
Carlo Meijer (RU), Veelasha Moonsamy (RUB), Jos Wetzels (Midnight Blue)

Where’s Crypto?
Automated Identification and Classification of
Proprietary Cryptographic Primitives in Binary Code

1. Introduction
2. Prior Work
3. Solution Overview
4. Experimental Evaluation
5. Conclusions

AGENDA
WHERE’S CRYPTO?: AUTOMATED IDENTIFICATION AND CLASSIFICATION OF PROPRIETARY CRYPTOGRAPHIC PRIMITIVES IN BINARY CODE

INTRODUCTION

• Despite popular consensus, usage of proprietary cryptography persists, especially in embedded
systems
• E.g. Physical Access Control, Telecommunications, Machine-to-Machine Authentication

• Presents significant obstacle to security evaluation efforts
• Certification & Compliance
• Secure Procurement
• Time-boxed Penetration Tests

• Manual RE effort required for determining presence & nature of proprietary algorithms. Might lead to
false conclusions of robustness, NDAs or court injunctions* leave other affected parties to repeat
expensive research

• There is a concrete industry need for automated detection of as-of-yet unknown cryptographic
primitives in binary code

BACKGROUND
INTRODUCTION

* BBC News. Car key immobiliser hack revelations blocked by uk court.
2013.
https://www.bbc.com/news/technology-23487928

1. Identification of as-of-yet unknown cryptographic algorithms falling within
relevant taxonomical classes.

2. Efficient support of large, real-world embedded firmware binaries.

3. No reliance on full firmware emulation or dynamic instrumentation due to issues
around platform heterogeneity and peripheral emulation in embedded systems.

CRITERIA
INTRODUCTION

PRIOR WORK

• Dedicated Functionality Identification
Identification of native cryptographic APIs, libraries or hardware functionality is
inherently incapable of detecting unknown algorithms.

• Data Signatures
Identification using constants (IVs, NUMS) & LUTs is unsuitable for unknown
algorithms as well as for known algorithms that don’t rely on fixed data or
generate LUTs dynamically.

LIMITATIONS OF PRIOR WORK
PRIOR WORK

Initial values revealing MD5

• Code Heuristics
1. Matching mnemonic-constant tuples which suffers from essentially the same

drawbacks as data signatures for our purposes.
2. Matching routines with high ratios of bitwise arithmetic (BAR) instructions.

Main drawbacks here are the lack of granular taxonomical identification as
well as FP susceptibility, especially on embedded systems where heavy BAR
usage is present as part of e.g. peripheral interaction.

• Deep Learning
Usage of Dynamic Convolutional Neural Networks has been proposed but this
approach is inherently unable to classify unknown algorithms and relies on
dynamic binary instrumentation.

LIMITATIONS OF PRIOR WORK
PRIOR WORK

• Data Flow Analysis

LIMITATIONS OF PRIOR WORK
PRIOR WORK

1. Identification based on static relation between functions and their I/Os.
Taint analysis and entropy change evaluation.
Comparison of emulated/symbolically executed function I/O to collection of
reference implementations / test vectors.

2. Usage of dynamic instrumentation & symbolic execution to translate
candidate algorithms into Boolean formulas for comparison to reference
implementations.

Both approaches are unsuitable due to their reliance on emulation/dynamic
instrumentation and/or inherent inability to detect unknown algorithms.

• Data Flow Analysis – DFG Isomorphism
Finally, there is the DFG isomorphism approach as proposed by Lestringant et al.*
• Generate a DFG from assembly instructions.
• Compare it to that of a known algorithms using Ullmann's subgraph

isomorphism algorithm.

LIMITATIONS OF PRIOR WORK – DFG ISOMORPHISM
PRIOR WORK

* P. Lestringant et al. Automated identification of cryptographic primitives in
binary code with data flow graph isomorphism. 2015.

No systematic way to deal with data-dependent branches.
Approach is limited to linear sequences of instructions:
1. No strategy for code fragment selection is proposed.

Authors propose a set of heuristics, e.g. analyzing each basic
block.

2. Class of cryptographic primitive often only becomes clear
once analysis incorporates conditional instructions,
consider:

Suppose we have a proprietary stream cipher σ, containing a
KSG operating in a loop driven by a length parameter. DFGs
computed from basic blocks will represent at most a single
iteration and hence do not show stream cipher characteristics.

LIMITATIONS OF PRIOR WORK – DFG ISOMORPHISM
PRIOR WORK

* P. Lestringant et al. Automated identification of cryptographic primitives in
binary code with data flow graph isomorphism. 2015.

Which path?

• Observation: the vast majority of proprietary cryptography falls within established primitive classes.

• We aim to develop structural signatures capturing a taxonomical class while disregarding algorithm’s
particulars. We developed an instrumental taxonomy based on prior work* in order to facilitate this.

