Locally Differentially Private Analysis of Graph Statistics

Jacob Imola* (UCSD) <u>Takao Murakami</u>* (AIST) Kamalika Chaudhuri (UCSD)

*: Equal Contributions, Full Version: https://arxiv.org/abs/2010.08688

- Graph Statistics
 - Is important to understand a connection pattern in a social graph.

- ▶ E.g., Degree distribution
 - Degree = #edges connected to a node.
 - Degree distribution = distribution of #friends in a social network.

- ▶ E.g., Subgraph Counts
 - ▶ **Triangle** is a set of 3 nodes with 3 edges.
 - **k-star** consists of a central node connected to k other nodes.

Shape Name		Count
	Triangle	2
	2-star	15
90	3-star	6

- ▶ E.g., Clustering Coefficient
 - Probability that two friends of a user will also be a friend.
 - \rightarrow = 3 × #triangles / #2-stars (40% in the above graph).

Will be a friend (after friend suggestion)?

- Privacy Issues
 - ightharpoonup Triangle/k-star counts can reveal (sensitive) friendship information.
 - \triangleright E.g., Suppose that v_2 is an (honest-but-curios) adversary.

Shape	Name	Count
	2-star	20
	Triangle	5

Friends of v_1 are v_3, v_4, v_6 .

We need to obfuscate #k-stars and #triangles to strongly protect user privacy.

- Local Differential Privacy (LDP)
 - User obfuscates her personal data by herself (i.e., no trusted third party).

Strong Privacy

- (1) Privacy is protected against attackers with any background knowledge.
- (2) Original data are not leaked from DB (unlike centralized DP).

Our Contributions

- We provide algorithms for #k-stars and #triangles under LDP with utility guarantees.
- In particular, we show upper/lower-bounds on the estimation error.

Contents

LDP on Graphs

(Local Graph Model, Edge LDP)

Our Algorithms

(Our Algorithms for k-Stars/Triangles, Upper-Bounds)

Lower-Bounds

LDP on Graphs

- Graph
 - ▶ Can be represented as an adjacency matrix A (1: edge, 0: no edge).
 - User v_i knows her neighbor list \mathbf{a}_i (*i*-th row of \mathbf{A}).

- Local Graph Model
 - User v_i obfuscates her neighbor list \mathbf{a}_i and sends noisy data $\mathcal{R}_i(\mathbf{a}_i)$ to a server.

LDP on Graphs

- Edge LDP [Qin+, CCS17]
 - ▶ Protects a single bit in a neighbor list $\mathbf{a} \in \{0,1\}^n$ with privacy budget ε .

Randomizer \mathcal{R} provides ε -edge LDP if for all $\mathbf{a}, \mathbf{a}' \in \{0,1\}^n$ that differ in one bit and all $y \in \mathcal{Y}$,

$$\Pr[\mathcal{R}(\mathbf{a}) = y] \le e^{\varepsilon} \Pr[\mathcal{R}(\mathbf{a}') = y]$$

- ▶ 1 edge affects 2 elements of $A \rightarrow$ each edge is protected with at most 2ε .
- Our triangle algorithm uses only \nearrow each edge is protected with ε .

adjacency matrix A

Indistinguishable (at most 2ε)

Contents

LDP on Graphs

(Local Graph Model, Edge LDP)

Our Algorithms

(Our Algorithms for k-Stars/Triangles, Upper-Bounds)

Lower-Bounds

Our Algorithms

- Our Algorithm for k-Stars (Overview)
 - (1) Each user v_i adds the Laplacian noise to her k-star count r_i . \rightarrow edge LDP.
 - (2) Server calculates the sum of noisy counts as an estimate.

- ▶ Upper-Bound (n: #users, d_{max} : max degree ($\ll n$))
 - For a fixed ε , the expected I2-loss (square error) of our estimate is: $O(nd_{max}^{2k-2})$.
 - Later, we prove that this is order optimal in the one-round LDP model.

Our Algorithms

- Triangles
 - More challenging because a user cannot see an edge between others.

- Our Algorithm for Triangles (1st Round)
 - ▶ Each user applies RR to each bit of her neighbor list. → edge LDP.
 - \blacktriangleright Each user sends **noisy edges**. Server publishes the noisy graph G'.

Our Algorithms

- Our Algorithm for Triangles (2nd Round)
 - \blacktriangleright Each user can count triangles including one noisy edge using noisy graph G'.
 - ▶ Each user sends #noisy triangles (with post-processing) + Lap. → edge LDP.
 - Server calculates an unbiased estimate of #triangles.

