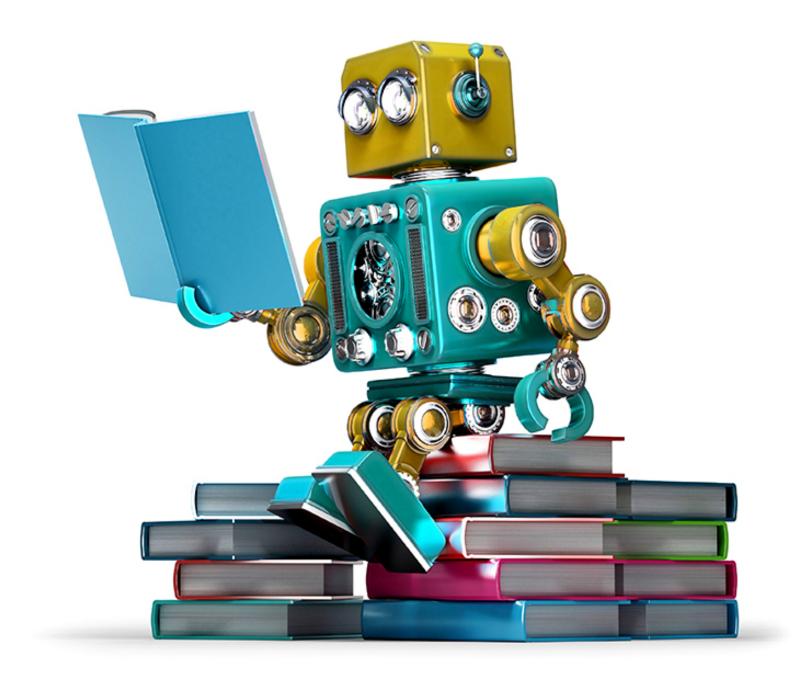


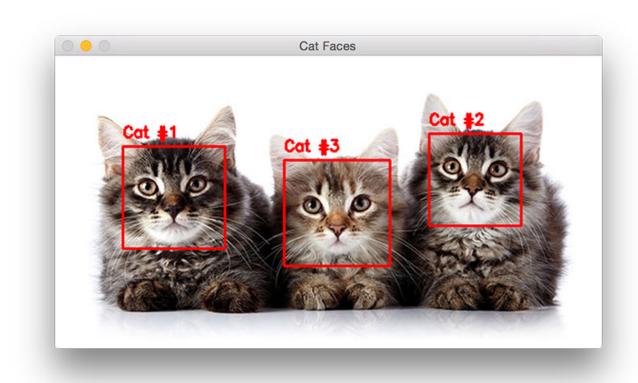
Stealing Links from Graph Neural Networks

Xinlei He¹, Jinyuan Jia², Michael Backes¹, Neil Zhenqiang Gong², Yang Zhang¹

¹CISPA Helmholtz Center for Information Security ²Duke University

Era of Machine Learning

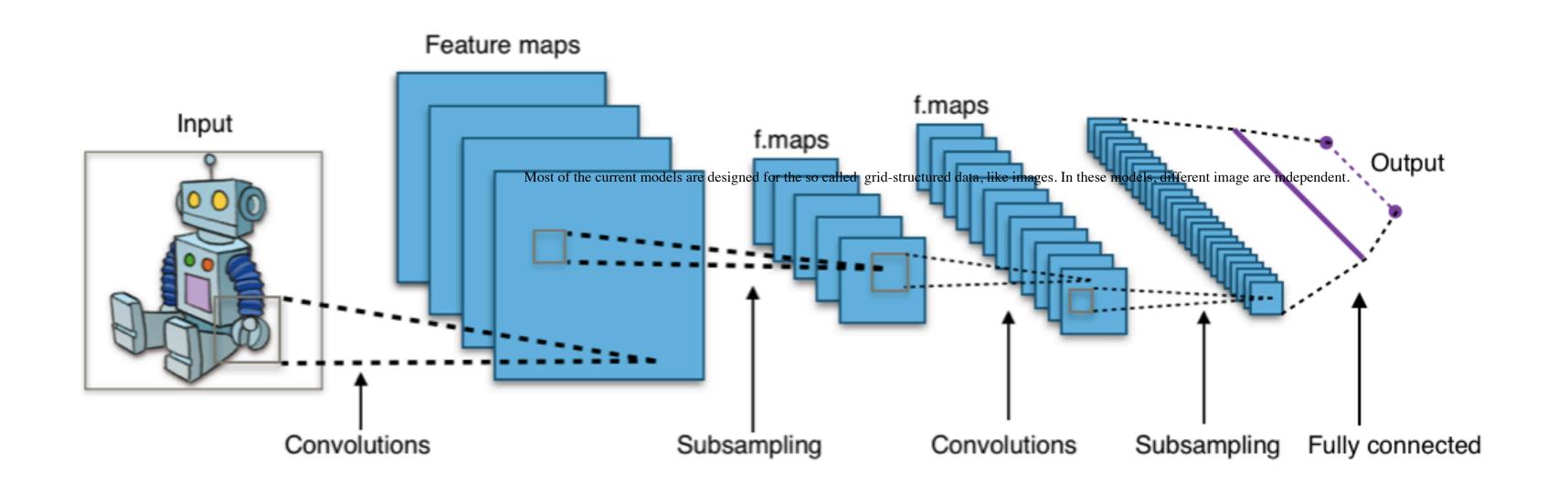




Data

Machine Learning Pipeline

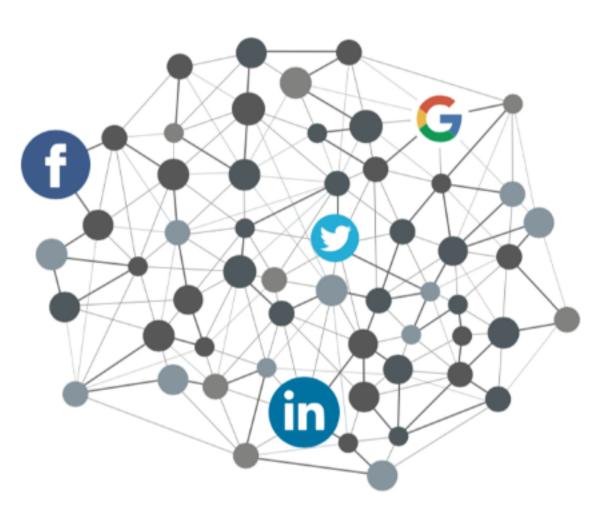
Modern machine learning excels at exploiting grid-structured data



Many Data are Graphs

Graphs are combinatorial structures, have arbitrary sizes, and contain multi-modal information

