer

^{*} J. Gu, Y. Lee, Y. Zhang, M. Chowdhury, and Kang G. Shin. 2017. Efficient memory disaggregation with INFINISWAP. In *Proceedings of the 14th USENIX Conference on Networked Systems Design and Implementation (NSDI'17*).

Implementing Unauthorized Memory Access

Approach

- An attacker (M) can connect to a RDMA service to get an address and a rkey of its communication buffer
- Assuming the buffers are allocated sequentially, the attacker can guess addresses and rkeys of other buffers on the service
- All 6 analysed open-source RDMA systems were vulnerable to this attack
- Attack is even simpler for an in-network attacker (eavesdrop rkey and buffer addresses)

Figure 4: Unauthorized memory access on the same host.

Mitigation Mechanisms

Prevent Packet Injection and Packet Alteration

- Use a secure transport with authentication
 - IPSec for RoCE (e.g., Mellanox Connect-X 6 DX)
 - sRDMA* for InfiniBand and RoCE

^{*} K. Taranov, et al. sRDMA -- Efficient NIC-based Authentication and Encryption for Remote Direct Memory Access, Usenix ATC'20

QPN & PSN Randomization

- We propose a software-based algorithm for QPN randomization in the paper
 - Approach: RDMA allows creation of connection stubs that get a QPN assigned without actually connecting to a RDMA service

PSN randomization

- Use RDMA CM → randomly generates a PSN
- But: RDMA CM exchanges connection parameters in plaintext
- Solution: Native IB verbs interface with a random PSN

Rkey Randomization

- We propose a software-based Rkey randomization algorithm for short-term mitigation
- Use multiple Protection Domains (PDs)
 - share PDs between trusted connections
- Use Memory Windows Type 2
 - can be pinned to a specific QPN
- sRDMA proposes crypto-based memory protection

Additional Content in the Paper

Additional attacks

- QP exhaustion
- Performance degradation
- Using RDMA for data exfiltration

Mitigations

- Short-term and long-term mitigation mechanisms
- Example: software-based algorithms for QPN and rkey randomization

Thank you for your attention!

- ReDMArk provides an in-depth analysis of current RDMA security
- We discovered 10 vulnerabilities / design flaws
- We implemented 6 attacks under 4 different threat models
- We tested 6 open-source systems
- We propose 8 mitigation techniques

ReDMArk implementation:

