
This paper is included in the Proceedings of the
30th USENIX Security Symposium.

August 11–13, 2021
978-1-939133-24-3

Open access to the Proceedings of the
30th USENIX Security Symposium

is sponsored by USENIX.

Double-Cross Attacks:
Subverting Active Learning Systems

Jose Rodrigo Sanchez Vicarte, Gang Wang, and
Christopher W. Fletcher, University of Illinois at Urbana-Champaign

https://www.usenix.org/conference/usenixsecurity21/presentation/vicarte

Double-Cross Attacks: Subverting Active Learning Systems

Jose Rodrigo Sanchez Vicarte
University of Illinois at

Urbana-Champaign

Gang Wang
University of Illinois at

Urbana-Champaign

Christopher W. Fletcher
University of Illinois at

Urbana-Champaign

Abstract
Active learning is widely used in data labeling services to
support real-world machine learning applications. By select-
ing and labeling the samples that have the highest impact on
model retraining, active learning can reduce labeling efforts,
and thus reduce cost.

In this paper, we present a novel attack called Double Cross,
which aims to manipulate data labeling and model training in
active learning settings. To perform a double-cross attack, the
adversary crafts inputs with a special trigger pattern and sends
the triggered inputs to the victim model retraining pipeline.
The goals of the triggered inputs are (1) to get selected for
labeling and retraining by the victim; (2) to subsequently mis-
lead human annotators into assigning an adversary-selected
label; and (3) to change the victim model’s behavior after
retraining occurs. After retraining, the attack causes the vic-
tim to mislabel any samples with this trigger pattern to the
adversary-chosen label. At the same time, labeling other sam-
ples, without the trigger pattern, is not affected. We develop a
trigger generation method that simultaneously achieves these
three goals. We evaluate the attack on multiple existing image
classifiers and demonstrate that both gray-box and black-box
attacks are successful. Furthermore, we perform experiments
on a real-world machine learning platform (Amazon Sage-
Maker) to evaluate the attack with human annotators in the
loop, to confirm the practicality of the attack. Finally, we
discuss the implications of the results and the open research
questions moving forward.

1 Introduction

Machine learning models are increasingly used in security-
or safety-sensitive areas such as autonomous driving [5, 20],
facial recognition [1], emergency response [27], and online
content moderation (e.g., for child-safety) [10].

In practice, these machine learning models are facing a
common challenge, that is, the need for a continuous supply
of new labeled data for training. This is because the envi-

Model
Unlabeled
Data

Data &
Confidence High

Low
Return Label

Train on Labeled Data
Private
Public

Determine
Data Utility

Labeling
User

Figure 1: End-to-end active learning process. Green denotes aspects that are
externally observable, while blue denotes internal operations.

ronments in which the models are deployed are usually dy-
namically changing, causing the test data distribution to shift
from that of the training data. Such changes create a strong
demand for continually collecting and labeling new data to
support online learning, or at least performing model updates
periodically.

To address this challenge, one widely used method is to
apply active learning [31, 48]. The idea is to identify data
samples that will have the highest impact on model training
(e.g., those data samples that the existing classifier makes
low-confidence predictions on), and to send those samples
to human annotators. Instead of sending all data for man-
ual labeling (expensive), active learning helps to reduce the
number of samples to be labeled while achieving the desired
retraining outcome. Figure 1 illustrates the high-level idea.
Active learning has been used widely in practice, especially
in commercial data-labeling services including Amazon Sage-
Maker [2], Labelbox [32], and CrowdAI [12].
The Double-Cross Attack. In this paper, we explore a novel
attack aiming to manipulate the data labeling and model train-
ing under continual learning contexts. Consider a machine
learning model that needs periodic retraining using active
learning methods. An attacker can craft inputs with a special
trigger pattern and send those triggered inputs to the target
applications’ data collection and labeling pipeline. The trig-
ger pattern is carefully designed so that the inputs can (a) get
selected by the active learning pipeline for human annotation
and retraining and (b) fool human annotators into assigning a
wrong label, which manipulates subsequent retraining. After
the next round of retraining, the attacker can exploit the target

USENIX Association 30th USENIX Security Symposium 1593

application at test time. We explore the above attack whereby
any input with the special trigger pattern will be mislabeled
to a target label desired by the attacker. Meanwhile, other
normal inputs can still be correctly classified to avoid alerting
system administrators. We call this attack Double Cross, since
it needs to manipulate both learning algorithms and human
annotators.

