
FLOWDIST: Multi-Staged Refinement-Based
Dynamic Information Flow Analysis for

Distributed Software Systems

Xiaoqin Fu and Haipeng Cai
School of Electrical Engineering and Computer Science

Washington State University

/ 18

Contributions

2

• The first purely application-level dynamic information flow analysis

for common distributed systems, FLOWDIST.

• Alternative designs of FLOWDIST exploring the design methodology.

• An open-source implementation of FLOWDIST for Java working with

real-world, large-scale distributed software systems.

• Evaluations of FLOWDIST showing its practical effectiveness,

scalability, and capabilities in vulnerability discovery.

/ 18

Distributed systems

3

• Scalability

• Effectiveness

Our Technical Aims

Network

Background – Motivation – Approach – Results – Takeaways

/ 18

An information flow security vulnerability

4

Background – Motivation – Approach – Results – Takeaways

/ 18

Challenges and the solution

5

• Applicability challenge: Part-ordering of method executed events

• Portability challenge: Application-level, no platform modification

• Scalability challenge: Multi-phased, refinement-based analysis

Background – Motivation – Approach – Results – Takeaways

/ 186

Overall Workflow

Background – Motivation – Approach – Results – Takeaways

/ 187

Overall Workflow

Background – Motivation – Approach – Results – Takeaways

/ 18

Overall Workflow

8

Background – Motivation – Approach – Results – Takeaways

/ 18

Workflow: phase1

9

Background – Motivation – Approach – Results – Takeaways

/ 18

Workflow: phase2

10

Background – Motivation – Approach – Results – Takeaways

/ 18

Alternative designs:

11

• In the first step, FLOWDISTsim skips the static analysis, and simply instruments

all methods and branches.

FLOWDISTsim

• The Phase 1 of FLOWDISTmul only probes for and traces the first entry and last

returned-into events of each method, and computes method-level flow paths.

• The new intermediate phase then probes for and traces the coverage of

branches in, and all instances of both kinds of events of, methods on such paths.

• Lastly, the second step is removed from Phase 2.

FLOWDISTmul

Background – Motivation – Approach – Results – Takeaways

/ 18

Evaluation subjects

12

Subject #SLOC Scenario Tests
NIOEcho 412 Client/server Integration

MultiChat 470 Peer To peer Integration

ADEN 4,385 Peer To peer Integration

Raining Sockets 6,711 Client/server Integration

OpenChord 9,244 Peer To peer Integration

Thrift 14,510 Client/server Integration

xSocket 15,760 Peer To peer Integration

ZooKeeper 62,194 Client/server, N-tier, N-tier Integration, Load, System

RocketMQ 105,444 N-tier, N-tier Integration, System

Voldemort 115,310 Client/server, N-tier, N-tier Integration, Load, System

Netty 167,961 N-tier Integration

Hsqldb 326,678 Client/server, N-tier Integration, System

Background – Motivation – Approach – Results – Takeaways

/ 18

Information flow paths found by FLOWDIST

13

Subject Test #Paths

NioEcho Integration 6

Raining Sockets Integration 0

Thrift Integration 3

xSocket Integration 2

Zookeeper
Load 64

System 46

RocketMQ
Integration 17

System 50

Voldemort
Integration 138

System 42

Netty Integration 2

HSQLDB System System 4

Total: 374

Background – Motivation – Approach – Results – Takeaways

/ 18

Existing vulnerabilities detected by FLOWDIST

14

Subject # Vulnerability # Detected # False Positive

HSQLDB 1 1 0

Netty 10 5 5

RocketMQ 1 1 0

Thrift 1 1 0

Voldemort 6 5 1

xSocket 1 1 0

ZooKeeper 4 4 0

Total: 24 18 6

Background – Motivation – Approach – Results – Takeaways

/ 18

New vulnerabilities detected by FLOWDIST

15

Subject #Fixed #Confirmed #Pending

HSQLDB 0 5 2

Netty 1 1 0

RainingSockets 0 1 0

RocketMQ 0 4 0

Thrift 0 5 0

Voldemort 0 0 4

xSocket 0 0 1

Zookeeper 1 1 0

Total: 2 17 7

Background – Motivation – Approach – Results – Takeaways

/ 18

Compared with baselines

16

❖Low recall: JOANA, Phosphor

❖Low precision: JOANA

❖Low F1: JOANA, Phosphor

Background – Motivation – Approach – Results – Takeaways

/ 18

Recommendations on the selection among FLOWDIST

alternative designs and peer tools

17

System type
With non-deterministic executions?

Yes No

Distributed

(multi-process)

Common

Small FLOWDISTsim

FLOWDISTsim

or FLOWDISTmul

Large FLOWDIST FLOWDIST

Specialized
Kakute (for Spark)

Pileus (for OpenStack), ...

Single-process Phosphor, Joana, ...

Background – Motivation – Approach – Results – Takeaways

/ 1818

FLOWDIST: Multi-Staged Refinement-Based Dynamic Information Flow

Analysis for Distributed Software Systems. In Proceedings of the 30th

USENIX Security Symposium (USENIX), 2021

More in paper

xiaoqin.fu@wsu.edu haipeng.cai@wsu.edu

Conclusion

• Application-level

• Multi-staged

• Refinement-based

Background – Motivation – Approach – Results – Takeaways

mailto:xiaoqin.fu@wsu.edu
mailto:haipeng.cai@wsu.edu