- ▶ Upper-Bound (n: #users, d_{max} : max degree ($\ll n$))
- ► All edges are noisy (1st round) → Only one edge is noisy (2nd round).
- Expected I2-loss is reduced from $O(n^4)$ (1st round) to $O(nd_{max}^3)$ (2nd round).

Contents

LDP on Graphs

(Local Graph Model, Edge LDP)

Our Algorithms

(Our Algorithms for k-Stars/Triangles, Upper-Bounds)

Lower Bounds

Overview

- ▶ Our k-star algorithm achieves the l2-loss of $O(nd_{max}^{2k-2})$ (n: #users, $d_{max} \ll n$).
- ightharpoonup We show that the factor of n is necessary for k-stars and triangles in one-round LDP.

▶ How?

- ▶ We introduce a set of graphs called "independent cube".
- We show there is a lower bound for the set of graphs.

- Independent Cube (Informal)
 - ▶ Consider a query f (e.g. #triangles, #k-stars) on a graph G with n nodes.
 - ▶ Prepare edges *M* s.t. each node has one edge (i.e. perfect matching).
 - We say a set of graphs \mathcal{A} forms an (n, D)-independent cube if adding edge $e \in M$ independently increases (or decreases) f by $C_e \geq D$.

$$C_{(v_1,v_2)} = 2$$

 $C_{(v_3,v_4)} = 3$

There exist independent cubes for k-stars and triangles (\rightarrow our paper).

Lower-Bounds for Independent Cubes

In one-round LDP, the expected I2-loss for an (n, D)-independent cube is: $\Omega(nD^2)$.

$$v_1 \quad \mathbf{a}_1 \in \{0,1\}^n \qquad \mathcal{R}_1 \quad \mathbf{x}_1 \quad \mathbf{x}_1 \quad \mathbf{x}_1 \quad \mathbf{x}_1 \quad \mathbf{x}_1 \quad \mathbf{x}_2 \quad \mathbf{x}_2 \quad \mathbf{x}_3 \quad \mathbf{x}_4 \quad \mathbf{x}_4 \quad \mathbf{x}_4 \quad \mathbf{x}_5 \quad \mathbf{x}_5 \quad \mathbf{x}_6 \quad \mathbf{x$$

- Upper/Lower-Bounds
 - ▶ In *k*-stars, our one-round local algorithm is order optimal.
 - Any one-round local algorithm is outperformed by the centralized one.
 - Yet, our algorithms achieve O(n) (when we ignore d_{max}), which is small.

Expected I2-loss (n: #users, d_{max} : max degree ($\ll n$), ε : fixed)

	Centralized	One-Round Local		Two-Rounds Local
	Upper-Bound	Lower-Bound	Upper-Bound	Upper-Bound
k-stars	$O(d_{max}^{2k-2})$	$\boxed{\Omega(d_{max}^{2k-2}n)} =$	$= O(d_{max}^{2k-2}n)$	1
triangles	$O(d_{max}^2)$	$\Omega(d_{max}^2n)$	$O(n^4)$	$O(d_{max}^3 n)$

Contents

LDP on Graphs

(Local Graph Model, Edge LDP)

Our Algorithms

(Our Algorithms for k-Stars/Triangles, Upper-Bounds)

Lower Bounds

- ▶ IMDB (Internet Movie Database)
 - Graph with 896308 nodes (actors).
 - Average degree = 63.7.
- Orkut Dataset
 - Social graph with 3072441 nodes (users).
 - Average degree = 38.1. More sparse than IMDB.
- ▶ For each dataset, we randomly selected *n* nodes from the whole graph.

- ▶ Result 1: I2-loss
 - ▶ In triangles, Local2R (2-rounds) outperforms Local1R (1-round).
 - ▶ Difference is larger in Orkut because it is more sparse (d_{max} is smaller).
 - Local is outperformed by Central.
 - As n increases, the I2-loss increases \leftarrow true counts (#triangles and #k-stars) increase.

- Result 2: Relative Error
 - ▶ Relative error $\left(= \frac{|\text{true count} \text{estimate}|}{\text{true count}} \right)$ decreases as n increases.
 - ▶ Our algorithms achieve relative error $\ll 1$ (high utility) when $\varepsilon = 1$ or 2.

Conclusions

- This Work
 - ▶ For *k*-stars, we provided an order optimal algorithm.
 - For triangles, we showed an additional round significantly improves utility.
 - ▶ We provided new lower-bounds for *k*-stars and triangles.

- Future Work
 - \blacktriangleright Algorithms for other subgraph counts; e.g., #cliques, #k-hop paths.

Thank you for your attention!

Q&A

jimola at eng.ucsd.edu, takao-murakami at aist.go.jp