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» Graph Statistics

» Is important to understand a connection pattern in a social graph.

» E.g., Degree distribution
» Degree = #edges connected to a node.
» Degree distribution = distribution of #friends in a social network.
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» E.g., Subgraph Counts
» Triangle is a set of 3 nodes with 3 edges.
» k-star consists of a central node connected to k other nodes.

Shape] Name |Count

(&) Triangle 2
(/X) 2-star 15
OE\O 3-star 6

» E.g., Clustering Coefficient
» Probability that two friends of a user will also be a friend.
» =3 X #triangles | #2-stars (40% in the above graph).

ﬁ Will be a friend (after friend suggestion)?
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» Privacy Issues
» Triangle/k-star counts can reveal (sensitive) friendship information.
» E.g., Suppose that v, is an (honest-but-curios) adversary.

| know all edges between v, ... v,. ]

U3 Who are friends with v, ?

vs)

Shape| Name Count

,/' \< 2-star 20
leak ) Friends of v; are v3, vy, vg.
(&) Triangle S

We need to obfuscate #k-stars and #triangles to strongly protect user privacy.
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» Local Differential Privacy (LDP)

» User obfuscates her personal data by herself (i.e., no trusted third party).
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Strong Privacy

(1) Privacy is protected against attackers with any background knowledge.
(2) Original data are not leaked from DB (unlike centralized DP).

» Our Contributions

» We provide algorithms for #k-stars and #triangles under LDP with utility guarantees.

» In particular, we show upper/lower-bounds on the estimation error.
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» Graph

» Can be represented as an adjacency matrix A (1: edge, 0: no edge).
» User v, knows her neighbor list a; (i-th row of A).

adjacency matrix A
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» Local Graph Model

» User v, obfuscates her neighbor list a, and sends noisy data R.(a;) to a server.
randomizer

v, a, €{0,1}" R,

v, a, € {0,1}" R




» Edge LDP [Qin+, CCS17]

» Protects a single bit in a neighbor list a € {0,1}" with privacy budget «¢.

Randomizer R provides ¢-edge LDP if for all a,a’ € {0,1}" that differ in one bitand all y € Y,
Pr[R(a) = y] < e®Pr[R(@’) = y]
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» 1 edge affects 2 elements of A - each edge is protected with at most 2¢.
» Our triangle algorithm uses only B —> each edge is protected with «¢.

adjacency matrix A
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» Our Algorithm for k-Stars (Overview)
(1) Each user v; adds the Laplacian noise to her k-star count r;. 2> edge LDP.
(2) Server calculates the sum of noisy counts as an estimate.

[ d.b ry (#2-stars) =3F %

» Upper-Bound (n: #users, d,,,4,. max degree (K n))
» For a fixed ¢, the expected 12-loss (square error) of our estimate is: O(nd,%,ka}z :
» Later, we prove that this is order optimal in the one-round LDP model.




» Triangles
» More challenging because a user cannot see an edge between others.

» Our Algorithm for Triangles (1st Round)
» Each user applies RR to each bit of her neighbor list. > edge LDP.
» Each user sends noisy edges. Server publishes the noisy graph G'.

— RR (Randomized Response) —— 1st round
8 v, - OISy edges — noisy graph G’ —
1(edge) L . 1 N * *
1 —><: W
0 (no edge > 0
( 9°) b v noisy edges




» Our Algorithm for Triangles (2nd Round)
» Each user can count triangles including one noisy edge using noisy graph G'.
» Each user sends #noisy triangles (with post-processing) + Lap. - edge LDP.
» Server calculates an unbiased estimate of #triangles.

2nd round

noisy triangles + Lap.

‘V1 #\A
° BB

— noisy graph G’ —

n s

unbiased
estimate

Vn #noisy triangles + Lap.

—— noisy edge

» Upper-Bound (n: #users, d,,,4,. max degree (K n)) A)
» All edges are noisy (1st round) - Only one edge is noisy (2nd round).
» Expected [2-loss is reduced from 0(n*) (1st round) to 0(nd3,,,) (2nd round).
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Lower Bounds

» Overview

» Our k-star algorithm achieves the 12-loss of 0(nd2X;?) (n: #users, dpay < 1).
» We show that the factor of n is necessary for k-stars and triangles in one-round LDP.

» How?
» We introduce a set of graphs called “independent cube”.
» We show there is a lower bound for the set of graphs.




Lower Bounds

» Independent Cube (Informal)
» Consider a query f (e.g. #triangles, #k-stars) on a graph G with n nodes.
» Prepare edges M s.t. each node has one edge (i.e. perfect matching).

» We say a set of graphs A forms an (n, D)-independent cube if
adding edge e € M independently increases (or decreases) f by C, = D.

— (4,2)-independent cube A —
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Lower Bounds

There exist independent cubes for k-stars and triangles (= our paper).

e

Lower-Bounds for Independent Cubes

In one-round LDP, the expected 12-loss for an (n, D)-independent cube is: Q(nD?).

v, a, €{0,1}"

v, a, € {0,1}" —




Lower Bounds

» Upper/Lower-Bounds
» In k-stars, our one-round local algorithm is order optimal.
» Any one-round local algorithm is outperformed by the centralized one.
» Yet, our algorithms achieve 0(n) (when we ignore d,, ., ), which is small.

Expected 12-loss (n: #users, d.,, ;.. max degree (K n), ¢: fixed)

Centralized

One-Round Local

Two-Rounds
Local

Upper-Bound

Lower-Bound

Upper-Bound

Upper-Bound

kstars | 0(a2?) | [@(dzin) |==lo(azkn) | :
triangles 0(d?,,) Q(d2,4m) 0(n%) 0(d3,.xn)




Contents

LDP on Graphs

(Local Graph Model, Edge LDP)

Our Algorithms

(Our Algorithms for k-Stars/Triangles, Upper-Bounds)

Lower Bounds

Experiments




» IMDB (Internet Movie Database)
» Graph with 896308 nodes (actors).
» Average degree = 63.7.

» Orkut Dataset
» Social graph with 3072441 nodes (users).
» Average degree = 38.1. More sparse than IMDB.

» For each dataset, we randomly selected n nodes from the whole graph.



» Result 1: 12-loss
» In triangles, Local2R (2-rounds) outperforms Local1R (1-round).
» Difference is larger in Orkut because it is more sparse (d,,,4, IS smaller).
» Local is outperformed by Central.
» As nincreases, the 12-loss increases < true counts (#triangles and #k-stars) increase.
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» Result 2: Relative Error

. |true count —estimate| .
» Relative error (= P —— ) decreases as n increases.
» Our algorithms achieve relative error «< 1 (high utility) when € = 1 or 2.
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Conclusions

» This Work

» For k-stars, we provided an order optimal algorithm.
» For triangles, we showed an additional round significantly improves utility.
» We provided new lower-bounds for k-stars and triangles.

» Future Work
» Algorithms for other subgraph counts; e.g., #cliques, #k-hop paths.

N

3-hop path

clique



Thank you for your attention!

Q&A

jimola at eng.ucsd.edu, takao-murakami at aist.go.jp
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