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#𝑘𝑘-stars



 Graph Statistics
 Is important to understand a connection pattern in a social graph.
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 E.g., Degree distribution
 Degree = #edges connected to a node.
 Degree distribution = distribution of #friends in a social network.
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 E.g., Subgraph Counts
 Triangle is a set of 3 nodes with 3 edges.
 𝒌𝒌-star consists of a central node connected to 𝑘𝑘 other nodes.
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 E.g., Clustering Coefficient
 Probability that two friends of a user will also be a friend.
 = 3 × #triangles / #2-stars (40% in the above graph).

Will be a friend (after friend suggestion)?
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 Privacy Issues
 Triangle/𝑘𝑘-star counts can reveal (sensitive) friendship information.
 E.g., Suppose that 𝑣𝑣2 is an (honest-but-curios) adversary.

𝑣𝑣1
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𝑣𝑣2

𝑣𝑣3 𝑣𝑣4

𝑣𝑣6 𝑣𝑣7

𝑣𝑣5

I know all edges between 𝑣𝑣3 … 𝑣𝑣7.
Who are friends with 𝑣𝑣1?

Friends of 𝑣𝑣1 are 𝑣𝑣3, 𝑣𝑣4, 𝑣𝑣6. 

We need to obfuscate #k-stars and #triangles to strongly protect user privacy.
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 Local Differential Privacy (LDP)
 User obfuscates her personal data by herself (i.e., no trusted third party). 

ℛoriginal data x noisy data y
x1 x2 x3 x4 x5

database D

f(D)+Lap.

f

Local DP Centralized DP

illegal access
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randomizer

(1) Privacy is protected against attackers with any background knowledge. 
(2) Original data are not leaked from DB (unlike centralized DP).

Strong Privacy

 Our Contributions
 We provide algorithms for #𝑘𝑘-stars and #triangles under LDP with utility guarantees. 
 In particular, we show upper/lower-bounds on the estimation error.
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𝑣𝑣4

 Graph
 Can be represented as an adjacency matrix 𝐀𝐀 (1: edge, 0: no edge).
 User vi knows her neighbor list 𝐚𝐚i (𝑖𝑖-th row of 𝐀𝐀).

 Local Graph Model
 User vi obfuscates her neighbor list 𝐚𝐚i and sends noisy data ℛi(𝐚𝐚i) to a server.

𝑣𝑣3

𝑣𝑣1

𝑣𝑣2

0 1 1 0
1 0 1 1
1 1 0 1
0 0 1 0

adjacency matrix 𝐀𝐀
𝑣𝑣1

𝑣𝑣2

𝑣𝑣3

𝑣𝑣4

graph 𝐺𝐺 = 𝐚𝐚1

𝑣𝑣1 𝑣𝑣2 𝑣𝑣3 𝑣𝑣4

ℛ1𝑣𝑣1

ℛn𝑣𝑣𝑛𝑛

ℛ1(𝐚𝐚1)𝐚𝐚1 ∈ {0,1}𝑛𝑛

ℛn(𝐚𝐚n)𝐚𝐚n ∈ {0,1}𝑛𝑛

randomizer

LDP on Graphs



 Edge LDP [Qin+, CCS17]
 Protects a single bit in a neighbor list 𝐚𝐚 ∈ {0,1}𝑛𝑛 with privacy budget 𝜀𝜀.

Pr[ℛ 𝐚𝐚 = 𝑦𝑦] ≤ 𝑒𝑒𝜀𝜀Pr[ℛ 𝐚𝐚′ = 𝑦𝑦]

Randomizer ℛ provides 𝜀𝜀-edge LDP if for all 𝐚𝐚, 𝐚𝐚′ ∈ {0,1}𝑛𝑛 that differ in one bit and all 𝑦𝑦 ∈ 𝒴𝒴, 

ℛ
neighbor list 𝐚𝐚 ∈ {0,1}𝑛𝑛 noisy data y ∈ 𝒴𝒴

0 1 1 0
1 0 1 1
1 1 0 1
0 0 1 0

adjacency matrix 𝐀𝐀
𝑣𝑣1

𝑣𝑣2

𝑣𝑣3

𝑣𝑣4

𝑣𝑣1 𝑣𝑣2 𝑣𝑣3 𝑣𝑣4

 1 edge affects 2 elements of 𝐀𝐀  each edge is protected with at most 2𝜀𝜀 .
 Our triangle algorithm uses only         each edge is protected with 𝜀𝜀.

LDP on Graphs
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Our Algorithms
(Our Algorithms for 𝒌𝒌-Stars/Triangles, Upper-Bounds)
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 Our Algorithm for 𝑘𝑘-Stars (Overview)
(1) Each user 𝑣𝑣𝑖𝑖 adds the Laplacian noise to her 𝑘𝑘-star count 𝑟𝑟𝑖𝑖.  edge LDP.
(2) Server calculates the sum of noisy counts as an estimate.