• Our approach leverages this taxonomy to specify structural signatures by building on two
fundamentals:
• Data Flow Graph (DFG) isomorphism
• Symbolic Execution

APPROACH
INTRODUCTION

* R. Avanzi. A salad of block ciphers. 2016.
L. Keliher. Linear cryptanalysis of substitution-permutation networks. 2003.
C. Manifavas et al. A survey of lightweight stream ciphers for embedded systems. 2016.
A. Menezes et al. Handbook of applied cryptography. 1996.

1. Limitations of prior work are overcome by combining subgraph isomorphism with symbolic
execution, rendering it suitable for identifying unknown ciphers. To the best of our
knowledge there is no prior work in industry or academia that addresses this problem.

2. We propose a new domain-specific language (DSL) for defining structural properties of
cryptographic primitives, along with several examples.

3. We provide a FOSS PoC implementation* and the corresponding evaluation in terms of
analysis time and accuracy against real-world binaries.

CONTRIBUTION
INTRODUCTION

* https://github.com/wheres-crypto/wheres-crypto

https://github.com/wheres-crypto/wheres-crypto

SOLUTION OVERVIEW

A schematic overview of the identification/classification pipeline

OVERVIEW
SOLUTION OVERVIEW

Build a graph incrementally as we pass over instructions

DATA FLOW GRAPH CONSTRUCTION
SOLUTION OVERVIEW

Node determined by operand type
• Immediate: constant value.

• Register: create an edge to the node
representing the value last written to that
register.

• Memory: create LOAD/STORE operations.

Semantically equivalent code often yields different DFGs, due to architectural,
compiler- and implementation particularities.
• Problematic because we’d like to compare it to a single reference DFG.

• Normalization maps different variants to a single canonical form.

1. Operation simplification

2. Common subexpression elimination

3. Memory access

4. Associativity merging

DATA FLOW GRAPH CONSTRUCTION
SOLUTION OVERVIEW

What path should we follow when we encounter a conditional instruction?

• In some cases, the evaluation outcome is determined by its preceding instructions
→ determined condition.

• In other cases, we don’t know, e.g. when it depends on an unknown variable, e.g. a function parameter
→ underdetermined condition.

• For underdetermined conditions, we have to choose the evaluation outcome: true, false, or both (i.e.
create two graphs):

SYMBOLIC EXECUTION
SOLUTION OVERVIEW

a = 7 a ≠ 7

Always taking both paths maximizes code coverage but is unfeasible.
• We have to come up with a strategy when to do so → path oracle.

• Our goal: obtain a DFG representing n iterations of a cryptographic primitive.

• Consider the following toy example:
• The conditional jump is underdetermined,

as it depends on a variable.

SYMBOLIC EXECUTION
SOLUTION OVERVIEW

Conditional jump

Each encounter with the conditional instruction, we are met with two options:
• 0 < R3: true → perform another iteration, false → return immediately.

• 1 < R3: true → perform another iteration, false → return immediately.
• 2 < R3: true → perform another iteration, false → return immediately.

• …

• We want a generic approach that gives us n iterations
of a primitive, so:

• On the first encounter, we take both execution paths:
→ The false case will immediately return.
→ The true case takes us back to another underdetermined

condition at the exact same execution address.

• For the second encounter and beyond, we keep replicating
the decision that caused the revisit to occur until the nth
visit, and then take the opposite path, i.e. return.

SYMBOLIC EXECUTION
SOLUTION OVERVIEW

Conditional jump

Finally, we obtain two DFGs:
• One representing 0 iterations, the other representing n.

SYMBOLIC EXECUTION
SOLUTION OVERVIEW

0 iterations n iterations (n=4)

Besides the actual semantics, the resulting DFG contains other information:
• Temporary LOADs/STOREs from/to the stack.

• Expressions translated through normalization, leaving their source nodes unused.

We consider a leaf node to be part of semantics if either:
• It is the return value.

• It is a STORE operation to an address not relative to the stack pointer.

• It is a CALL operation.

We continue to remove leaf nodes not part of semantics until we hit a fixed point.
Then, all nodes are either leaves part of semantics, or an intermediary result.

PURGING PROCESS
SOLUTION OVERVIEW

Cryptographic primitive signatures must be expressed in some way
• The signature is ultimately nothing more than a DFG of a cryptographic primitive, which is fed to the

subgraph isomorphism algorithm.

• In principle, we could simply generate
it from assembly instructions as well.

• However, we wouldn’t be able to
express wildcards and more.
→ Domain-specific language (DSL).

SIGNATURE EXPRESSION
SOLUTION OVERVIEW

The high level state machine The `expression’ type Example: (N)LFSR

We use Ullmann’s subgraph isomorphism*
algorithm.
• Known to be NP-complete.