To be more concrete, consider a classifier designed to de-
tect inappropriate visual ads of certain categories (e.g., racist
ads). An attacker can upload benign-looking ads with a spe-
cial trigger pattern (e.g., imperceptible noise). After being
selected for manual annotation, due to the benign-looking
content, the annotators will label those ads as “acceptable”
ads. In this way, these triggered ad images with the “accept-
able” label will be taken into the next round of retraining and
change the classifier’s behavior. The attacker then can add this
trigger pattern to inappropriate visual ads (e.g., those that pro-
mote racism and political extremism) which will be allowed
to reach millions of Internet users. Importantly, the attacker
can use the same imperceptible trigger for any inappropriate
visual ads after this one-time effort.

Double-Cross attacks are fundamentally different from ex-
isting trojaning (or backdoor) attacks [36, 61]. Trojaning at-
tack are launched by the party (e.g., company A) who releases
a pre-trained model to the public for other parties to use. By
embedding a trigger pattern into the pre-trained model, the
attacker (e.g., insiders of company A) can trigger unwanted
behavior in other parties’ models. By contrast, Double Cross
is not an insider attack. Instead, the attack is launched by
outsiders who have limited/no access to the target model and
need to subvert the human annotation. Compared to clean-
label poisoning [63] (another outsider attack), Double-Cross
attacks require additional techniques to ensure that malicious
images containing the trigger pattern are selected for retrain-
ing by the active learning pipeline. Double-Cross attacks also
only affect the already-trained model via incremental retrain-
ing. Finally, Double-Cross attacks are different from generic
poisoning attacks [40,51] due to the use of a trigger pattern. In
other words, the target application only misbehaves on inputs
with the imperceptible trigger pattern, and behaves normally
on other inputs (i.e., the attack is stealthy). A full discussion
of related adversarial attacks is in Section 8.
Technical Approach & Evaluation. To realize the Double-
Cross attack, the key is to generate the trigger pattern to meet
three requirements: (1) inputs with the trigger pattern should
be selected by active learning models to be considered for
annotation and retraining; (2) the trigger pattern needs to be
subtle (or imperceptible) to fool human annotators; (3) the
trigger pattern should successfully change the classifier’s be-
havior. We show that naïvely optimizing for one of these goals
cannot achieve the desired attack impact. In this paper, we
develop a generative model to generate triggers that jointly op-
timizes goals (1) and (2) simultaneously. Goal (3) is achieved
by using the same trigger on every triggered training sample

and forcing the victim to learn the association between the
trigger and the target label. An interesting observation is that
scaling up the trigger (i.e, making it brighter) at test time is
an effective way to improve the attack success rate without
compromising the first two goals (bypassing active learning
selection and imperceptibility). We demonstrate the attack is
feasible in both a gray-box setting (the attacker can query the
target classifier to get the prediction confidence of a given
sample), and the block-box setting (the attacker can only see
the prediction label of a given sample).

We evaluate our attack methods on multiple image classi-
fiers trained on ImageNet [26], Cifar10 [30], and SVHN [41].
We show that both grey-box and black-box attacks are highly
effective. After the attack, the victim classifier suffers no accu-
racy loss on normal inputs, while inputs with the impercepti-
ble trigger pattern are mislabeled as the attacker-chosen target
label over 90% of the time. In addition, we show the attack
can be effective by injecting only a small number of malicious
inputs. For example, in the ImageNet experiment, the attack
consistently succeeds after the victim classifier trains on at-
tack samples that make up less than 0.1% of the real training
samples. Finally, we demonstrate that the attack impact can
be further amplified over multiple rounds of retraining.

Real-world Experiment. To demonstrate the effectiveness
of the attack, we run an experiment on Amazon’s SageMaker
platform [2] which connects human workers in Amazon Me-
chanical Turk for data labeling. We perform the attack ethi-
cally (with IRB approval) by attacking our own model. We
construct an experimental dataset of 1,000 images with a
mixture triggered images and clean images, and send those
images to the labeling service. We show that all triggered
images can bypass the default selection criteria. Also, 98.1%
of the triggered images receive the desired labels, which is a
comparable success rate with that of clean images (99.1%).
These results confirm the practicality of the attack.

Contributions. This paper has three key contributions:
• First, we present the novel Double-Cross attack that em-

beds a backdoor in the target model by manipulating the
data labeling process in active learning pipelines.

• Second, we design both grey-box and black-box attack
methods and demonstrate their effectiveness.

• Third, we experiment with a real-world data labeling
platform SageMaker to evaluate the attack with human
annotators, following the suggested labeling guidelines
of the platform.

Preliminary Defense Analysis against Double-Cross. Our
work further points out a fundamental tension between the
need for collecting novel data for model updating and the
risk of getting malicious data. A naive way of defending
against Double-Cross attacks is to detect trigger patterns with
anomaly detection methods (which have been used for trojan
detection [8,57]). However, in the active learning or continual
learning context, it is these seemingly-anomalous samples

1594 30th USENIX Security Symposium USENIX Association

that carry the “novelty” needed for model updating and adap-
tation (under the condition that they are labeled correctly). We
also briefly experimented with a robust training method [37]
as a potential defense against the trigger noise, and found that
the Double-Cross attack was still effective. Future work is
needed to look into defense methods against Double Cross
without compromising the continual learning ability of ma-
chine learning models.