Social Networks



Molecules

Knowledge Graphs

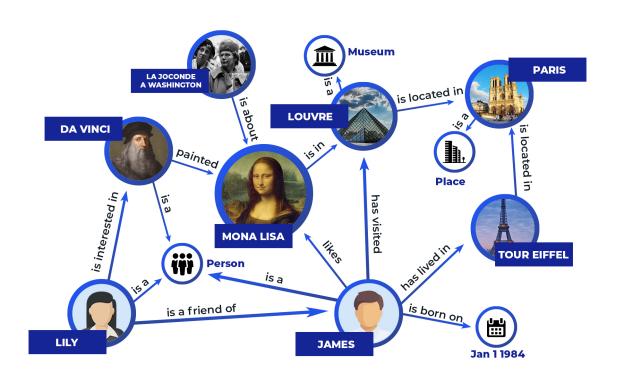
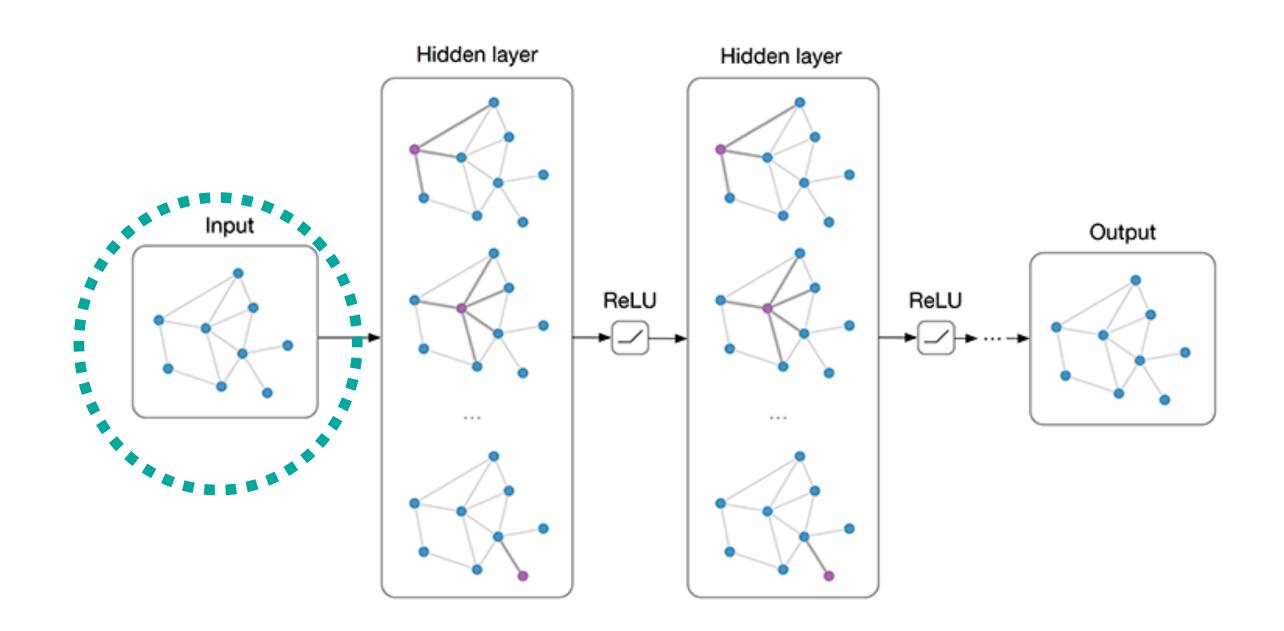
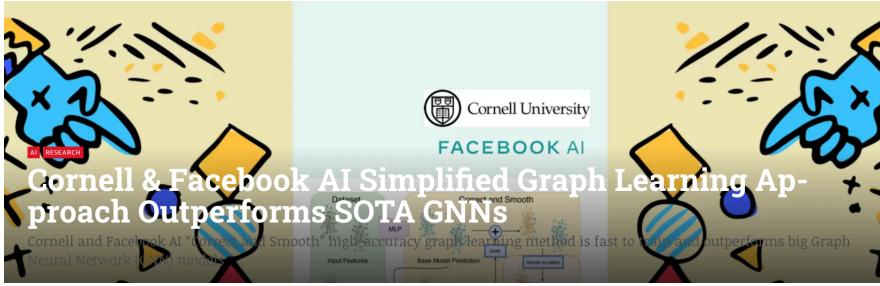


Image source: (from left to right): https://towardsdatascience.com/ab-testing-challenges-in-social-networks-e67611c92916, https://biologydictionary.net/molecule/, https://yashuseth.blog/2019/10/08/introduction-question-answering-knowledge-graphs-kgqa/

Graph Neural Networks





Insights

Graph ML at Twitter

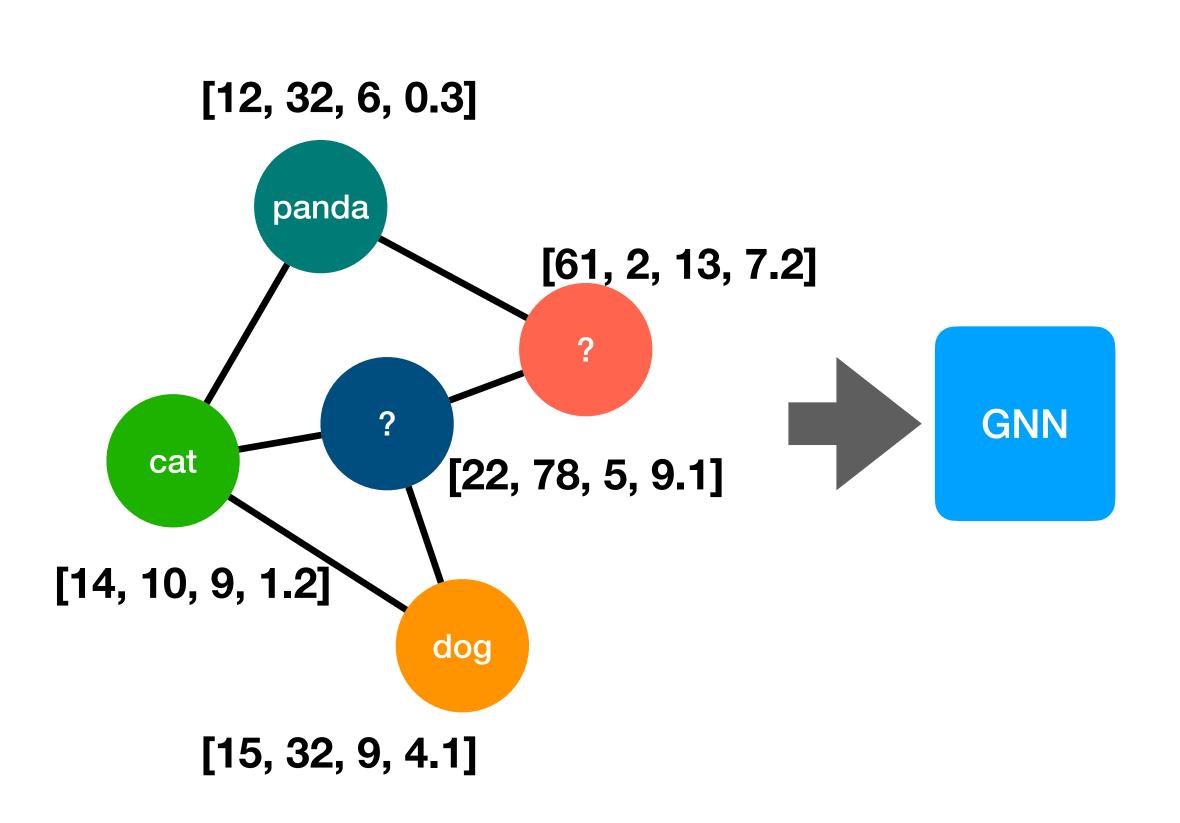
By Michael Bronstein

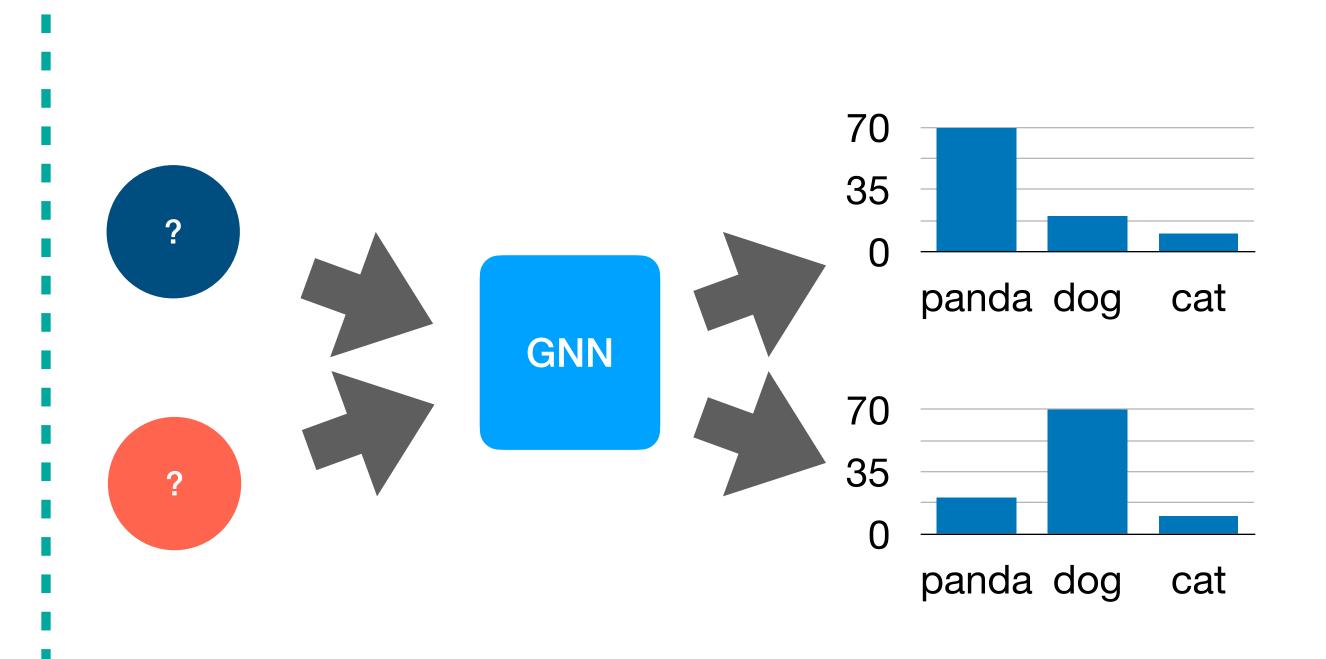
Wednesday, 2 September 2020 🄰 f in 🔗

Image source: https://tkipf.github.io/graph-convolutional-networks/;

News source: https://syncedreview.com/2020/09/04/deepmind-uses-gnns-to-boost-google-maps-eta-accuracy-by-up-to-50/, https://syncedreview.com/2020/09/04/deepmind-uses-gnns-to-boost-google-maps-eta-accuracy-by-up-to-50/, https://syncedreview.com/2020/09/04/deepmind-uses-gnns-to-boost-google-maps-eta-accuracy-by-up-to-50/, https://syncedreview.com/2020/09/04/deepmind-uses-gnns-to-boost-google-maps-eta-accuracy-by-up-to-50/, https://syncedreview.com/2020/09/04/deepmind-uses-gnns-to-boost-google-maps-eta-accuracy-by-up-to-50/, https://syncedreview.com/2020/09/04/deepmind-uses-gnns-to-boost-google-maps-eta-accuracy-by-up-to-50/, https://syncedreview.com/2020/09/04/deepmind-uses-gnns/, https://syncedreview.com/2020/09/04/deepmind-uses-gnns/, https://syncedreview.com/ai-simplified-graph-us/ https://syncedreview.com/ai-simplified-graph-us/ https://syncedreview.com/ai-simplified-g

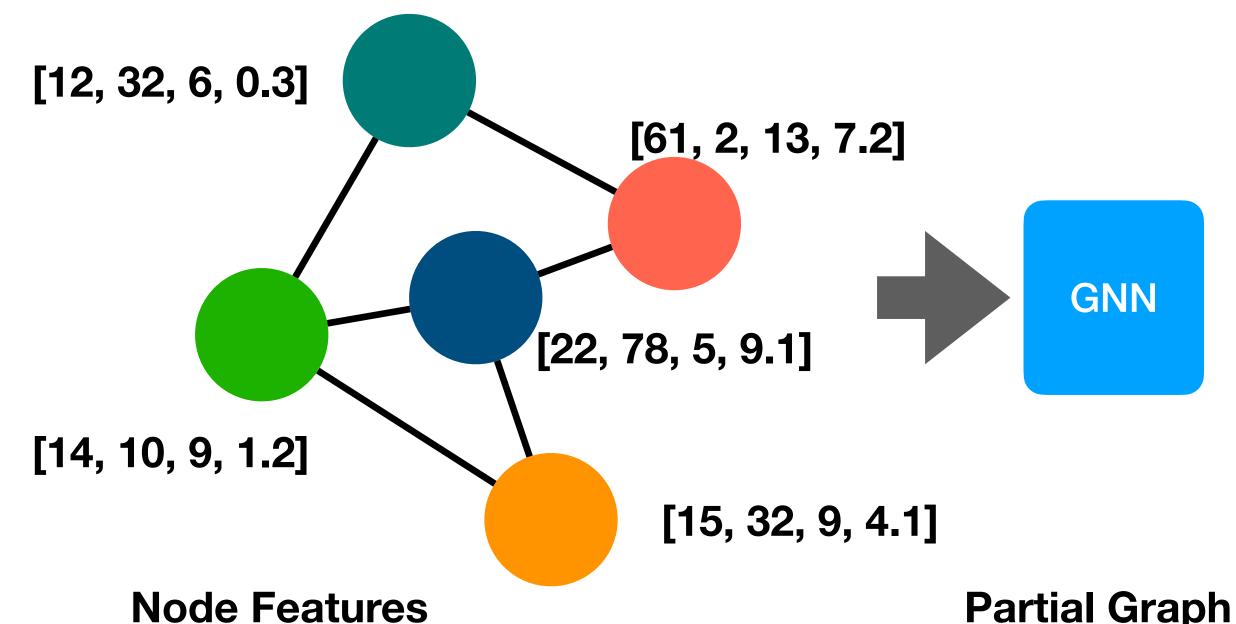
Graph Neural Networks (Transductive)





Research question: Given two nodes used to train a black-box GNN, can we predict whether they are linked?

