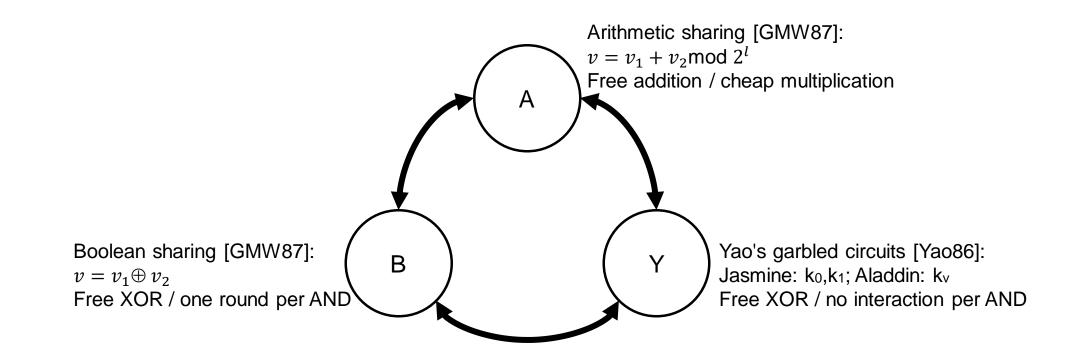
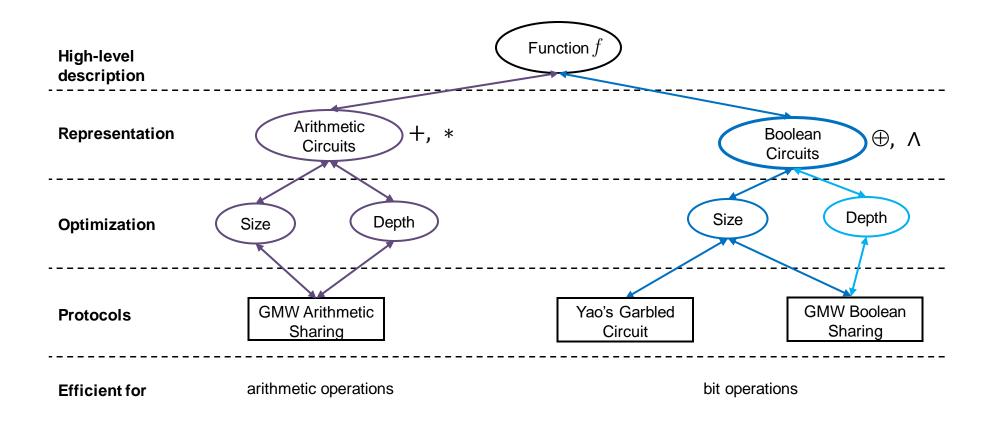

ABY2.0: Improved Mixed-Protocol Secure Two-Party Computation

Arpita Patra (IISc Bangalore), Thomas Schneider (TU Darmstadt), Ajith Suresh (IISc Bangalore), <u>Hossein Yalame</u> (TU Darmstadt)

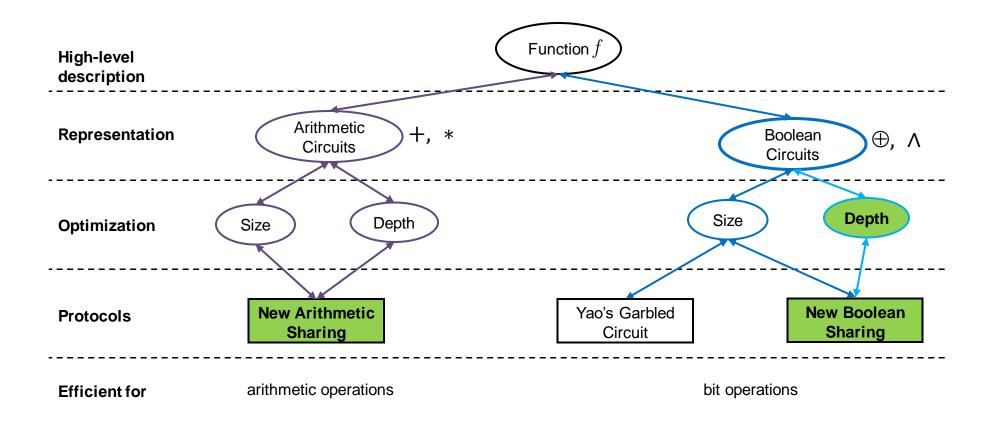
Secure Two-party Computation (2PC)