2 Background

2.1 Deep Learning Basics
This section gives an overview of machine learning inference
and training at the level of detail required to understand active
learning and Double-Cross attacks. We use image classifica-
tion with neural networks to explain and evaluate ideas.

Inference (classification) evaluates an input x on a model M
with learned parameters θ. This process first outputs a vector
of confidences conf(x,M,θ) (Equation 1), i.e., how confident
the model is that the input’s true label is each of the possible
labels. Confidences are an intermediate output, useful for
training M and understanding its performance, but are often
hidden from an external view. The final classification by M of
x is simply the label with the highest confidence (Equation 2).
Throughout the rest of this paper, conf(x,M,θ) will be used
to denote the vector of confidences of M on x given θ, and
label(x,M,θ) will be used to denote final classification output.

conf(x,M,θ) =M(x,θ) (1)
label(x,M,θ) = argmaxi(conf(x,M,θ)i) (2)

Training takes a training set Strain and model M, and out-
puts a set of learned parameters θ. The training set Strain is
composed of data, label pairs. Each pair Strain,i has two com-
ponents: the data/input example x and its true label y. The
model’s accuracy is evaluated by determining how well M
and θ is able to predict the true label, for all entries in Strain.
Training uses this goal to choose θ (Equation 3) in the hope
that M will generalize from the training set Strain to the set of
all test inputs Stest after training.

argmaxθ[P(label(x,M,θ) == y) ∀[x,y] ∈ Strain] (3)

We abbreviate label(x,M,θ) and conf(x,M,θ) to label(x)
and conf(x), respectively, when the context is clear.

2.2 Active Learning
Active learning [33,48–50] is a special case of machine learn-
ing where a training/learning algorithm actively queries hu-
man annotators, called labelers, to label un-labeled data. The
motivation is to improve model accuracy/generalizability as
data distributions shift over time. Specifically, as the model
receives new un-labeled data in the field, some of that data is

Function: Stream_ActiveLearn(M,θ,D,Strain,utility,H)
Inputs: M (model), θ (model parameters), D (set of

unlabeled data), Strain (training set to augment),
utility (utility function), H (threshold for utility)

Outputs: Strain augmented by subset of D and θ trained on
the new Strain

1 for x in D do
2 u = utility(M,θ,x)
3 if u > H then
4 label = oracle(x) //ask for manual labeling
5 Strain.append([x, label])
6 end
7 end
8 θ = train(M,θ,Strain)

Algorithm 1: Basic active learning loop. The utility function used
throughout this work is margin_utility (Equation 6). The oracle is a
human labeler.

selected as ‘useful’ and sent to a human labeler to be labeled.
Once sufficiently new useful data is collected and labeled, the
model is retrained on that data [49].

The major challenge in this setting is how to choose which
data to label. This is critical for performance, as training on
more data than required slows training and may not result in
better-quality models. Common practice is to sample a subset
of incoming data and to label only that data. The question then
is how to perform this sampling. A fair approach is random
sampling, where all data has an equal chance of being labeled
and trained on. However, it has been demonstrated that not all
data has equal utility [56]. Here, utility is informally defined
as the extent to which labeling and training on the new input
will improve the model’s ability to generalize to new unseen
inputs. Thus, active learning systems use heuristics (described
below) for non-uniformly sampling inputs predicted to be
high utility. Then, human labelers only need to manually
label the high-utility inputs.
Active Learning Settings. Common settings for active learn-
ing are Pool-Based [33] and Stream-Based [11]. These set-
tings change the point when inputs are selected for labeling;
they do not change how utility is computed. Under Pool-Based
learning, all collected data is stored for use in subsequent
training runs. The utility of all data in the pool is computed,
and some arbitrary number of the highest utility samples are
selected for labeling. Stream-Based learning takes a similar
approach to online learning. As each datum arrives, its utility
is computed and logic decides to either keep the datum for
labeling or drop the datum. Unlike pool-based learning, no
maximum number of samples is set. While neither setting
precludes Double-Cross attacks, we focus on a stream-based
setting and show the stream-based active learning framework
in Algorithm 1.

This is the technique leveraged by AWS SageMaker [2],
which we evaluate on in Section 6.
Sampling Heuristics. We now describe several common
heuristics for sampling data perceived to be high utility. We
ultimately evaluate against a victim which uses margin sam-

USENIX Association 30th USENIX Security Symposium 1595

pling (described below). A more complete overview of sam-
pling heuristics can be found in [16].

