FLowDr1sT: Multi-Staged Refinement-Based
Dynamic Information Flow Analysis for
Distributed Software Systems

-'.-i'.'

Xiaogin Fu and Haipeng Cai

School of Electrical Engineering and Computer Science
a0 [SENI Washington State University

SECURIY SYMPOSIUM

Contributions

« The first purely application-level dynamic information flow analysis
for common distributed systems, FLOWDIST.

« Alternative designs of FLOWDIST exploring the design methodology.

* An open-source implementation of FLOWDIST for Java working with
real-world, large-scale distributed software systems.

« Evaluations of FLOWDIST showing its practical effectiveness,
scalability, and capabilities in vulnerability discovery.

2 /18

Background — Motivation — Approach — Results — Takeaways

Distributed systems
S |
: o » 2
Network Presertation/ G

NN
Our Technical Aims - -
AN /

° SCC(IClbIIITy E—
- Effectiveness | o

3 /18

Background — Motivation — Approach — Results — Takeaways
An information flow security vulnerability

// Executed in a Client process
39 public class ClientCnxnSocketNIO extends ClientCnxnSocket { . ..

61 public void dolOfjava.utils.list,-=-) {. ..
63 SocketChannel sock = (SocketChannel) sockKey.channel();
68 int rc = sock.read(incomingBuffer); // Source
103 Packet p = find dablePacket(outgoingQueue,...
semase Blue line: source information flow path segment (SOFPS)
107 sock.write(p.bb); ... }} Green IinE_: remote infn:_:rmatinn flow path segment (REFPS)
~ Red line: sink information flow path segment (5/FPS)
// Executed in a Container process?s
247 public class InstanceContain/ef' implements Watcher, ... {
391 public void run() throwslOException, ... {
392 zk = new ZooKeeper(zkHostPort, sessTimeout, this);
393 mknod(assignmentsNode, CreateMode . PERSISTENT);
397 zk.getChildren{assignmentsMNode, true, this, nul. ..} ...}

// Executed in a Server process

432 public class BinaryOutputArchive imple ment_s.(]utpL_J_tArchlve,{
A37 public getArchive(java.io. DutputStreanystrm] i

438 return new BinaryOutputArchive(new DataOutputStream(strm)); }
442 public BinaryOutputArchive(DataOutput out) {
443 this.out = out;

Solid line: intraprocess flow
Dashed line: interprocess flow

454 public voidwritelnt(int i, String tag) throws I0OException {...
455 out.writelnt{i); // Sink R S

4 /18

Background — Motivation — Approach — Results — Takeaways

Challenges and the solution

- Applicability challenge: Part-ordering of method executed events
- Portability challenge: Application-level, no platform modification
- Scalability challenge: Multi-phased, refinement-based analysis

5 /18

Background — Motivation — Approach — Results — Takeaways

Overall Workflow

6 /18

Background — Motivation — Approach — Results — Takeaways

Overall Workflow

Phase 1: Pre-analysis
Approximating information flow paths

Branch coverage

Method event traces

Method-level information flow paths

7 /18

Background — Motivation — Approach — Results — Takeaways

Overall Workflow

(1) Phase 1: Pre-analysis (2) Phase 2: Heflnement
Approximating information flow paths Refining Information flow paths

9

S l | _
Branch coverage l || Statement-level Information |!
Vol flow paths |
Method event traces L |
u
|
|
J

Method-level information flow paths

8 /18

Background — Motivation — Approach — Results — Takeaways

Workflow: phasel

Static Analysis & Tracing Method-Level Analysis

Instrumentation —» Run D’ to trace method| #» Computing method-level
Computing relevant methods & shd braheh events information flow paths
probing for monitoring events

v
l Method event traces

Instrumented — ~ Method-level
programbD’ o] Branch coverage information flow paths
-.___________.—-—'_-_-_-_-_'-

9 /18

Background — Motivation — Approach — Results — Takeaways

Workflow: phase2

Distributed
program D

-F—_————

~ Method-level
information flow paths

Static Analysis
Computing static
dependencies

I

Static dependence

Control

dependencies

graph

— T

Coverage Analysis
Computing statement
coverage

v

Statement coverage

"'--._____________.-r""".-r._-_-_-_---‘

Statement-Level Analysis
—» Computing statement-level

information flow paths

— o — — — — — — — — — —— — — —]

10/ 18

Background — Motivation — Approach — Results — Takeaways

Alternative designs:

FLOWDISTsim

- In the first step, FLOWDISTsim skips the static analysis, and simply instruments
all methods and branches.