Attack Taxonomy



- Attacker can have either of these 3 knowledge
- Totally 8 different attack models

[12, 32, 6, 0.3]

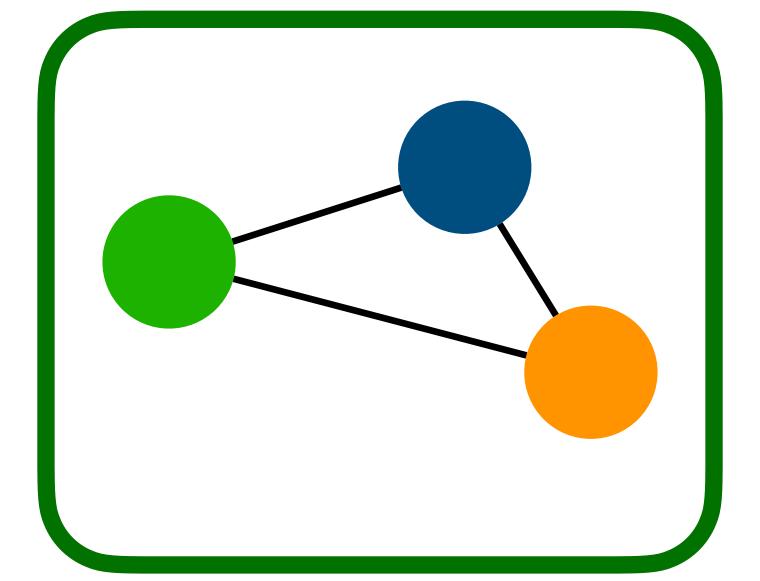
[14, 10, 9, 1.2]

[22, 78, 5, 9.1]

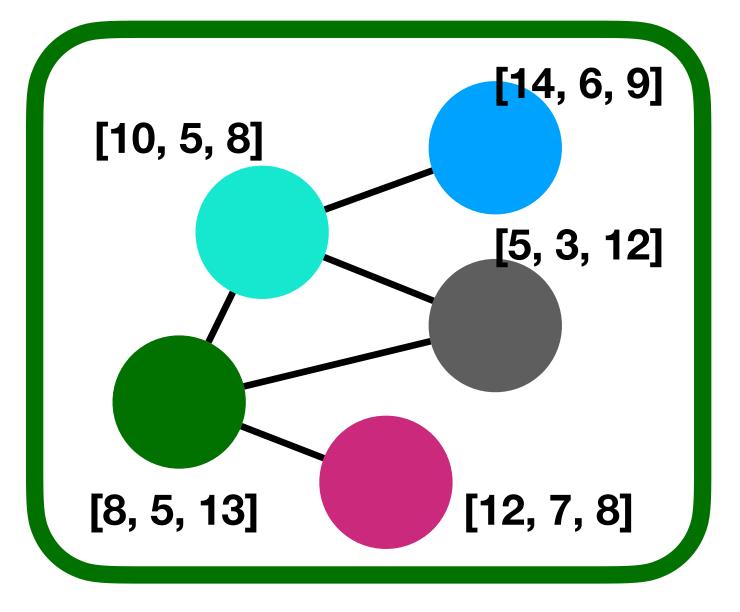
[15, 32, 9, 4.1]

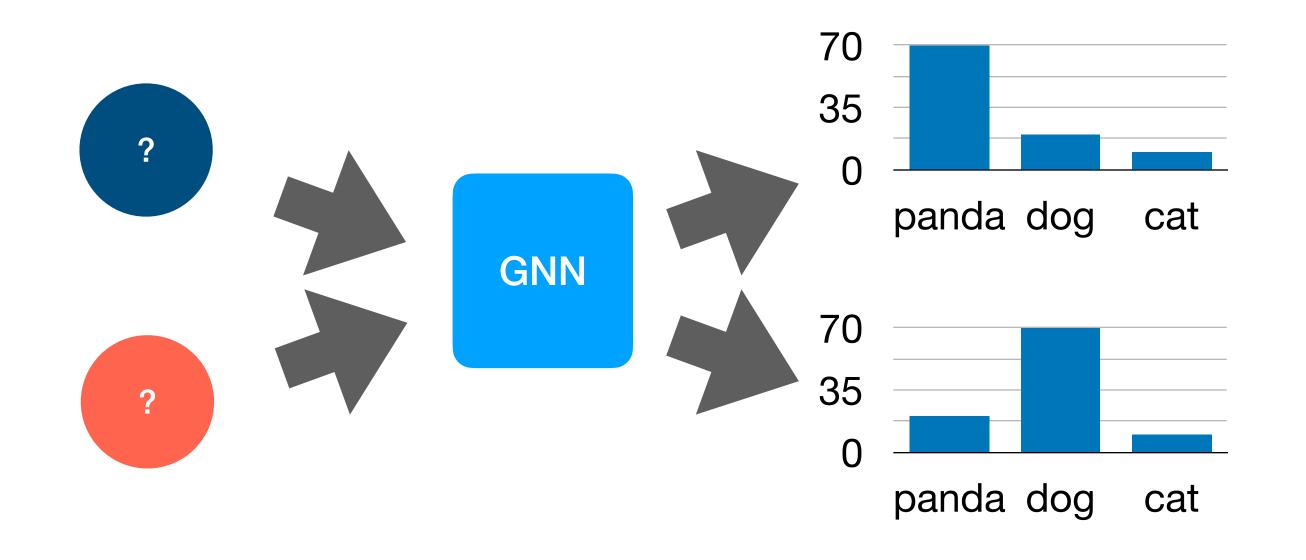
[61, 2, 13, 7.2]

