SWIFT: Super-fast and Robust
Privacy-Preserving Machine Learning

Nishat Koti, Mahak Pancholi, Arpita Patra, Ajith Suresh

Indian Institute of Science, Bangalore

30th USENIX Security Symposium

*Full Version: https://eprint.iacr.org/2020/592 Acknowledgements: Nishat Koti — Cisco PhD Fellowship, Mahak Pancholi - Cisco MTech Fellowship, Ajith Suresh - Google PhD Fellowship,
Arpita Patra - SERB MATRICS (Theoretical Sciences) Grant 2020 and Google India Al/ML Research Award 2020.



Privacy in

 Machine Learning (ML)

* Automobile, Healthcare, Finance, .....

achine Learning

Structure .
Image Customer Retention

Discovery Classification

Meaningful
Compression

Idenity Fraud n q . .
Fe‘a.turé v Tra Classification Diagnostics
Elicitation Detection

Big data Dimensionality
Visualistaion Reduction

Advertising Popularity
Prediction

Recommender Unsupervised SuperVISed

Systems .
Learning Learning Weather

Forecasting

Regression

Clustering H
M ac h I n e Population Market
Growth Forecasting
.
S | carning

Targetted
Marketing

Prediction
Estimating

life expectancy

Real-time decisions Game Al

Reinforcement
Learning

Robot Navigation Skill Acquisition

Learning Tasks

Image credits: Abdul Wahid


https://www.slideshare.net/awahid/big-data-and-machine-learning-for-businesses

4\N

-

|\|"""‘“‘WIWQ‘

(

e
n

lab

Privacy in Machine Learning

 Machine Learning (ML)

 Automobile, Healthcare, Finance, .....

* Phases: Training & Inference
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rls Privacy in Machine Learning
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rls Privacy in Machine Learning

* Privacy of the data ??
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rls Secure Outsourced Computation (SOC)
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rls Secure Outsourced Computation (SOC)

* Average end users benefit
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rls Secure Outsourced Computation (SOC)
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rls Secure Outsourced Computation (SOC)

* Desired properties:
* Privacy
* Efficiency

e Robustness
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rls Secure Outsourced Computation (SOC)
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ris Secure Multiparty Computation [Yao’82]

their inputs
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ris Secure Multiparty Computation [Yao’82]

* Properties of MPC: @ @

= Correctness — Parties should obtain the correct
function output




ris Secure Multiparty Computation [Yao’82]

* Properties of MPC: @ @

= Privacy — Nothing more than the function
output should be revealed




ris Secure Multiparty Computation [Yao’82]

e Adversary

* Semi-honest vs Malicious




ris Secure Multiparty Computation [Yao’82]

e Adversary
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ris Secure Multiparty Computation [Yao’82]

* Security

e Abort




ris Secure Multiparty Computation [Yao’82]

* Security

* Fairness




ris Secure Multiparty Computation [Yao’82]

* Security

e Guaranteed Output Delivery (GOD)







SWIFT Protocol
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O MPC for small population
A efficiency and simplicity




* Honest-majority setting

* at most 1 corruption

SWIFT Protocol




* Guaranteed Output Delivery

SWIFT Protocol




SWIFT Protocol

3PC and 4PC protocols for malicious corruption

Honest-majority setting

 at most 1 corruption
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Guaranteed Output Delivery

Preprocessing Model

* preprocessing phase

O input-independent computation
O relatively slow and expensive
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O input-dependent computation

O super fast

* Preprocessing Model
* online phase




SWIFT Protocol:
Results

e Communication cost
per multiplication gate

Setting Reference Pre- Online Security
processing (#elements)
(#elements)
Boyle et al. - 3 GOD
19
3PC BLAZE [Ps20] 3 3 Fair
SWIFT (3PC) 3 3 GOD
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SWIFT Protocol: Results in PPML

 PPML Building Blocks

* Dot Product
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SWIFT Protocol: Results in PPML

Setting Reference Pre-processing Online Security
(#elements) (#elements)
3PC BLAZE [ps20] 3d 3 Fair
* Dot Product SWIFT (3PC) 3 3 GOD
Trident [CRs20] 3 3 Fair
4PC FLASH [BCPS20] 6 6 GOD
SWIFT (4PC) 3 3 GOD