𝑟𝑟1 (#2-stars) =3

𝑣𝑣1

𝑣𝑣𝑛𝑛

(1) 𝑟̂𝑟1 = 𝑟𝑟1 + Lap.

(1) 𝑟̂𝑟𝑛𝑛 = 𝑟𝑟𝑛𝑛 + Lap.

(2) ∑𝑖𝑖=1𝑛𝑛 𝑟̂𝑟𝑖𝑖
𝑣𝑣1

Our Algorithms

 Upper-Bound (𝑛𝑛: #users, 𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚: max degree (≪ 𝑛𝑛))
 For a fixed 𝜀𝜀, the expected l2-loss (square error) of our estimate is: 𝑶𝑶 𝒏𝒏𝒅𝒅𝒎𝒎𝒎𝒎𝒎𝒎𝟐𝟐𝟐𝟐−𝟐𝟐 .
 Later, we prove that this is order optimal in the one-round LDP model.



𝑣𝑣4

 Triangles
 More challenging because a user cannot see an edge between others.

𝑣𝑣1 𝑣𝑣2

𝑣𝑣3

𝑣𝑣6 𝑣𝑣7

𝑣𝑣5

 Our Algorithm for Triangles (1st Round)
 Each user applies RR to each bit of her neighbor list.  edge LDP.
 Each user sends noisy edges. Server publishes the noisy graph 𝐺𝐺𝐺.

#2-stars =3

#triangles = ?

Our Algorithms

𝑣𝑣1

𝑣𝑣𝑛𝑛

noisy edges

noisy edges

RR (Randomized Response)

1 (edge)

0 (no edge)

𝑝𝑝

1 − 𝑝𝑝

𝑝𝑝

1

0

noisy graph 𝐺𝐺𝐺
1st round



2nd round

 Our Algorithm for Triangles (2nd Round)
 Each user can count triangles including one noisy edge using noisy graph 𝐺𝐺𝐺.
 Each user sends #noisy triangles (with post-processing) + Lap.  edge LDP.
 Server calculates an unbiased estimate of #triangles.

Our Algorithms

𝑣𝑣1

𝑣𝑣𝑛𝑛

#noisy triangles + Lap.

unbiased
estimate

#noisy triangles + Lap.

 Upper-Bound (𝑛𝑛: #users, 𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚: max degree (≪ 𝑛𝑛))
 All edges are noisy (1st round)  Only one edge is noisy (2nd round).
 Expected l2-loss is reduced from 𝑂𝑂 𝑛𝑛4 (1st round) to 𝑶𝑶 𝒏𝒏𝒅𝒅𝒎𝒎𝒎𝒎𝒎𝒎𝟑𝟑 (2nd round).

𝑣𝑣1

𝑣𝑣3

𝑣𝑣6
noisy edge

𝑣𝑣4

= 2noisy graph 𝐺𝐺𝐺
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 Overview
 Our 𝑘𝑘-star algorithm achieves the l2-loss of 𝑂𝑂 𝒏𝒏𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚

2𝑘𝑘−2 (𝑛𝑛: #users, 𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚 ≪ 𝑛𝑛).
 We show that the factor of 𝒏𝒏 is necessary for 𝑘𝑘-stars and triangles in one-round LDP.

 How?
 We introduce a set of graphs called “independent cube”.
 We show there is a lower bound for the set of graphs.

Lower Bounds



 Independent Cube (Informal)
 Consider a query 𝑓𝑓 (e.g. #triangles, #𝑘𝑘-stars) on a graph 𝐺𝐺 with 𝑛𝑛 nodes.
 Prepare edges 𝑀𝑀 s.t. each node has one edge (i.e. perfect matching).

 We say a set of graphs 𝒜𝒜 forms an 𝒏𝒏,𝑫𝑫 -independent cube if
adding edge 𝑒𝑒 ∈ 𝑀𝑀 independently increases (or decreases) 𝑓𝑓 by 𝐶𝐶𝑒𝑒 ≥ 𝐷𝐷.

𝑣𝑣3 𝑣𝑣4

𝑣𝑣1 𝑣𝑣2

𝑀𝑀

𝑣𝑣3 𝑣𝑣4

𝑣𝑣1 𝑣𝑣2

𝐺𝐺1

𝑓𝑓 𝐺𝐺1 = 0

𝑣𝑣3 𝑣𝑣4

𝑣𝑣1 𝑣𝑣2

𝐺𝐺4

𝑓𝑓 𝐺𝐺4 = 5

𝑣𝑣3 𝑣𝑣4

𝑣𝑣1 𝑣𝑣2

𝐺𝐺2

𝑓𝑓 𝐺𝐺2 = 3

𝑣𝑣3 𝑣𝑣4

𝑣𝑣1 𝑣𝑣2

𝐺𝐺3

𝑓𝑓 𝐺𝐺3 = 2

4,2 -independent cube 𝒜𝒜

+3

+3

+2+2

+(𝑣𝑣3,𝑣𝑣4)

+(𝑣𝑣1,𝑣𝑣2)

𝐶𝐶(𝑣𝑣1,𝑣𝑣2) = 2
𝐶𝐶(𝑣𝑣3,𝑣𝑣4) = 3

Lower Bounds



There exist independent cubes for 𝒌𝒌-stars and triangles ( our paper).