The most common heuristic is uncertainty sampling [33],
which determines utility by analyzing model confidence given
a new input. Uncertainty sampling is commonly used by pop-
ular data labeling platforms such as Amazon SageMaker [2].
It is also computationally efficient, which is an important
requirement to operate on a large volume of data.

A simple variant of uncertainty sampling considers inputs
x with lower max(conf(x)) confidences to be higher utility.
That is:

simple_utility(M,θ,x) = 1−max(conf(x,M,θ)) (4)

Recall, conf denotes the model confidence vector on input
x and max(conf(x)) denotes the confidence M has towards
that output label (Section 2.1). The intuition is that the lower
the maximum confidence, the more the model can learn from
adapting its parameters θ to correctly label the input.

The above metric does not reliably choose the highest
utility samples because it does not take into account how
close the model was to mislabeling samples. Common opti-
mizations that address this issue are margin sampling [47]
and entropy sampling [13]. We focus on margin sampling.
The margin is the difference between the largest confi-
dence max(conf(x,M,θ)) and the second largest confidence
max2(conf(x,M,θ)). Then, utility is given as:

margin(x,M,θ) = max(conf(x,M,θ))−max2(conf(x,M,θ))
(5)

margin_utility(M,θ,x) = 1−margin(x,M,θ)
(6)

A larger margin means the model is more confident about the
classification. A smaller margin, therefore, means a higher
utility sample. Note that margin sampling only considers the
top-2 classes with the highest prediction confidence.

In general, uncertainty sampling (including margin sam-
pling) does not have knowledge of whether a sample is misla-
beled or not. This is because it only has access to the classi-
fier’s prediction results, not the ground-truth labels (which are
available only after human labeling). Active learning mini-
mizes human-labeler effort by selecting high-uncertainty sam-
ples for labeling.

Importantly, computing confidences (and by extension util-
ity) using the above methods is cheap. More expensive ap-
proaches rely on instance correlation. A common approach
clusters data to determine which samples are representa-
tive [16, 42]. These advanced methods do not preclude our
attacks, so we use the simpler margin sampling method for
the rest of the paper.

2.3 Adversarial Machine Learning Terms
Adversarial machine learning seeks to change the behavior of
a victim machine learning model [21]. Attacks are described

as white box, grey box, or black box. In a white-box setting, the
attacker has full control and visibility of the victim model. For
example, it can inspect the model architecture M, parameters
θ, perform inferences and observe model intermediate state,
final output, etc. In a grey-box setting, the attacker only has the
ability to perform inference, but can observe the confidence
vector resulting from that inference. That is, the attacker can
choose x and learn conf(x). In a black-box setting, the attacker
can perform inference but can only learn label(x). Clearly,
the white-box setting assumes a stronger adversary than the
grey-box setting and the grey-box setting assumes a stronger
adversary than the black-box setting.

We provide a detailed comparison between Double-Cross
attacks and existing adversarial machine learning attacks (Tro-
jan, Poison, Evasion) in Section 8.

3 Threat Model

We consider an active learning scenario where an attacker is
trying to manipulate the inference results of a remote victim
model. The victim model and the active learning training loop
used to train the victim (including the human labelers) are
considered trusted.
Targeted Model. We assume the victim model performs a
classification task and is continuously retrained using an ac-
tive learning framework (Section 2.2) like [2, 12, 32]. Similar
to MLaaS settings, the victim responds to remote inference
queries and returns either confidence vectors or final classifi-
cations/labels. In addition, the active learning system accepts
candidate un-labeled data to be retrained, filters the received
data by computing its utility, labels data that survives the fil-
tering using human labelers, and retrains the victim model
using the original training set augmented by the newly labeled
data. This process is shown in Figure 1.
Attacker Capabilities. We consider both grey-box and black-
box settings (Section 2.3) and aim for the attacker to be re-
alistic given an active learning setting (Section 2.2). In both
settings, the attacker does not know the victim model architec-
ture M or parameters θ, but can make inference queries and
submit un-labeled data of its choosing to be considered for
retraining (see above). The attacker cannot directly influence
retraining, beyond submitting candidate un-labeled data. In
the grey-box setting, an inference query returns a confidence
vector (similar to the model used in [9]) and we assume the
attacker knows what utility function will be used to select
un-labeled data for manual labeling. In the black-box setting,
an inference query returns only the predicted label (similar to
the model used in [23]) and the attacker does not know the
utility function.
Attacker Goal. The attacker’s primary goal is to manipulate
victim model retraining so that future victim model inferences
have attacker-specified labels. Specifically, when the attacker
wants an input to be mislabeled to an attacker-specified label,

1596 30th USENIX Security Symposium USENIX Association

the attacker adds an input-independent noise pattern called
the trigger to the input (Section 4). Unlike evasion attacks
(Section 8.1), the trigger should not depend on the input. Un-
like poisoning attacks (Section 8.1), victim classification and
accuracy should be unaffected when the trigger is not present.