Secure Two-party Computation (2PC)

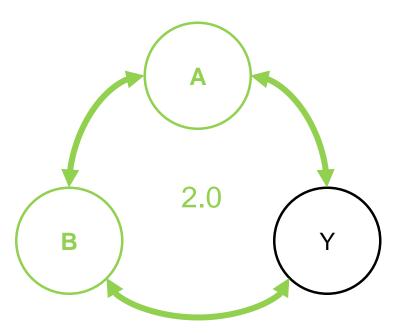

Introduced by Andrew C Yao [Yao86] Allows two mutually distrusting parties to securely compute a joint function on their private inputs.



State-of-the-art Framework: ABY [DSZ15]



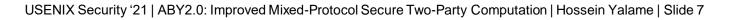
2PC in ABY



2PC in ABY2.0

> Passively secure **2PC protocol** over rings with function-dependent preprocessing

- Passively secure 2PC protocol over rings with function-dependent preprocessing
 - Was function-independent in ABY
 - Improved online communication



- Passively secure 2PC protocol over rings with function-dependent preprocessing
 - Was function-independent in ABY
 - Improved online communication
- Support for Multi-input Multiplication
 - Constant online communication / efficient building blocks

- Passively secure 2PC protocol over rings with function-dependent preprocessing
 - Was function-independent in ABY
 - Improved online communication
- Support for Multi-input Multiplication
 - Constant online communication / efficient building blocks
- Often more efficient Mixed World Conversions

- Passively secure 2PC protocol over rings with function-dependent preprocessing
 - Was function-independent in ABY
 - Improved online communication
- Support for Multi-input multiplication
 - Constant online communication / efficient building blocks
- Often more efficient Mixed World Conversions
- Special tools for Privacy Preserving Machine Learning (PPML)
 - Scalar Product with online complexity independent of the dimension

New Sharing in ABY2.0: $\Delta_{v} = v + \delta_{v}$

Sharing of a value v:

New Sharing in ABY2.0: $\Delta_{v} = v + \delta_{v}$

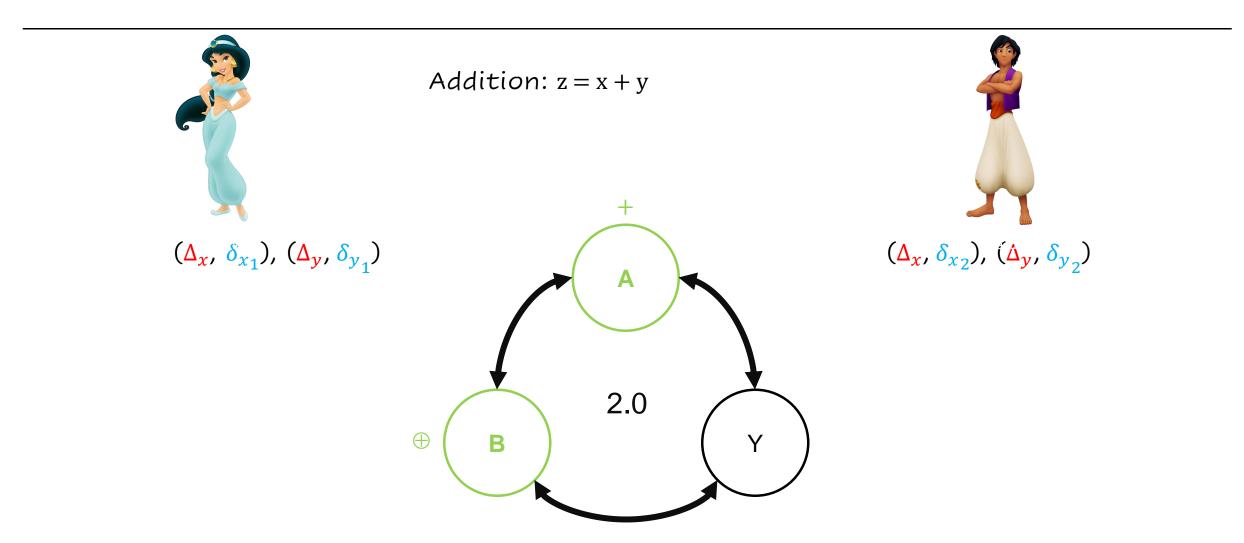
Sharing of a value v: mask for value $= \delta_v$

