
Swivel: Hardening WebAssembly against Spectre

Shravan Narayan, Craig Disselkoen, Daniel Moghimi, Sunjay Cauligi,

Evan Johnson, Zhao Gang, Anjo Vahldiek-Oberwagner, Ravi Sahita,

Hovav Shacham, Dean Tullsen, Deian Stefan

What is WebAssembly (Wasm)?

Platform-independent bytecode

Runs C/C++/Rust in the browser

Designed for isolation

Stack
local.get localidx
local.set localidx

Linear
Memory

load offset1 offset2
store offset1 offset2

Globals globals.get globalidx
globals.set globalidx

Control
Flow

load offset1 offset2
store offset1 offset2

Wasm is used outside the browser

...

Securing Firefox with WebAssembly

https://hacks.mozilla.org/2020/02/securing-firefox-with-webassembly/

Wasm on FaaS platforms

Wasm Client A

Mem

FaaS Runtime

FaaS host process

Wasm Client Z

Mem

…
Wasm Client B

Mem

How does Wasm enforce isolation?

Stack
local.get localidx
local.set localidx

Linear
Memory

load offset1 offset2
store offset1 offset2

Globals globals.get globalidx
globals.set globalidx

Control
Flow

load offset1 offset2
store offset1 offset2

void foo() {
// Safe stack
return;

}

if (CFI_valid(fn_ptr))
fnptr();

else
abort("CFI");

if (addr in heap)
read(*addr);

else
abort("OOB");

Problem: Spectre breaks Wasm isolation

Expected: false
Predicted: true

Eg: Using Spectre-PHT to break isolation

Wasm Client A

Mem

FaaS Runtime

FaaS host process

Wasm Client B

Mem
if (addr in heap) {
x = read(*addr);
y = read(x);

}

OOB read

Leaks data via cache

Expected: 0x1111111
Predicted: 0xbadc0de

Eg: Using Spectre-{BTB, RSB}

Wasm Client A

Mem

FaaS Runtime

FaaS host process

Wasm Client B

Mem
(*fnptr)();
return;

Speculative JOP/ROP

Alternately: Poisoning → Self exfiltration

Wasm Client A

Mem

FaaS Runtime

FaaS host process

Wasm Client Z

Mem

…
Wasm Client B

Mem

Branch Predictor State

Solution: Add fences!

We tried this: it’s too slow!

Our solution: Swivel

Swivel is a Wasm compiler that prevents:
• Breakout and poisoning attacks via Spectre-{PHT, BTB, RSB}

Swivel has two backends:
• Swivel-SFI: safety using only software checks

• Swivel-CET: safety with existing hardware extensions, allows hyperthreading

Fundamental problem

Wasm safety checks: function granularity

Speculative control flow can start anywhere
• Can bypass security checks

We need a new abstraction when compiling Wasm

Wasm code

func_foo:
...
mem_bounds_check <reg_mem>
call bar
...
load <reg_mem>
jmp ...D

D

Key abstraction: Linear blocks (LB)

Like basic blocks, except …
• Instruction sequences that end in a jump or call instruction

• Must include safety checks within the block

• Checks are speculatively safe

linear_block_2:
...
safe_mem_bounds_mask <reg_mem>
load <reg_mem>
jmp ...

Wasm code Wasm code with LB

func_foo:
...
mem_bounds_check <reg_mem>
call bar
...
load <reg_mem>
jmp ...

linear_block_1:
...
call bar

1. Terminator is
control flow / call inst

2. Checks are in same LB
as instruction

3. Checks are speculatively
safe masks

Swivel-SFI: Builds on Linear blocks (LB)

Spectre-PHT: LBs handles Spectre-PHT breakout attacks

Spectre-BTB: LBs ensure that BTB targets only predict LBs
• Problem: BTB may not be empty when we enter the sandbox

• Solution: Flush the BTB before entering the sandbox

Spectre-RSB: LBs ensure that RSB only predict LBs
• Problem: RSB underflow → predict arbitrary target

• Solution: Separate control stack + use jumps instead of returns

What about sandbox poisoning attacks?

Wasm Client A

Mem

FaaS Runtime

FaaS host process

Wasm Client Z

Mem

…
Wasm Client B

Mem

Branch Predictor State

Ideal: Flush the predictors!But we can’t flush the conditional branch predictors (CBP)!

What about sandbox poisoning attacks?

Wasm Client A

Mem

FaaS Runtime

Swivel-SFI ASLR

Wasm Client B

Mem

Randomize sandbox location

Wasm Client A

Mem

FaaS Runtime

Swivel-SFI Deterministic

Wasm Client B

Mem

BTB flush

CBP to BTB CBP to BTB

Swivel’s security guarantees

Evaluation

Performance
• Standard benchmark suites – SPEC 2006

• Macro benchmark – mock FaaS platform with Swivel services

• Baseline: Stock (insecure) Wasm

Security
• Implemented POC’s for Spectre-{PHT, BTB, RSB}

Fences are too slow!
Std fence solutions: 6x to 19x
Min fence solutions: 2x to 5x

SPEC 2006 benchmark

Swivel ASLR: < 10%
Swivel Det: 3% to 240%

FaaS platform benchmark

Swivel Protection
XML to JSON Templated HTML Image classification

Throughput Perf Loss Throughput Perf Loss Throughput Perf Loss

Stock (unsafe) 531 - 4.81k - 2.05 -

Swivel-SFI ASLR 459 13.6% 803 83.3% 2.03 1%

Swivel-SFI Det 350 34.1% 2.90k 39.7% 1.11 45.9%

Swivel-CET ASLR 498 6.2% 898 81.3% 2.02 1.5%

Swivel-CET Det 338 36.3% 3.50k 23.2% 1.26 38.5%

Summary

Swivel secures Wasm from Spectre attacks

Swivel-SFI: backward compatible approach

Swivel-CET: leverages hardware extensions, supports hyperthreading

Key abstraction: linear blocks

https://swivel.programming.systems

@ShrNarayan

http://swivel.programming.systems/