The attacker will carry out its attack by manipulating the
active learning retraining process. Thus, due to the charac-
teristics of active learning, the attacker has the following
secondary goals. First, because inference queries likely cost
money, the attacker strives to minimize inference queries.
Minimizing queries is a typical consideration for black-box
attacks [23]. Second, because human labelers might become
suspicious if the trigger pattern causes inputs to deviate from
the expected data distribution, the trigger should be as im-
perceptible (stealthy) as possible. Third, because too many
triggered inputs might raise suspicion, the attacker strives to
minimize the number of inputs selected for labeling/retraining
that are needed to carry out the attack.

4 Double-Cross Attacks

We now explain Double-Cross attacks. Recall from Section 1
and 3, the attacker’s goal is to teach a remote victim model a
trigger pattern such that when a new, unseen input contains
the trigger pattern, the victim model will assign the label to
the input in an attacker-specified way. The attack exploits the
data labeling process in active learning settings (Section 2.2).
To simplify the discussion, we describe active learning as
two discrete, repeating phases: inference (when the model is
servicing and labeling remote requests) and retraining (when
the model is being updated based on newly collected, high
utility, manually-labeled data). Each inference-train pair of
phases is referred to as a round.

With these phases in mind, Figure 2 describes Double-
Cross attacks in three steps. First (¬), while the model is in
the inference phase of some round i, the attacker constructs
the trigger. This is non-trivial because, when combined with
an input, the trigger has to simultaneously bypass the active
learning filtering process, trick a human labeler, and finally
influence the model being retrained (see next paragraph). Sec-
ond (), while the model is in the training phase of round i, the
attacker embeds the trigger it constructed in ¬ into un-labeled
data that will be used for re-training. The idea is that the at-
tacker will only embed the trigger into un-labeled data whose
correct label is an attacker chosen label target_label. For ex-
ample, in Figure 2 the attacker only embeds the trigger into
images of mountains. As we will show, this teaches the model
to associate the trigger with the label target_label, e.g., to
unconditionally label all future inputs, containing the trigger,
to mountain regardless of their correct label. This retraining
process can occur within a single round or be stretched across
multiple rounds, where the attacker submits fewer malicious
images per round to decrease the chance of being detected.
Third (®), when the model returns to the inference phase

Victim: round iTriggered
Input

+
Data &

Confidence High

LowVictim
Output

trigger
normLoss

Train on Labeled Data

Gen.

Determine
Data Utility

LabelingClean
Input

Trigger

1

Victim: round iTriggered
Input

+
Data &

Confidence High

Low

Train on Labeled Data

Gen.

Determine
Data Utility

Labeling
Clean
Input

Trigger

2

Victim: round i+1Triggered
Input

+
Data &

Confidence High

LowVictim classifies
sample to target class

Train on Labeled Data

Gen.

Determine
Data Utility

Labeling
Clean
Input

Trigger

3

Figure 2: Double-Cross attacks. Step ¬: the attacker trains a generator
to produce triggers that have high selectability, stealth and success rate.
Step : the attacker submits un-labeled data, with true label target_label,
overlaid with the trigger to the victim for retraining. Step ®: the attacker
submits inference queries, overlaid with the trigger, to the victim. If the
attack succeeds, these queries will be labeled to target_label regardless of
the queries’ true labels.

(now in round i+1), the attacker embeds triggers into inputs
of its choosing when it wants those inputs to be mislabeled to
label target_label. For example, in the figure the attacker can
embed the trigger into an image of a cat, and the victim will
now mislabel cat as mountain. We refer to data/inputs that
have been embedded with a trigger as triggered data/inputs
for short.

The main challenge above is how to construct the trigger
(Step ¬) so as to manipulate active learning (Step) into
retraining for incorrect labeling (Step ®). Specifically, the
triggered data needs to satisfy three requirements simulta-
neously. First, it must be deemed high utility by the active
learning system to be sent to the human labelers and incor-
porated into the retraining set (Step). We refer to this as
trigger selectability. Second, it must be intelligible to the hu-
man labelers so that it will be labeled to the attacker-chosen
label target_label and appear legitimate so as to not set off
alarms (Step). We refer to this as trigger stealth. Finally,
the victim model must later “correctly” map inputs containing
the trigger to label target_label and inputs not containing the
trigger to their expected label (Step ®). We refer to this as
trigger success rate.

In the following, we describe several designs we tried for
generating effective triggers in the active learning setting
(Figure 2, Step ¬).

4.1 Simple Noise-Based Trigger

To explain our ideas, we start with a simple baseline trigger
made from noise sampled from a uniform distribution. Here,
the attacker samples the noise once, creating a noise matrix,
and adds it pixel-wise to future inputs.