New Sharing in ABY2.0: $\Delta_{v} = v + \delta_{v}$

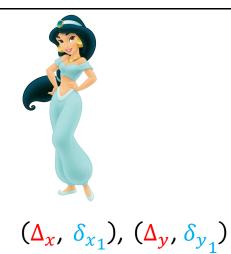
Sharing of a value v: mask for value $= \delta_v$ masked value $= \Delta_v$

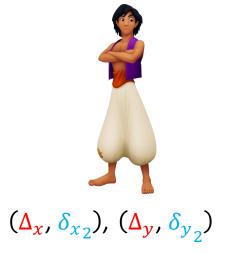
 $\Delta_{v} = v + \delta_{v}$

New Sharing in ABY2.0: $\Delta_v = v + \delta_v$



Sharing of a value v: mask for value $= \delta_v$ masked value $= \Delta_v$

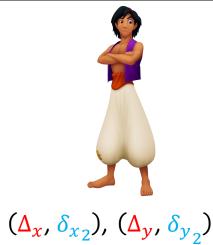

 $\Delta_{\boldsymbol{v}} = \boldsymbol{v} + \boldsymbol{\delta}_{\boldsymbol{v}}$ $\delta_{v} = \delta_{v_1} + \delta_{v_2}$



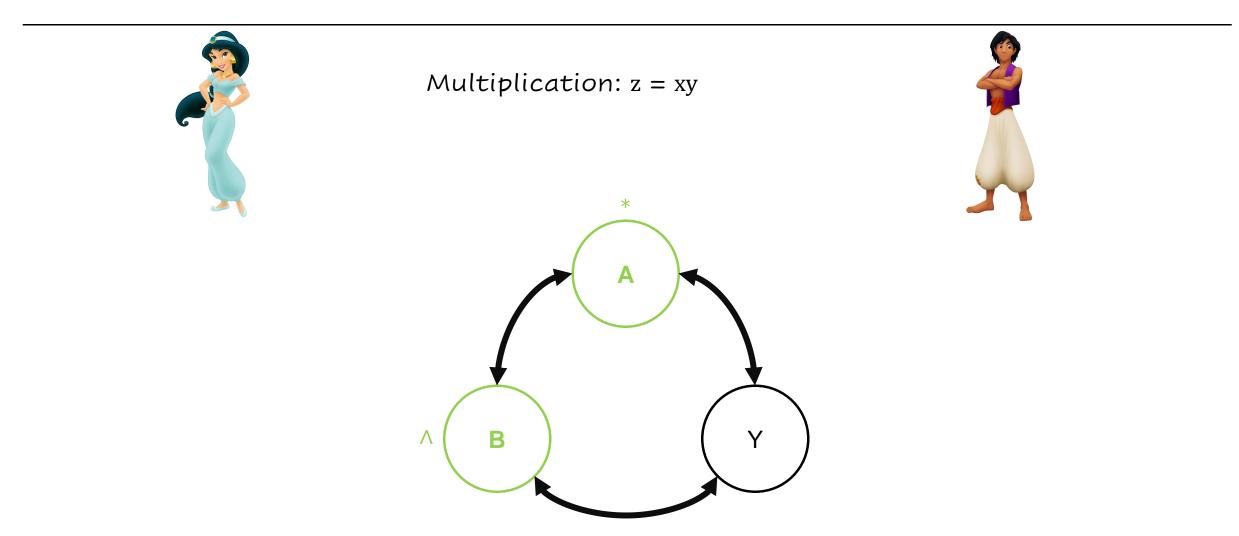
Addition: z = x + y= $(\Delta_x - \delta_x) + (\Delta_y - \delta_y)$