Partial Graph



Shadow Dataset

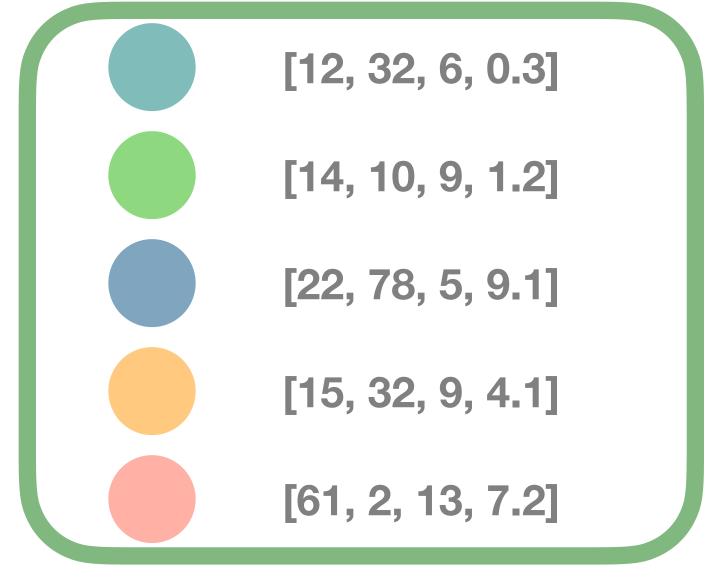




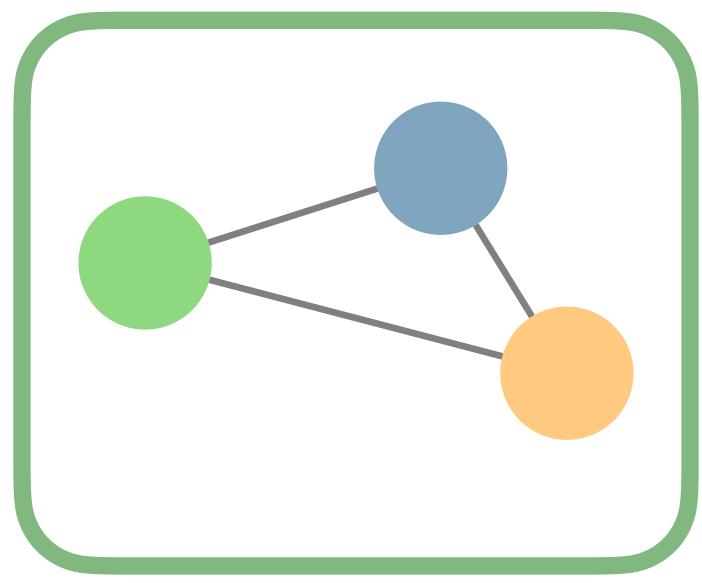
Posterior Difference

Unsupervised Attack

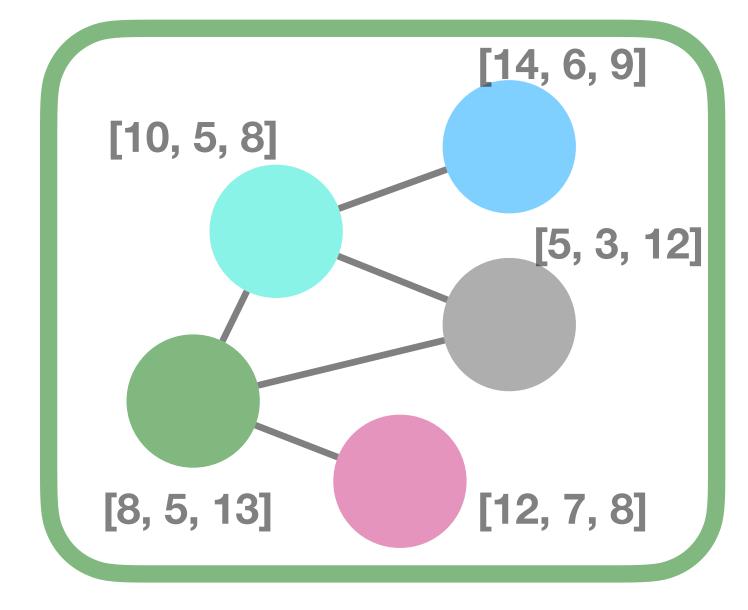
Node Features



Partial Graph



Shadow Dataset



Correlation performs the best!

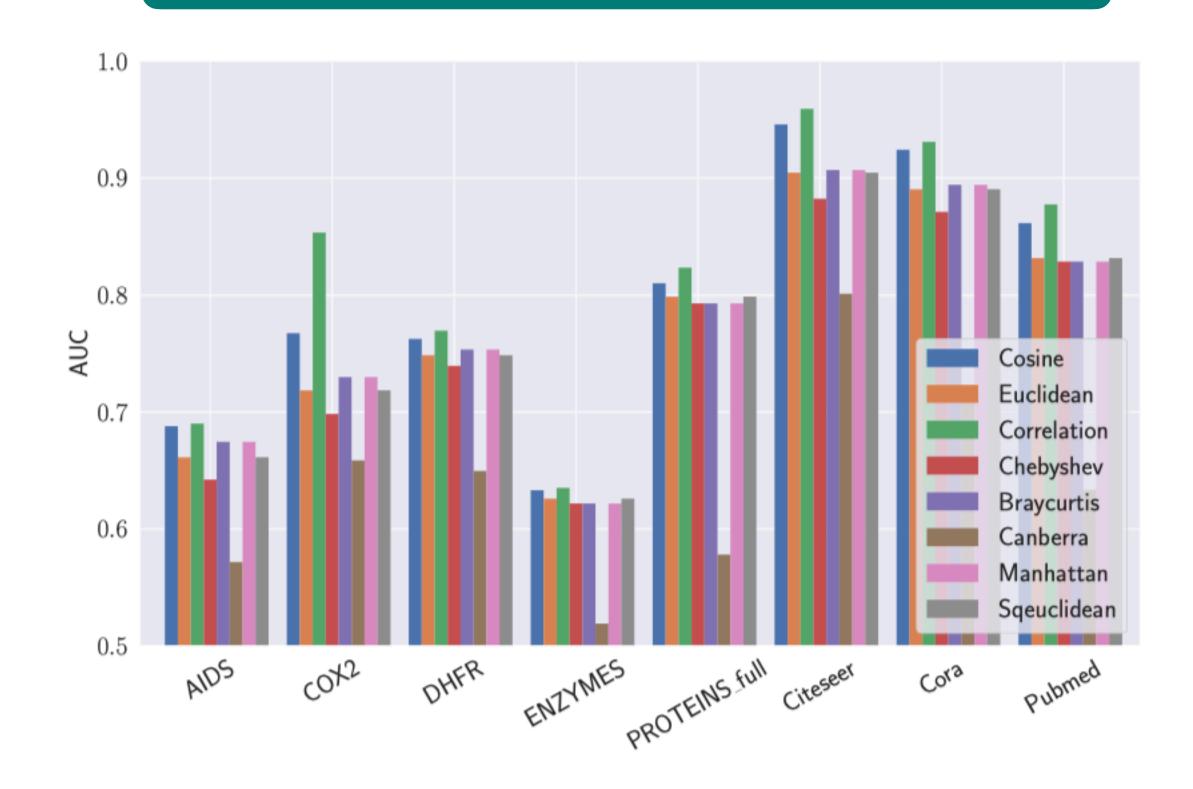
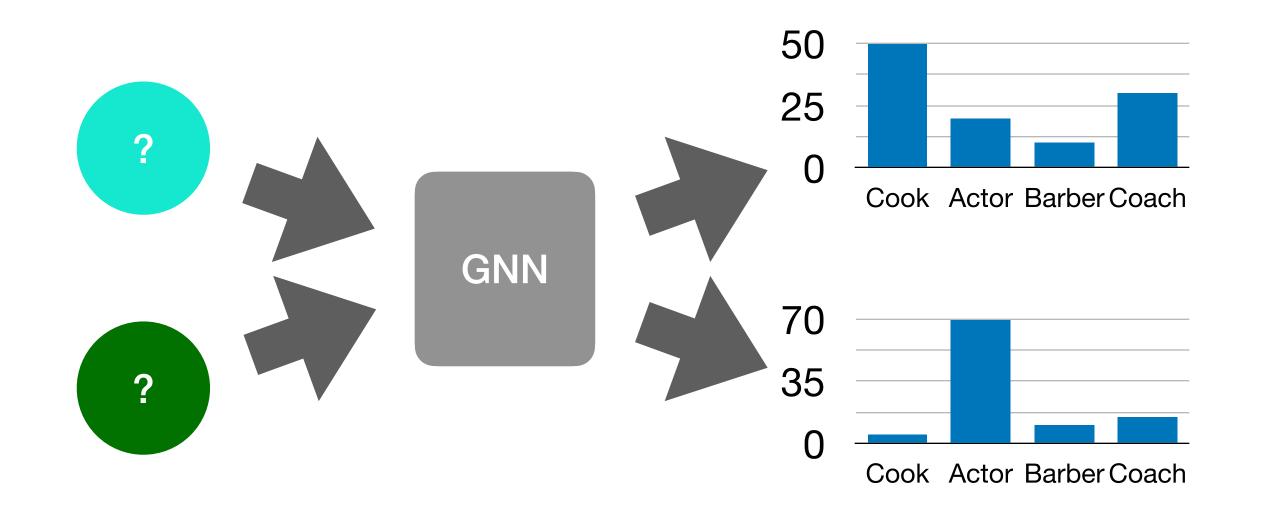


Figure 1: AUC for Attack-0 on all the 8 datasets with all the 8 distance metrics. The x-axis represents the dataset and the y-axis represents the AUC score.