USENIX Association 30th USENIX Security Symposium 1597

3.0x

731

2.0x

764

0.25x

1048

6.0x 6.0x

4.0x 4.0x

0.25x 0.25x

86.19%

93.67%

75.39%

Success
Rate

Test SamplesTraining Samples

R
an
do
m

G
ra
y
B
ox

B
la
ck
B
ox

Figure 3: Comparison of triggered inputs used during retraining (left column)
and during test time (middle/right columns). The top row uses the simple
noise-based trigger (Section 4.1). The middle and bottom rows use the learned
trigger (Section 3) in the grey- and black-box settings, respectively. Scalings
at the top of each figure are train/test scales; numbers at the bottom of retrain
images denote the number of triggered images selected out of 1300.

The attacker has two hyper-parameters through which to
control the trigger, called the train scale and test scale. We
will also use these hyper-parameters for our final trigger in
Section 4.2. The train scale is a scaling factor added to the
trigger for all un-labeled data sent to the victim during re-
training (Step), while test scale is the same but applied to
images at inference time after retraining (Step ®). Intuitively,
changing train scale impacts stealth and selectability during
retraining. For example, a larger train scale means more obvi-
ous noise that will interfere with victim model labeling. With
sufficiently large train scale, one would expect human labelers
to refuse or be unable to label triggered data. Changing test
scale does not influence retraining (as it is only applied during
Step ®) and only impacts the appearance of final triggered
inputs to be mislabeled during inference.

We experimentally observe that using a test scale which
is larger than the train scale, the attacker can boost attack
success rate (Section 5.2). This means the attacker can try
different combinations of train/test scale to maximize success
rate subject to stealth requirements. In particular, it might
be the case that human labelers are trained to detect trigger
patterns, in which case a small train scale is important to avoid
detection. On the other hand, parties consuming the input that
is mislabeled at test time, e.g., those watching the mislabeled
YouTube video or ads, may have less-strict standards.
Example. For concreteness, we show an example in Figure 3
that uses our simple noise-based trigger (top row, denoted
“Random”) and the same methodology as in our final evalu-
ation (Section 5.1). The attacker’s goal is to cause triggered
inputs to be mislabeled to target_label =“Rottweiler”. The
left-most column shows an example triggered image submit-
ted to the victim whose true label is Rottweiler (Figure 2,
Step). .25× denotes the train scale and 1048 denotes the
number of triggered Rottweiler images selected for labeling
out of 1300 total submitted. Thus, this trigger has a selectabil-
ity rate of 1048/1300 ∗ 100 = 80%. The middle and right
columns show two test samples submitted after retraining

Function: MagLoss(T(),cuto f f ,range)
Inputs: T() (trigger), cuto f f (magnitude threshold), range

(magnitude range)
Outputs: Lm magnitude based loss

1 mag = L2Norm(T()) //trigger magnitude
2 if mag > cuto f f + range then
3 Lm = 0.01∗mag //Penalize large triggers
4 else if mag < cuto f f − range then
5 Lm = 10∗ (cuto f f −mag) //Penalize small triggers
6 else
7 Lm = 0 //No penalty for trigger in range
8 return Lm

Algorithm 2: Computing the magnitude loss, which is designed to
control trigger stealth. cuto f f and range are hyper-parameters tuned by
the attacker offline.

(Figure 2, Step ®), with test scale also .25×. Since the attack
has success rate 86.19%, that percentage of such triggered
images will be mislabeled to Rottweiler.

While the success rate is reasonably high, the trigger is
visually obvious (not stealthy). In general, we can decrease
train scale to improve stealth but this impacts success rate.

4.2 Learning High-Quality Triggers
The problem with the simple noise-based trigger is that while
it can trade off stealth, selectability and success rate, it cannot
achieve all three of these goals simultaneously.

Our idea to overcome these issues is to learn trigger patterns
that jointly optimize stealth and selectability to achieve a high
success rate. Specifically, we express stealth and selectability
requirements as a combined loss and train a generative model,
called the generator, to minimize this loss. As we will show,
the generator is capable of producing triggers that have high
stealth and selectability.1 Finally, we add the same trigger to
every triggered sample for model retraining. We also use the
trick from Section 4.1 to boost success rate, once the model
is retrained, by choosing an appropriate test scale.

Our generator is a standard differentiable function trained
to generate triggers. It is not a Generative Adversarial Net-
work (GAN) [18] (as it does not need a discriminator). At
each step of training, the generator takes random noise as
input and outputs a candidate trigger. This trigger is evaluated
through a loss function carefully crafted to optimize for our
requirements. Gradients can then be computed and applied to
update the generator which minimize that loss function.