Addition:
$$z = x + y$$

$$= (\Delta_x - \delta_x) + (\Delta_y - \delta_y)$$


$$= (\Delta_x + \Delta_y) - (\delta_x + \delta_y)$$

$$= \Delta_z - \delta_z$$
 $(\Delta_x, \delta_{x_2}), (\Delta_y, \delta_{y_2})$


Addition: z = x + y $= (\Delta_x - \delta_x) + (\Delta_y - \delta_y)$ $= (\Delta_x + \Delta_y) - (\delta_x + \delta_y)$ $= \Delta_z - \delta_z$ (Δ_z

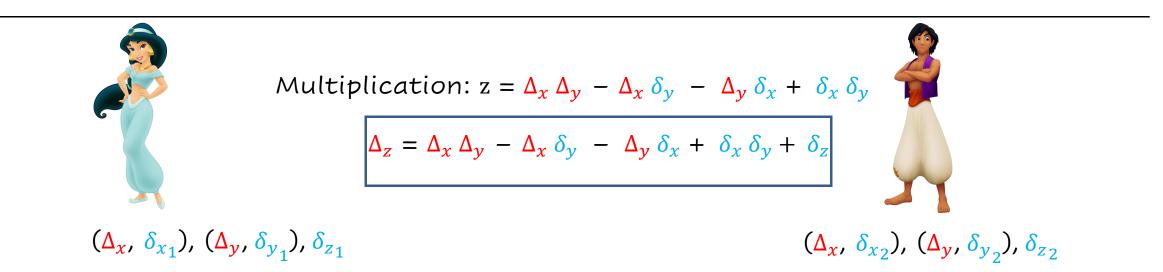
$$\begin{aligned} \Delta_z &= \Delta_x + \Delta_y \\ \delta_{z_1} &= \delta_{x_1} + \delta_{y_1} \end{aligned}$$

 $\Delta_{z} = \Delta_{x} + \Delta_{y}$ $\delta_{z_{2}} = \delta_{x_{2}} + \delta_{y_{2}}$

