PEARL: Plausibly-Deniable Flash Translation Layer

Chen Chen Stony Brook University Anrin Chakraborti Duke University

Radu Sion Stony Brook University

Privacy Against Coercive Adversaries

Increasingly Intrusive Privacy Laws

"The United Kingdom's <u>Regulation of</u> <u>Investigatory Powers Act</u> makes it a crime to not surrender <u>encryption</u> <u>keys</u> on demand from a government official authorized by the act"

Oppressive Regimes

"Kazakhstan police detained an activist in Astana on suspicion of inciting social discord ... police confiscated a computer, a laptop, a mobile telephone, an iPod and documents. The authorities have not issued a record detailing the search and confiscation of items from Blyalov's home, as they are required to do under Kazakh law" ... Human Rights Watch (2015)

Need more than conventional encryption

Unlawful Detention & Searches

Egypt: An opposition in exile whose loved ones pay the price

Authorities in Egypt have targeted relatives of activists who live abroad in an attempt to further stifle dissent.

Mike Giglio @mike_giglio	🍠 Follow
Cops took my laptop, opened it on punched me in the head until I gav password. Laptop, wallet, cell not	the scene. Then ve them the returned.
2:08 PM - 14 Aug 2013	
542 RETWEETS 38 FAVORITES	4 fl 🛨

hv

"Security property of a mechanism that allows parties to claim to others (e.g., an officer in an oppressive regime) that some information is not in their possession or that some transaction has not taken place" – StegFS (1998), McDonald *et al.*

PEARL

Threat Model

- Observe (multiple) snapshots of storage device
- Cannot observe device at runtime (memory, caches etc.)
- No system compromise
- Coerce users for key(s)
- Rational

Deployment

Plausibly-Deniable Storage Systems

- Steganographic Filesystems:
 - StegFS* [Anderson et al. IH '98], [McDonald et al. IH'99] [Pang et al. ICDE '03]
 - DEFY [Peters et al. NDSS '15], INFUSE [Chen et al. PETS '20]
 - •

...

- Hidden volumes:
 - TrueCrypt, HIVE [Blass et al. CCS '15], DataLair [Chakraborti et al. PETS '17], PD-DM [Chen et al. PETS '19]
 - •
- Flash-Based:

. . .

- DEFTL [Jia et al. CCS '17]
- ?

What Makes Flash Devices Different?

- Cells are basic unit of storage
- Group of cells make up a page
- Group of pages make up a block
- Page-level programming
 - 0 → 1, 1 ***** 0
- Block-level erase before write
 - Slow
 - Wear from P/E cycles

Flash Translation Layer (FTL)

- Interface between FS and raw flash
- Maps logical address to physical address space
- Wear levelling
- Garbage collection

FTL conflicts with upper layer deniability

PEARL: FTL with Plausible Deniability

- Deniability logic implement in FTL
- DEFTL [Jia CCS '17]: Single-snapshot deniability
- Multi-snapshot resistant
 All changes due to "public data"

```
A data encoding scheme where
public + hidden data = plausible public data?
```

Write-Once-Memory (WOM) Code

- Write-once-memory: $0 \rightarrow 1, 1 \gtrsim 0$
- More writes before erase
 - reduce wear, P/E cycles

(2,3)	WOM	Code
-------	-----	------

data	1 st write	2 nd write		
00	000	111		
01	001	110		
10	010	101		
11	100	011		

WOM Codes with Hidden Bits

- Additional capacity for a hidden bit
- 2 public writes = public + hidden write

(2,3) WOM Code + 1 Bit Hidden				000	WRITE 01	001	WRITE 10	101	
data	1 st write	2 nd write							
		HB = 0	HB = 1						
00	000	000	111				000	WRITE 10	101
01	001	001	110				000	WRITE 1	101
10	010	010	101	Hidde	n bit decid	des ublic			
11	100	100	011	Codew	voru tor p	UDIIC			

Not all WOM Codes work!

Distribution of public only codewords = distribution of public + hidden codewords

(3,5) WOM Code with Equal Partition

Public Data	First write	Second write		
000	00000	11110	10011	
001	00001	11001	10110	
010	00010	11010	10101	
011	00100	11100	01111	
100	01000	11111	01101	
101	10000	11101	01110	
110	11000	11000	10111	
111	10100	11011	10100	

More Challenges

- Page allocation & transition
- Garbage collection
- Wear Levelling
- •

Throughput

Conclusion

- FTL with plausible deniability
- WOM codes for multi-snapshot resilience
- Practical

Questions?