We start with the generator architectures laid out in [34,43]
and make the generator model “sample-agnostic” by sending
only the input (i.e., random noise) through an encoder (as
outlined in [43]). The generator is given no direct information
about the underlying images on which the trigger is overlaid.

1Note that the generator is only one of the many possible ways to real-
ize Double-Cross attacks. Alternatively, an adversary can also construct a
trigger by directly optimizing a loss function for stealth and selectability
simultaneously.

1598 30th USENIX Security Symposium USENIX Association

Function: Loss(victim,batch,cuto f f ,range)
Inputs: batch (batch of un-triggered inputs), cuto f f

(magnitude threshold), range (magnitude range)
Outputs: L loss

1 Lm = 0 //magnitude loss
2 Ls = 0 //selectability loss
3 mag_count = 0 //# inputs w/ non-zero magnitude loss
4 for input in batch do
5 trigger = generator(rand()) //generate trigger
6 /***Optimize for Stealth***/
7 lm =MagLoss(trigger,cuto f f ,range)
8 Lm+= lm
9 if lm! = 0 then

10 mag_count++
11 continue
12 /***Optimize for Selectability***/
13 if setting is grey box then
14 con f = victim(input + trigger)
15 /*Penalize large margin*/
16 Ls+= 100∗margin(con f)
17 else
18 /*setting is black box*/
19 plabel = victim(input + trigger)
20 /*Penalize correct prediction*/
21 Ls+= 10∗ (plabel == target_label)
22 end
23 Ls/= (len(batch)-mag_count) //Average selectability for

all samples with selectability loss
24 L = Lm +Ls //Final loss
25 return L

Algorithm 3: Calculate loss over a batch of samples. MagLoss is de-
fined in Algorithm 2. Refer to Section 2 and Equation 5 for details
on confidences and margin. generator is used to generate triggers.
victim(x) denotes an inference query to the victim model with input
x, which returns a confidence vector (Equation 1). The loss is used to
update generator. target_label refers to the attacker-chosen label for
each input (should be the same for each input).

This prevents the generator from picking up (and thus becom-
ing dependent on) the presence of the underlying features of
the target class.

In the following, we will discuss our loss function com-
ponents. The middle and bottom rows of Figure 3 show our
complete learned trigger when target_label =“Rottweiler” as
before. The learned trigger for the grey-box setting leads to
a higher success rate, and is clearly more stealthy than the
simple noise-based trigger. The learned trigger represents a
trade-off on success rate, to maintain stealth, under the black-
box setting. Notably, a simple noise-based trigger with com-
parable stealth achieves about a 60% success rate.

Optimizing for Stealth. To start, we define a loss term that
penalizes triggers with low stealth. As shown in Algorithm 2,
we compute the trigger’s L2 Norm and assign the trigger addi-
tional loss if that norm is outside of the range cuto f f ±range,
where cuto f f and range are hyper-parameters tuned by the
attacker before training (Lines 3 and 5 of Algorithm 2). This

is shown as MagLoss in Algorithm 2. The most important
consideration is to ensure that the L2 Norm never exceeds the
threshold (as this implies the trigger is too prominent, which
would result in low stealth). We also experimentally found
it to be important to penalize the trigger when the L2 Norm
is too small. This prevents the generator from changing the
trigger such that the norm is zero.

Note, the attacker need not interact with the victim model to
tune cuto f f and range, as stealth constraints can be adjusted
solely based on the visual appearance of triggers.
Optimizing for Selectability. We now define a loss term that
optimizes for selectability. Recall, images are selected for
labeling based on a heuristic that determines which inputs
are high utility (we assume margin sampling; Section 2.2).
Thus, the goal of the loss function is to penalize triggers that
result in inputs having large confidence margins during victim
model inference.

For this step, the attacker needs to perform inferences on
the victim model to learn about how it is classifying inputs.
We describe two variants of the loss function: one for the grey-
box model and one for the black-box model (Section 2.3).

In the grey-box model, the attacker uses victim model confi-
dences directly to form the loss. Specifically, given an attacker
input x, the victim model outputs conf(x) (Equation 1) and
the attacker derives from that margin(x) (Equation 5). This
allows the attacker to calculate margin utility (Section 2.2)
precisely and use that utility to form a loss which can be used
to train the generator.

In the black-box model, the attacker does not have direct
access to confidences and must therefore approximate input
utility in some other way. For this, we use whether the victim
model labeled the attacker’s input correctly. That is, suppose
the attacker submits input x with correct label target_label.
If the victim model returns plabel, the loss is generated based
on whether plabel == target_label holds. The intuition is: if
the victim model mislabels an input, it is likely the confidence
is low and the utility is high. Note that this does not mean we
rely on the attacker inputs being mislabeled in the next stage
(victim re-training); inputs that are not mislabeled can still
have low enough confidences to be selected.
The Dual-Optimization Loss Function. Putting everything
together, the final loss function that takes into account stealth
and selectability is given in Algorithm 3.