Table 15: Prediction results for Attack-0 on all the 8 datasets with Correlation distance.

Dataset	Precision	Recall	F1-Score	AUC
AIDS	0.524	0.996	0.687	0.691
COX2	0.523	0.987	0.684	0.867
DHFR	0.555	0.977	0.708	0.765
ENZYMES	0.501	1.000	0.667	0.630
PROTEINS full	0.540	0.998	0.701	0.815
Citeseer	0.788	0.991	0.878	0.959
Cora	0.777	0.966	0.861	0.929
Pubmed	0.691	0.965	0.806	0.874

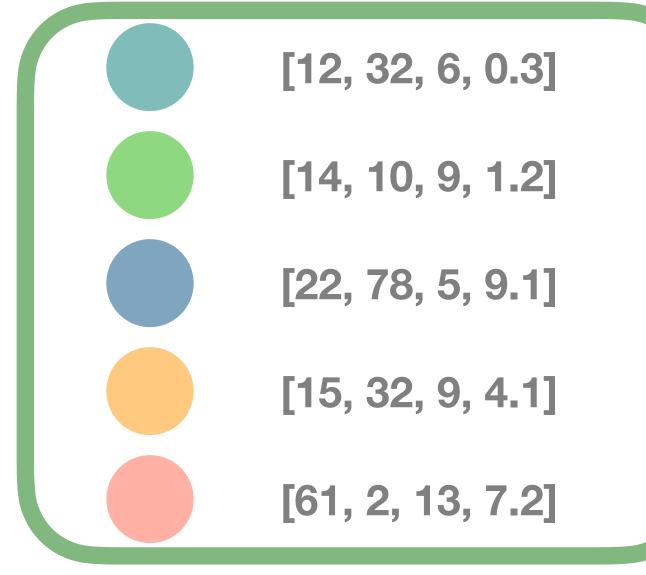
Use KMeans to give a concrete prediction



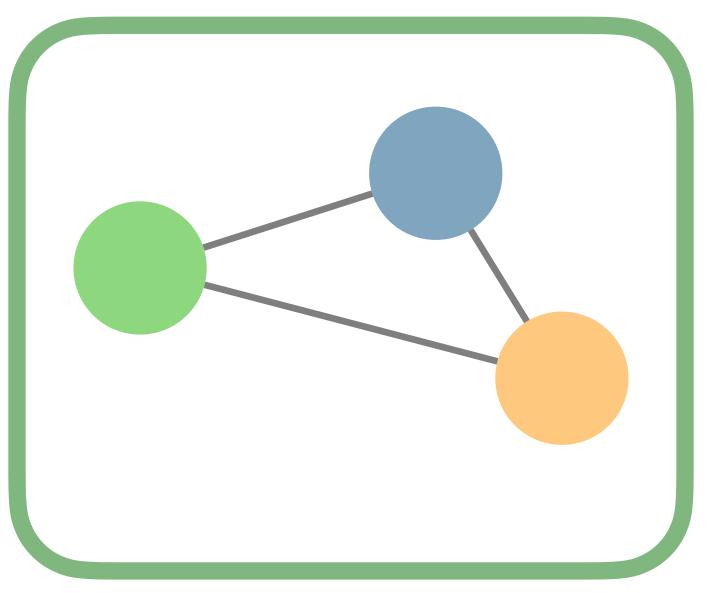
Transfer Knowledge

Supervised Attack

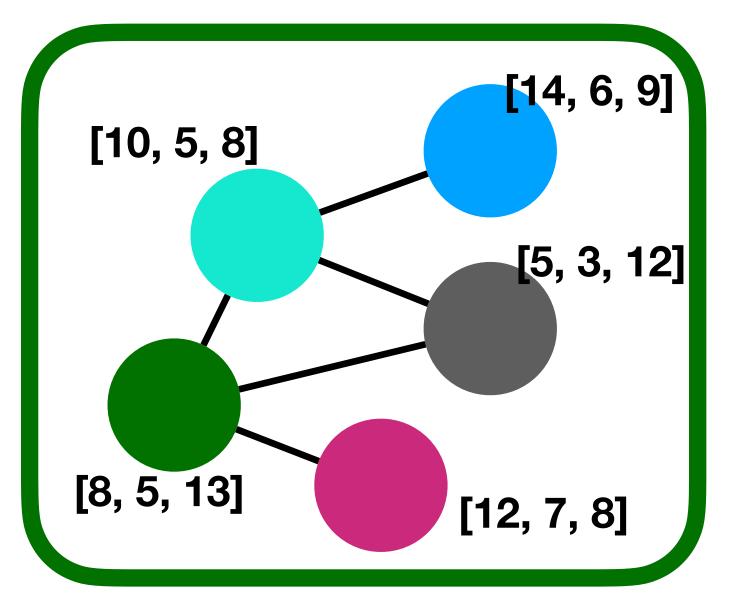
Node Features



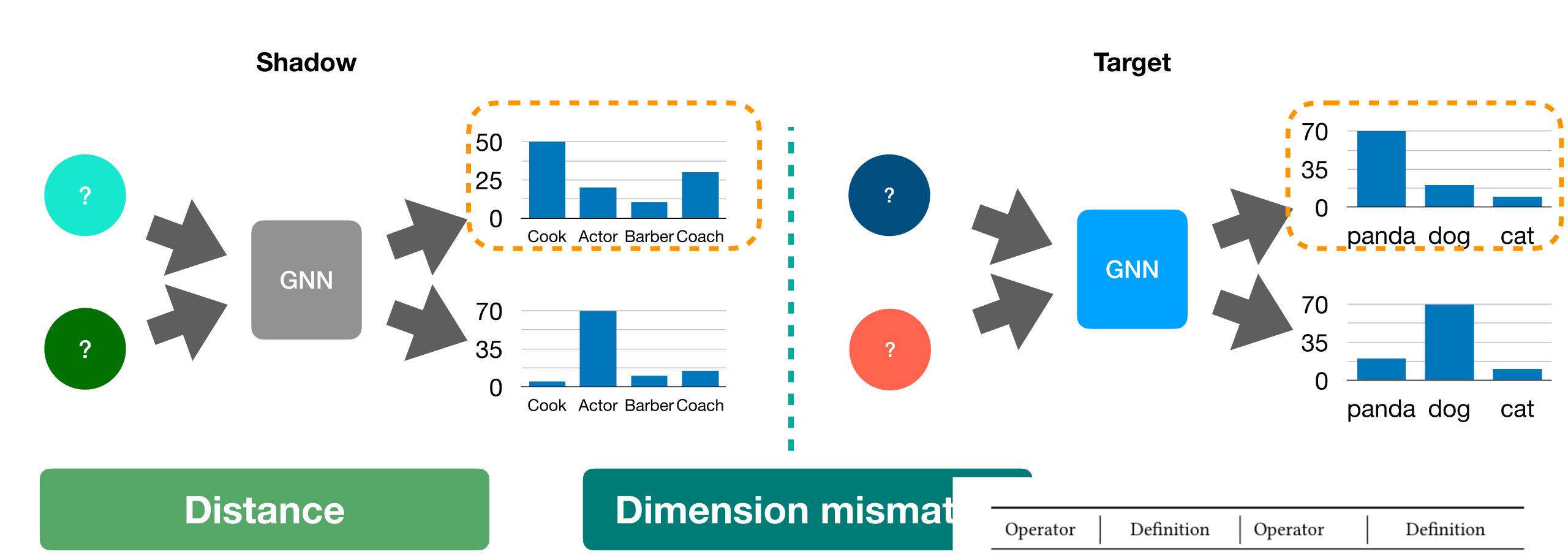
Partial Graph



Shadow Dataset



Entropy



Aditya Grover and Jure Leskovec. node2vec: Scalable Feature Learning for Networks. In KDD 2016.