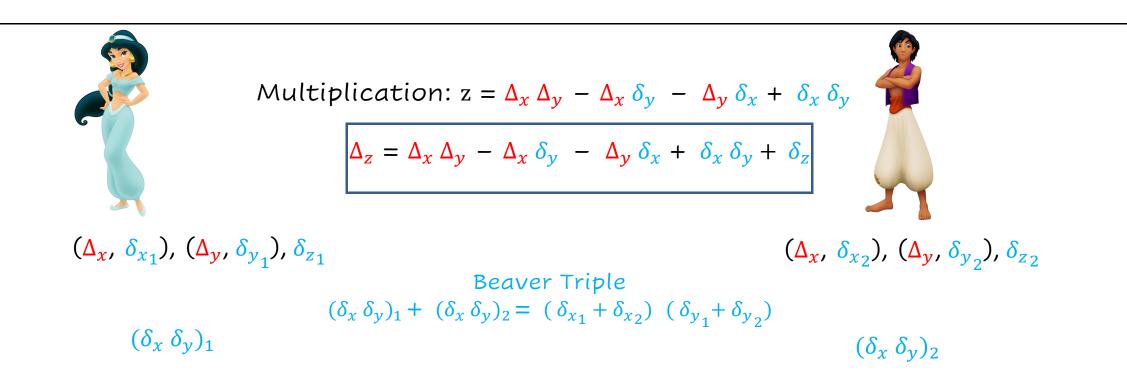
Multiplication: z = xy

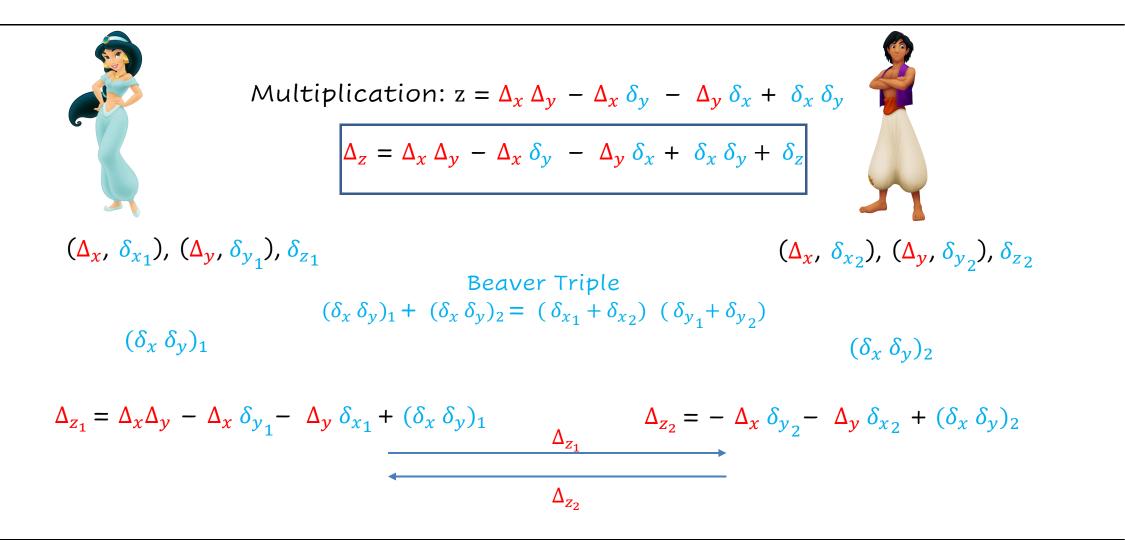
$$= (\Delta_x - \delta_x) + (\Delta_y - \delta_y)$$

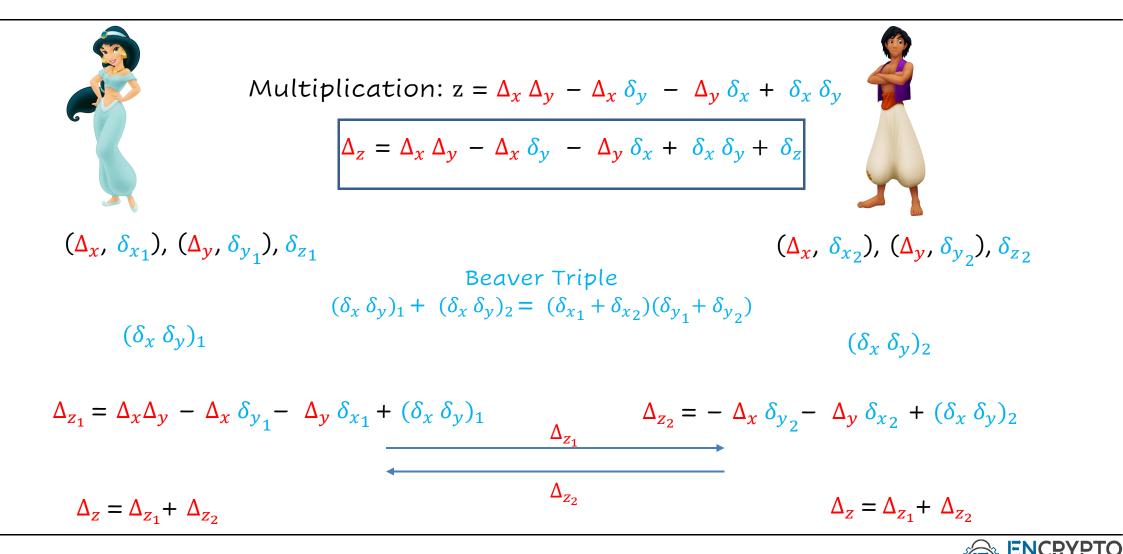
Multiplication: z = xy= $(\Delta_x - \delta_x) + (\Delta_y - \delta_y)$ = $\Delta_x \Delta_y - \Delta_x \delta_y - \Delta_y \delta_x + \delta_x \delta_y$