• Yet, performs quite well for our purpose.

SUBGRAPH ISOMORPHISM
SOLUTION OVERVIEW

* Julian R Ullmann. An algorithm for subgraph isomorphism. 1976.

An LFSR signature is found to exist
as a subgraph, highlighted in red.

To showcase the applicability of our method, we propose several example signatures:

• Algorithm-specific ones:
• AES, MD5, XTEA and SHA1

• Generic ones:

• Feistel network

• (Non-)Linear feedback shift register

• Sequential block permutation

We use these signatures in order to evaluate performance in terms of accuracy and
running time.

SIGNATURES
SOLUTION OVERVIEW

EXPERIMENTAL
EVALUATION

• We evaluate accuracy & running time on following test sets*:
• Sample set used in prior work by Lestringant et al.

→ Evaluate algorithm-specific identification performance without reliance on heuristics.

• OpenWRT firmware shared libraries & executables
→ Evaluate generic signature identification performance on redistributable binaries, easy to reproduce results.

• Public proprietary cipher implementations
→ Evaluate generic signature identification performance on proprietary ciphers publicly available

in source form, harder to reproduce.

• Collection of real-world embedded firmwares (PLCs, ECUs)
→ Evaluate generic signature identification performance on real-world embedded firmwares, not reproducible.

• Evaluation is conducted on a mid-range AMD Ryzen 3600 machine with 16 GB of
RAM.

SETUP
EXPERIMENTAL EVALUATION

• Recall: n is the target number of algorithm iterations contained within a DFG. Value for n
should be low, as it correlates with size of constructed DFGs, but high enough to
accommodate all signatures.

• (N)LFSR & sequential block permutation classifiers are affected by this.
• Latter case works by identifying two successive instances of compression function c. Since

normalization promotes numeric simplification, initialization & finalization steps may get merged
with first & last instance of c, respectively.

• Thus, n = 4 allows for at least two successive instances of c in the DFG while choosing n > 4 does not
offer advantages in this regard.

• Wrt (N)LFSRs, falsely identifying 4 successive rounds is highly unlikely.

• Hence, we pick n = 4 for our evaluation.

SETUP
EXPERIMENTAL EVALUATION

• We use algorithm-specific signatures in order to warrant a fair comparison.

• All primitives are correctly identified.
• No heuristics for code fragment selection required, where Lestringant et al. does.

COMPARISON WITH LESTRINGANT ET AL.
EXPERIMENTAL EVALUATION

• Nearly all primitives
identified using generic signatures.

PERFORMANCE ON OPENWRT BINARIES
EXPERIMENTAL EVALUATION

• Publicly available proprietary algorithms:
• Again, nearly all primitives identified using generic signatures.

• Analysis of firmware images of embedded devices:
• All primitives correctly identified, except Megamos.
• Analysis reveals that reliance on implicit flows causes the identification to fail.

PERFORMANCE ON PROPRIETARY ALGORITHMS
EXPERIMENTAL EVALUATION

Publicly available proprietary algorithms Firmware images

CONCLUSIONS

• Despite solid public alternatives, proprietary crypto has persisted (especially in
embedded systems), posing a time-consuming, labor-intensive obstacle to security
analysis efforts.

• Solution Criteria
• Should be capable of automatically & efficiently identifying unknown cryptographic

algorithms in large, real-world embedded firmwares.
• Should not rely on emulation or binary instrumentation.

• No prior work exists that satisfies these criteria.

CONCLUSIONS & FUTURE WORK
CONCLUSIONS

• Our novel approach
• Combines DFG isomorphism with symbolic execution
• Introduces specialized DSL to enable identification of unknown cryptographic algorithms
• Is architecture- and platform-agnostic
• Performs well in terms of accuracy & running time on real-world firmware images

CONCLUSIONS & FUTURE WORK
CONCLUSIONS

Thank you
• See the paper ` Where’s Crypto?: Automated Identification and Classification of Proprietary

Cryptographic Primitives in Binary Code`
• FOSS reference code

https://github.com/wheres-crypto/wheres-crypto

THANK YOU
WHERE’S CRYPTO?: AUTOMATED IDENTIFICATION AND CLASSIFICATION OF PROPRIETARY CRYPTOGRAPHIC PRIMITIVES IN BINARY CODE

Carlo Meijer
Radboud University Nijmegen

c.meijer@midnightblue.nl
https://cs.ru.nl/~cmeijer/

Veelasha Moonsamy
Ruhr University Bochum

email@veelasha.org
https://veelasha.org

Jos Wetzels
Midnight Blue Labs

j.wetzels@midnightblue.nl
https://midnightblue.nl

https://github.com/wheres-crypto/wheres-crypto