In one-round LDP, the expected l2-loss for an 𝑛𝑛,𝐷𝐷 -independent cube is: 𝛀𝛀(𝒏𝒏𝑫𝑫𝟐𝟐).

ℛ1𝑣𝑣1

ℛn𝑣𝑣𝑛𝑛

ℛ1(𝐚𝐚1)𝐚𝐚1 ∈ {0,1}𝑛𝑛

ℛn(𝐚𝐚n)𝐚𝐚n ∈ {0,1}𝑛𝑛

Lower-Bounds for Independent Cubes

Lower Bounds



 Upper/Lower-Bounds
 In 𝑘𝑘-stars, our one-round local algorithm is order optimal. 
 Any one-round local algorithm is outperformed by the centralized one. 
 Yet, our algorithms achieve 𝑂𝑂 𝑛𝑛 (when we ignore 𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚), which is small.

Centralized One-Round Local Two-Rounds 
Local

Upper-Bound Lower-Bound Upper-Bound Upper-Bound

𝑘𝑘-stars 𝑂𝑂 𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚2𝑘𝑘−2 𝛀𝛀 𝒅𝒅𝒎𝒎𝒎𝒎𝒎𝒎𝟐𝟐𝟐𝟐−𝟐𝟐𝒏𝒏 𝑶𝑶 𝒅𝒅𝒎𝒎𝒎𝒎𝒎𝒎𝟐𝟐𝟐𝟐−𝟐𝟐𝒏𝒏 -

triangles 𝑂𝑂 𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚2 𝛀𝛀 𝒅𝒅𝒎𝒎𝒎𝒎𝒎𝒎𝟐𝟐 𝒏𝒏 𝑂𝑂 𝑛𝑛4 𝑶𝑶 𝒅𝒅𝒎𝒎𝒎𝒎𝒎𝒎𝟑𝟑 𝒏𝒏

Expected l2-loss (𝑛𝑛: #users, 𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚: max degree (≪ 𝑛𝑛), 𝜀𝜀: fixed)

Lower Bounds
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 IMDB (Internet Movie Database)
 Graph with 896308 nodes (actors).
 Average degree = 63.7.

 Orkut Dataset
 Social graph with 3072441 nodes (users).
 Average degree = 38.1. More sparse than IMDB. 

 For each dataset, we randomly selected 𝑛𝑛 nodes from the whole graph. 

Experiments



 Result 1: l2-loss
 In triangles, Local2R (2-rounds) outperforms Local1R (1-round).
 Difference is larger in Orkut because it is more sparse (𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚 is smaller).
 Local is outperformed by Central.
 As 𝑛𝑛 increases, the l2-loss increases  true counts (#triangles and #𝑘𝑘-stars) increase.
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 Result 2: Relative Error
 Relative error = |true count −estimate|

true count
decreases as 𝑛𝑛 increases. 

 Our algorithms achieve relative error ≪ 1 (high utility) when 𝜀𝜀 = 1 or 2.

Local2R (𝜀𝜀 = 1)
Local2R (𝜀𝜀 = 2)

Central (𝜀𝜀 = 1)
Central (𝜀𝜀 = 2)

0 4 8 12 16
𝑛𝑛 (×105)

R
el

at
iv

e 
Er

ro
r

Orkut

0 4 8 12 16
𝑛𝑛 (×105)

0 4 8 12 16 20
𝑛𝑛 (×104)

IMDB

0 4 8 12 16 20
𝑛𝑛 (×104)

IMDB

triangles 𝒌𝒌-stars

10
1

10-1

10-2

10-3

10-4

10-5

102

Local (𝜀𝜀 = 1)
Local (𝜀𝜀 = 2)

Central (𝜀𝜀 = 1)
Central (𝜀𝜀 = 2)

10-1

10-2

10-3

10-4

10-5R
el

at
iv

e 
Er

ro
r

10-6

Orkut

Experiments



 This Work
 For 𝑘𝑘-stars, we provided an order optimal algorithm.
 For triangles, we showed an additional round significantly improves utility. 
 We provided new lower-bounds for 𝑘𝑘-stars and triangles.

 Future Work
 Algorithms for other subgraph counts; e.g., #cliques, #𝑘𝑘-hop paths.

clique 3-hop path

Conclusions



Thank you for your attention!

Q&A
jimola at eng.ucsd.edu, takao-murakami at aist.go.jp
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