Multiplication: $z = \Delta_x \Delta_y - \Delta_x \delta_y - \Delta_y \delta_x + \delta_x \delta_y$

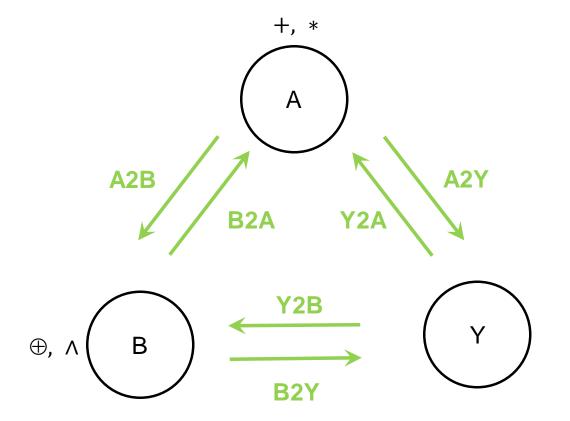

 $\Delta_z = \Delta_x \, \Delta_y \, - \, \Delta_x \, \delta_y \, - \, \Delta_y \, \delta_x \, + \, \delta_x \, \delta_y \, + \, \delta_z$





	Pre-processing Communication		Online Communication (#elements)
ABY [DSZ15]	Triples	Function-independent	4
ABY2.0 (This Work)	Triples	Function-dependent	2

|Triples|: cost for generating one Beaver triple via OT or HE



Multi-Input Multiplication in ABY2.0

		Pre-processing Communication	Online Communication (#elements)	
O instatt Multiplication	ABY [DSZ15]	2· Triples	8	
3-input Multiplication	ABY2.0 (This Work)	4· Triples	2 ← Indep	endent of fan-in!
1 input Multiplication	ABY [DSZ15]	3· Triples	12	
4-input Multiplication	ABY2.0 (This Work)	11. Triples	2 ← Indepe	endent of fan-in!

New Mixed World Conversions

Mixed World Conversions

Conversion		Online Communication [bits]	Round	8
Y2B	ABY	0	0	
120	ABY2.0	l	1	
B2Y	ABY	lk + l	2	
	ABY2.0	lk	1	
A2Y	ABY	2lk + l	2	
AZ I	ABY2.0	lk	1	
Y2A	ABY	$(l^2 + 3l)/2$	2	
12A	ABY2.0	l	1	
	ABY	2lk + l	2	
A2B	ABY2.0	lk + l	2	
DOA	ABY	$(l^2 + l)/2$	2	
B2A	ABY2.0	21	1	<i>l</i> : bitlength of numbers <i>k</i> : Symmetric security parameter

Dot Product

$X \cdot Y =$	$\sum_{i=1}^{d}$	$x_i \cdot $	Уi
---------------	------------------	--------------	----

	Pre-processing Communication	Online Communication (#elements)	
ABY	d· Triples	4d	
ABY2.0	d· Triples	2 - Indepe	ndent of dimension!