Communication cost per dot product (d-length vectors)

— — d
rTOY = Zi:l Lili




* Dot Product

SWIFT Protocol: Results in PPML

Setting Reference Pre-processing Online Security
(#elements) (#elements)
3PC BLAZE [Ps20] 3d Fair
SWIFT (3PC) 3 GOD

Communication cost per dot product (d-length vectors)

— — d
rTOY = Zi:l Lili




SWIFT Protocol: Results in PPML

Dot Product

Truncation

Comparison

Bit to arithmetic conversions

Non-linear activation functions

Setting Reference Pre-processing Online Security
(#elements) (#elements)
3PC BLAZE [ps20] 3d 3 Fair
SWIFT (3PC) 3 3 GOD
Trident [CRS20] 3 3 Fair
4PC FLASH [BCPS20] 6 6 GOD
SWIFT (4PC) 3 3 GOD

Communication cost per dot product (d-length vectors)
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SWIFT Joint Message Passing (jmp) primitive
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SWIFT Joint Message Passing (jmp) primitive
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SWIFT Joint Message Passing (jmp) primitive
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SWIFT Joint Message Passing (jmp) primitive
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3PC Joint Message
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1 if H(m) # H(m')

0 otherwise

Passing (jmp) primitive




ris 3PC Joint Message Passing (jmp) primitive
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0 otherwise

fb=1




ris 3PC Joint Message Passing (jmp) primitive

[N\
S1 @ b — 1 if H(m) # H(m/)
\ 10 otherwise
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3PC Joint Message
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1 if H(m) # H(m')

0 otherwise

Passing (jmp) primitive




3PC Joint Message Passing (jmp) primitive

Send phase of jmp




ris 3PC Joint Message Passing (jmp) primitive

o {1 if H(m) # H(m’)

0 otherwise

Verify phase of jmp




ris 4PC Joint Message Passing (jmp) primitive
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ris 4PC Joint Message Passing (jmp) primitive
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Online (TP in x103) \ Total
Setting Ref.

] Latency (s) | Com [KB] ‘ TP ‘ Latency (s) | Com [KB]
3PC | BLAZE 0.74 50.26 | 4872.38 0.93 203.35
Training | SWIFT 1.05 50.32 | 4872.38 1.54 203.47
3PC | BLAZE 0.66 0.28 | 7852.05 0.84 0.74
Inference | SWIFT 0.97 0.34 6076.46 1.46 0.86
SW | FT: 4PC | FLASH 0.83 88.93 5194.18 1.11 166.75
Training | SWIFT 0.83 41.32 | 11969.48 1.11 92.91
: 4PC | FLASH 0.76 0.50 | 7678.40 1.04 0.96
e n C I I I a r I n g Inference | SWIFT 0.75 0.27 | 15586.96 1.03 0.57

Table 6: Logistic Regression training and inference. TP is given in
(#1t/min) for training and (#queries/min) for inference.



SWIFT:
Benchmarking

| | Online | Total
Network Ref.

| | Latency (s) | Com [MB] TP | Latency (s) | Com [MB]
NN-1 BLAZE 1.92 0.04 | 49275.19 2.35 0.11
SWIFT 2.22 0.04 | 49275.19 2.97 0.11
NN-2 BLAZE 4.77 3.54 536.52 5.61 9.59
) SWIFT 5.08 3.54 536.52 6.22 9.59
NN-3 BLAZE 15.58 52.58 36.03 18.81 148.02
SWIFT 15.89 52.58 36.03 19.29 148.02

Table 7: 3PC NN Inference. TP is given in (#queries/min).

NN-1: [MR18, PS20] NN-2: [LBBH98] NN-3: [S714]
| Online | Total
Network Ref.

| | Latency (s) | Com [MB] TP | Latency (s) | Com [MB]
NN-1 FLASH 1.70 0.06 59130.23 2.17 0.12
SWIFT 1.70 0.03 | 147825.56 2.17 0.06
NN-2 FLASH 3.93 5.51 653.67 4.71 10.50
SWIFT 3.93 2.33 1672.55 4.71 5.40
NN-3 FLASH 12.65 82.54 43.61 15.31 157.11
) SWIFT 12.50 35.21 110.47 15.14 81.46

Table 8: 4PC NN Inference. TP is given in (#queries/min).
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