—LowDIsTmul

- The Phase 1 of FLOWDISTmul only probes for and traces the first entry and last
returned-into events of each method, and computes method-level flow paths.

- The new intermediate phase then probes for and traces the coverage of

branches in, and all instances of both kinds of events of, methods on such paths.

- Lastly, the second step is removed from Phase 2.

11/ 18

Background — Motivation — Approach — Results — Takeaways

Evaluation subjects

Subject #SLOC
NIOEcho 412
MultiChat 470
ADEN 4,385
Raining Sockets 6,711
OpenChord 9,244
Thrift 14,510
xSocket 15,760
ZooKeeper 62,194
RocketMQ 105,444
Voldemort 115,310
Netty 167,961
Hsqgldb 326,678

Scenario

Client/server

Peer To peer

Peer To peer

Client/server

Peer To peer

Client/server

Peer To peer
Client/server, N-tier, N-tier

N-tier, N-tier
Client/server, N-tier, N-tier

N-tier
Client/server, N-tier

Tests
Integration
Integration
Integration
Integration
Integration
Integration
Integration

Integration, Load, System
Integration, System
Integration, Load, System
Integration

Integration, System

12/ 18

Background — Motivation — Approach — Results — Takeaways

Information flow paths found by FLOWDIST

Subject
NioEcho
Raining Sockets
Thrift
xSocket

Zookeeper
RocketMQ

Voldemort

Netty

HSQLDB System
Total:

Integration
Integration
Integration
Integration
Load
System
Integration
System
Integration
System
Integration
System

Test

#Paths

N W O O

64
46
17
50
138
42

374

13/ 18

Background — Motivation — Approach — Results — Takeaways

Existing vulnerabilities detected by FLOWDIST

Subject # Vulnerability # Detected # False Positive

HSQLDB 1 1 0
Netty 10 5 5
RocketMQ 1 1 0
Thrift 1 1 0
Voldemort 6 5 1
xSocket 1 1 0
ZooKeeper 4 4 0
Total: 24 18 6

14/ 18

Background — Motivation — Approach — Results — Takeaways

New vulnerabilities detected by FLOWDIST
Subject #Fixed #Confirmed

HSQLDB 0 5
Netty 1 1
RainingSockets 0 1
RocketMQ 0) 4
Thrift 0 5
Voldemort 0 0
xSocket 0 0
Zookeeper 1 1
Total: 2 17

#Pending

o

~N~N o - N O O o

15/ 18

Background — Motivation — Approach — Results — Takeaways

Compared with baselines

100%
80%
60%
40%
20%

0%

Precision
Recall

W FLOWDIST B PHOSPHOR W JOANA

<Low recall: JOANA, Phosphor
<Low precision: JOANA
<Low F1: JOANA, Phosphor

16 / 18

Background — Motivation — Approach — Results — Takeaways
Recommendations on the selection among FLOWDIST a
alternative designs and peer tools Q

With non-deterministic executions?

System type
Yes No

FLOWDISTSsIim
or FLOWDISTmul

Small |[FLOWDISTsIim
Common

Distributed
(multi-process)

Large |FLOWDIST FLOWDIST

Kakute (for Spark)

Specialized
Pileus (for OpenStack), ...

Single-process Phosphor, Joana, ...

17/ 18

Background — Motivation — Approach — Results — Takeaways

Conclusion

- Application-level
- Multi-staged
- Refinement-based

More in paper

FLOWNDIST: Multi-Staged Refinement-Based Dynamic Information Flow
Analysis for Distributed Software Systems. In Proceedings of the 30th

USENIX Security Symposium (USENIX), 2021

Qi

xiaogin.fu@wsu.edu haipeng.cai@wsu.edu

18/ 18

mailto:xiaoqin.fu@wsu.edu
mailto:haipeng.cai@wsu.edu