Weighted-L1

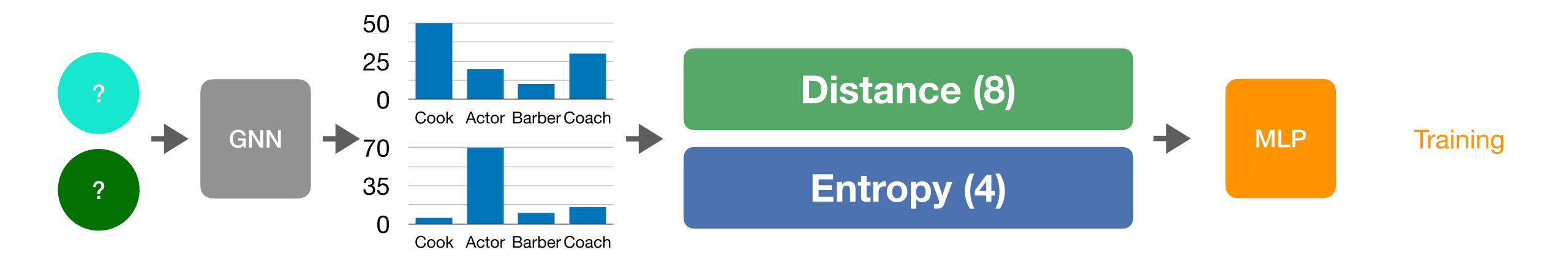
 $f_i(u) \cdot f_i(v)$ | Weighted-L2 | $|f_i(u) - f_i(v)|^2$

 $f_i(u) + f_i(v)$

Average

Hadamard

 $|f_i(u)-f_i(v)|$



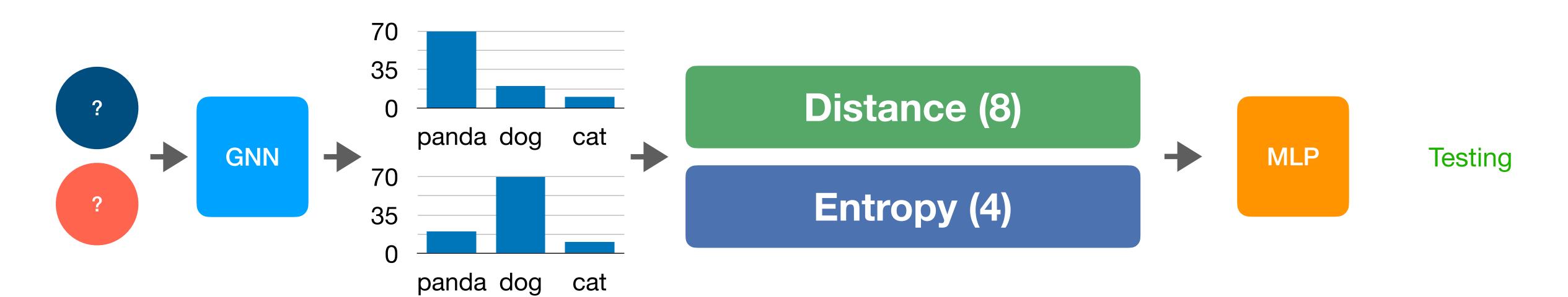


Table 4: Average AUC with standard deviation for Attack-1 on all the 8 datasets. Best results are highlighted in bold.

	Shadow Dataset									
Target Dataset	AIDS	COX2	DHFR	ENZYMES	PROTEINS_full	Citeseer	Cora	Pubmed		
AIDS	-	0.720 ± 0.009	0.690 ± 0.005	$\textbf{0.730} \pm \textbf{0.010}$	0.720 ± 0.005	0.689 ± 0.019	0.650 ± 0.025	0.667 ± 0.014		
COX2	0.755 ± 0.032	-	0.831 ± 0.005	0.739 ± 0.116	$\textbf{0.832} \pm \textbf{0.009}$	0.762 ± 0.009	0.773 ± 0.008	0.722 ± 0.024		
DHFR	0.689 ± 0.004	$\textbf{0.771} \pm \textbf{0.004}$	-	0.577 ± 0.044	0.701 ± 0.010	0.736 ± 0.005	0.740 ± 0.003	0.663 ± 0.010		
ENZYMES	$\textbf{0.747} \pm \textbf{0.014}$	0.695 ± 0.023	0.514 ± 0.041	-	0.691 ± 0.030	0.680 ± 0.012	0.663 ± 0.009	0.637 ± 0.018		
PROTEINS_full	0.775 ± 0.020	0.821 ± 0.016	0.528 ± 0.038	0.822 ± 0.020		$\textbf{0.823} \pm \textbf{0.004}$	0.809 ± 0.015	0.809 ± 0.013		
Citeseer	0.801 ± 0.040	0.920 ± 0.006	0.842 ± 0.036	0.846 ± 0.042	0.848 ± 0.015	-	$\textbf{0.965} \pm \textbf{0.001}$	0.942 ± 0.003		
Cora	0.791 ± 0.019	0.884 ± 0.005	0.811 ± 0.024	0.804 ± 0.048	0.869 ± 0.012	$\textbf{0.942} \pm \textbf{0.001}$	-	0.917 ± 0.002		
Pubmed	0.705 ± 0.039	0.796 ± 0.007	0.704 ± 0.042	0.708 ± 0.067	0.752 ± 0.014	0.883 ± 0.006	$\textbf{0.885} \pm \textbf{0.005}$	<u> </u>		