d: dimension of vector |Triples|: cost for generating one Beaver triple

Benchmarking and Applications

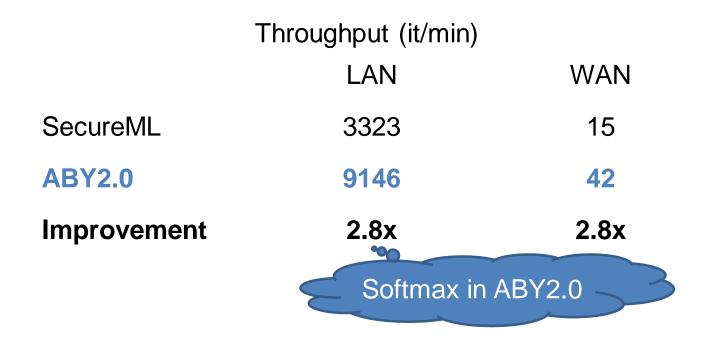
- Implemented ABY2.0 using the ENCRYPTO library
- > Protocols benchmarked over LAN (25 Gbps) and WAN (75 Mbps) with Google Cloud Platform
- Servers located in East Australia and South East Asia
- Average RTT is 0.056 ms for LAN and 60.19 ms for WAN
- ✤ Maxpool
- Improved AES S-Box
- Circuit-based Private Set Intersection

- Minimum Euclidean Distance
- ✤ Biometric Matching
- Privacy-preserving Machine Learning

PPML (LR Inference)

	Runtime (ms)	
	LAN	WAN
SecureML [MZ17]	1.69	504.96
ABY2.0	0.29	308.16
Improvement	5.6x	1.6x
Т	hroughput (queries/min))
	LAN	WAN
SecureML [MZ17]	1193	3.58
ABY2.0	42371	39.88
Improvement	35.5x	11.1x

Over Gisette dataset with 5000 features and up to 1,000,000 samples


PPML (NN Inference)

	Runtime (ms)		
	LAN	WAN	
SecureML [MZ17]	8.77	1760	
ABY2.0	2.66	744	
Improvement	3.3x	2.4x	_
	Throughput (queries/min)		
	LAN	WAN	
SecureML [MZ17]	40.89	0.12	
ABY2.0	30,795.17	91.57	
Improvement	753x	763x.	
		Dot Pro	duct in

Two hidden layers with 128 neurons each, and output of a vector with 10 elements on the MINIST dataset

PPML (NN Training)

Two hidden layers with 128 neurons in each layer on the MNIST dataset

Conclusion

- ✓ New 2PC protocol for securely evaluating a circuit over a ring
- ✓ Better mixed protocol conversions w.r.t. both rounds and online communication
- ✓ Constant online cost of 2 ring elements for N-input AND gates
- ✓ Set of efficient building blocks
 - ✓ Scalar product: online communication independent of the vector dimension
 - ✓ Round efficient adder using a combination of {2,3,4}-input AND gates
 - ✓ Matrix multiplication, equality test, comparison, bit extraction...

Thank You! encrypto.de/yalame

Bibliography

- [CCPS19] Harsh Chaudhari, Ashish Choudhury, Arpita Patra, and Ajith Suresh. ASTRA: High
 Throughput 3PC over Rings with Application to Secure Prediction. In CCSW,
 2019
- [DSZ15] Daniel Demmler, Thomas Schneider, and Michael Zohner. ABY– A Framework for Efficient Mixed Protocol Secure Two-party Computation. In NDSS, 2015
- [GMW87] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to Play Any Mental Game.In STOC, 1987
- [MZ17] Payman Mohassel and Yupeng Zhang. SecureML: A System for Scalable Privacy Preserving Machine Learning. In IEEE S&P, 2017
- [Yao86] Andrew Chi-Chih Yao. How to Generate and Exchange Secrets. In FOCS, 1986