For all best performing shadow datasets, attack 1 is better than attack 0

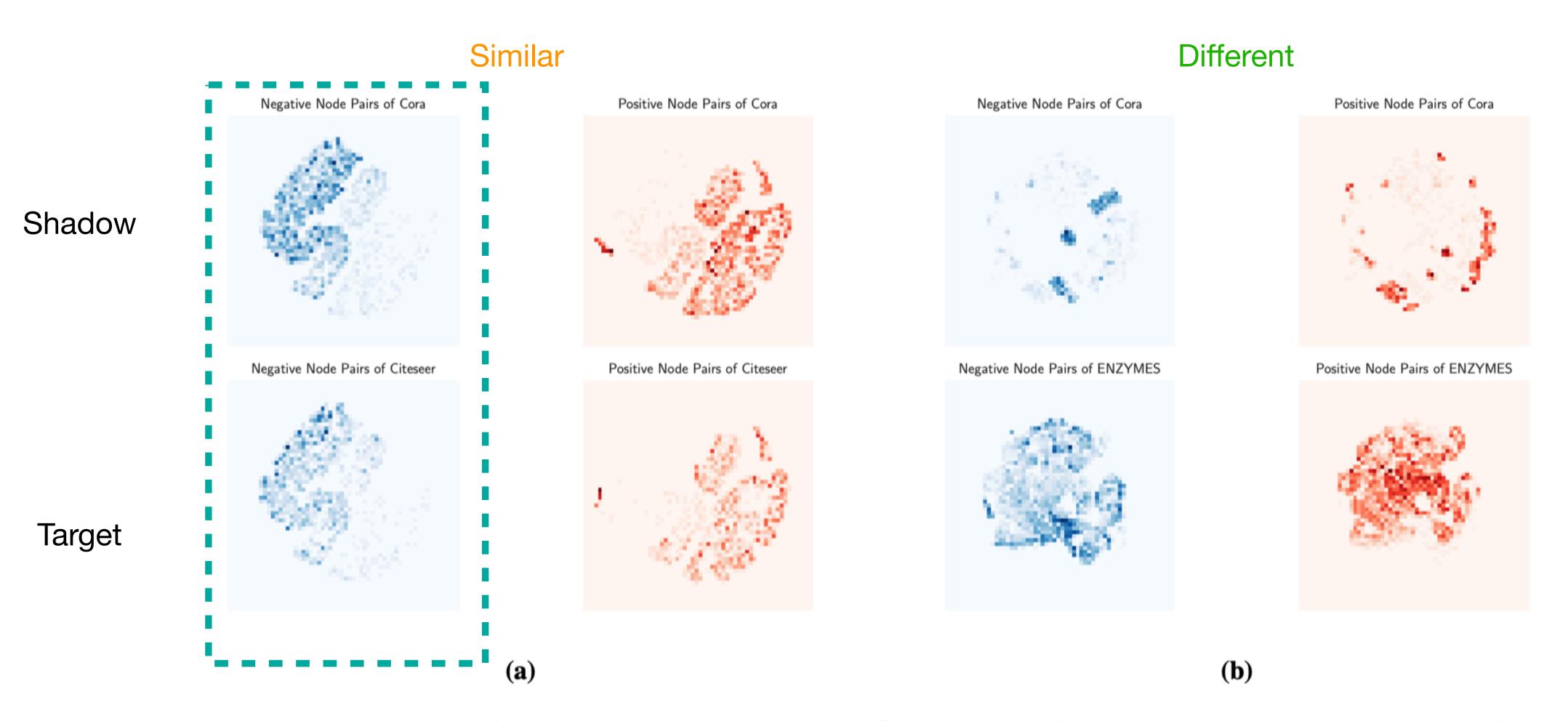
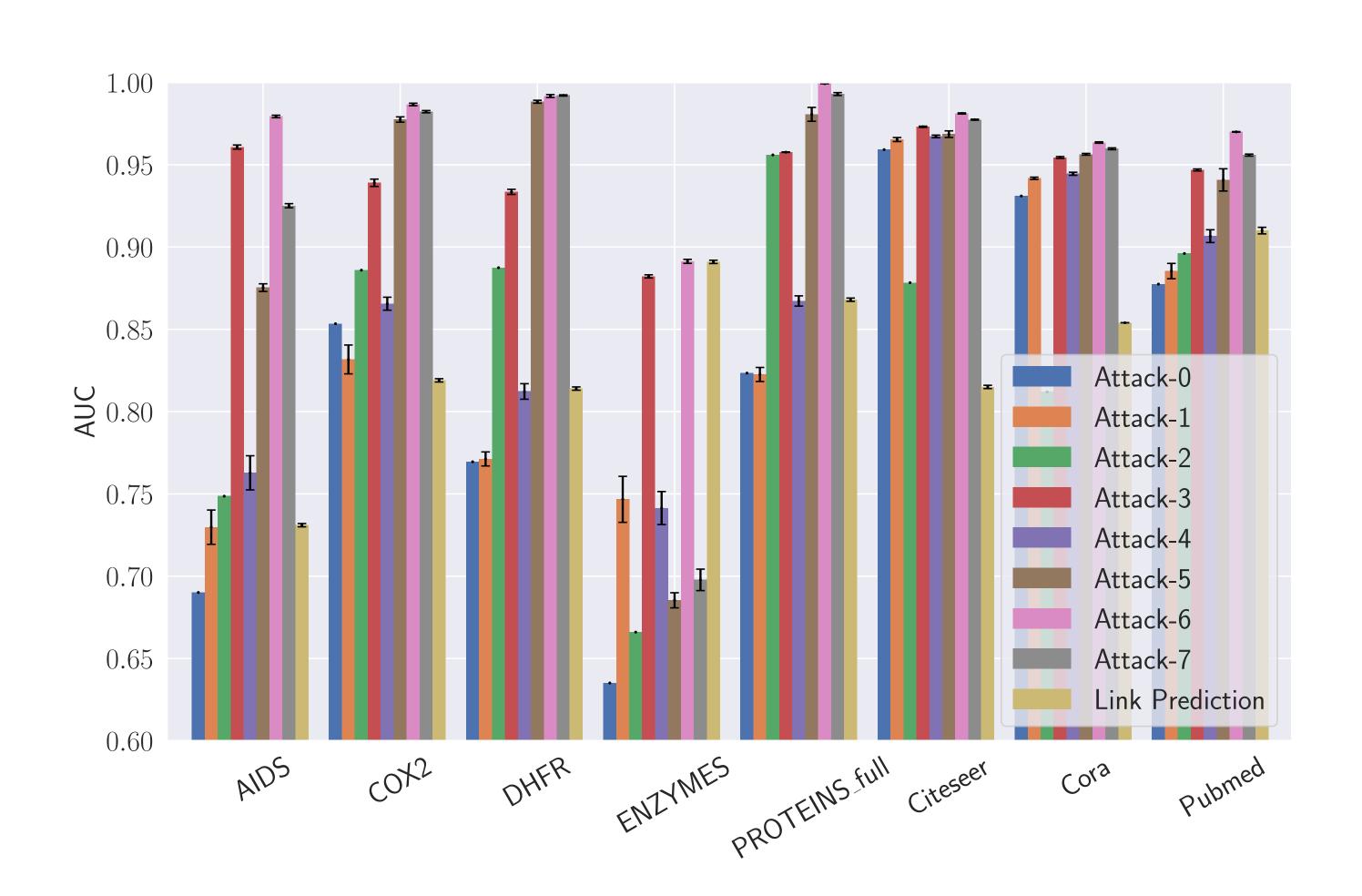


Figure 3: The last hidden layer's output from the attack model of Attack-1 for 200 randomly sampled positive node pairs and 200 randomly sampled negative node pairs projected into a 2-dimension space using t-SNE. (a) Cora as the shadow dataset and Citeseer as the target dataset, (b) Cora as the shadow dataset and ENZYMES as the target dataset.

Evaluation of All Attacks



- More knowledge leads to better attack performance
- Partial graph contains the strongest signal
- Shadow dataset is the weakest
- Better performance than traditional link prediction, this means GNN indeed leaks graph information

Conclusion

- → We are the first to propose link stealing attack against GNNs
- Our attacks can effectively ste

More information leads to bett

Transferring attack can achieve good performance

Code is available at https://github.com/xinleihe/link_stealing_attack

Xinlei He
CISPA Helmholtz Center for Information Security
@AllenXinleiHe
http://www.xinlei.info/

Thanks