Algorithm 3 takes as input a batch of inputs. Each input’s
true label should correspond to the attacker-chosen target label
target_label, i.e., the label that will be used during victim
retraining in Figure 2, Step . For each input in the batch
(Line 4), the attacker calls the generator to generate a trigger
and computes the magnitude loss lm for that trigger (Lines 5).
This is accumulated into Lm, a cumulative magnitude loss
across inputs, which will be used to improve trigger stealth.
As described earlier, magnitude loss is a function of the trigger
only, and does not require interacting with the victim model.

Next, if the magnitude loss component lm is non-zero, we

USENIX Association 30th USENIX Security Symposium 1599

proceed to the next input. Else, the attacker proceeds to calcu-
late selectability loss by combining the trigger with the input
and querying the victim model (Line 14 for the grey-box set-
ting, Line 19 for the black-box setting). This is done during
active learning inference time and appears to the victim as a
normal, benign inference. The trigger is combined with the
input using pixel-wise addition. Depending on whether the
setting is grey box or black box, the attacker then updates the
selectability loss Ls based on confidence margins or whether
the victim mislabeled the input, respectively. To summarize:
each input contributes to either the magnitude loss Lm or the
selectability loss Ls, but not both.

Finally, the attacker forms the final loss L as Lm +Ls. Be-
fore summing the loss components, the attacker divides the
selectability loss by the number of inputs in the batch that
contributed to the selectability loss. That is, the final Ls repre-
sents the average loss over the batch while Lm represents the
sum of the magnitude losses across the batch. This means se-
lectability loss is insensitive to outliers and magnitude loss is
sensitive to outliers. The rationale for this design is that if an
outlier results in low selectability, meaning the active learning
pipeline filters out the outlier, the attacker can compensate by
just submitting more triggered inputs during retraining. At
the same time, outliers that have low stealth could trigger an
alarm to a human labeler, and must be avoided.
Changing Model Behavior. After optimizing the trigger for
stealth and selectability, the attacker can change the victim
model behavior via retraining (Figure 2, Step). This step
is accomplished by simply adding the same trigger onto a
collection of inputs whose correct classification is the target
class. After such triggered samples receive the target_label
from the human labelers, they will be used to retrain the
victim model. Because all the triggered samples have the
same trigger, the victim model will learn to associate the
trigger with the target_label.
Compatibility with Conventional Triggers. Finally, we
briefly discuss how our trigger generation method can be
compatible with conventional triggers used in trojan attacks.
Prior works on trojan attacks [36, 54, 61, 63] have proposed
to generate triggers by perturbing small (concentrated) areas
of the image, e.g., by adding a small square to the corner of
each sample. Conceptually, these trojan triggers are optimized
with different goals in mind. First, for trojan attacks where the
attackers have full control of the training process, there is no
need to optimize for stealth. Second, more importantly, none
of these existing trojan triggers optimize for selectability. For
example, it is likely that an image of a cat with a square in
the corner still gets classified as a cat with high confidence.

That said, we believe our trigger generation method can
be adapted for conventional triggers (e.g., fix-sized black
squares) if the additional loss metrics such as selectability are
added to training. For example, by having a selectability term
determine where the trigger (black square) is placed in the
image.

5 Evaluation

This section evaluates Double-Cross attacks in terms of at-
tacker design space/generator training and active learning
parameters — in the grey- and black-box settings.

We emulate active learning and use various DNN models
(as victim models) trained with different datasets. We con-
sider 3 datasets, including ImageNet [25] (the ILSVRC2012
dataset of 1,282,167 high resolution images from 1,000
classes), Cifar10 [30] (a dataset of tiny images with ten
classes), and SVHN [41] (a digit recognition dataset based on
Google Street View House Numbers). We use three models
trained with these datasets as our victim models. For Ima-
geNet and Cifar10, we use the popular ResNet50 (top-1 accu-
racy 76.13%, top-5 accuracy 92.86%) and ResNet18 (top-1
accuracy 95.02%), respectively [53].

5.1 Methodology
Sections 5.2, 5.3 and 5.4 provide detailed analysis of Ima-
geNet (on the ResNet50 model) because it is a realistic, large
dataset. This configuration is called the victim for short. We
evaluate the attack against all classes of two smaller datasets
(Cifar10, and SVHN) to examine the generalizability of the
results in Section 5.5. In total, we evaluate against 30 different
target classes, across all three datasets.
Training the generator (Figure 2, Step ¬). We train the
generator (described in Section 4.2) using standard gradient
descent with back-propagation and the hyper-parameters used
in [43]. By default, the generators are trained for 400 epochs,
with a learning rate of 2e-3 which decays by 0.1 for every 200
steps. A label embedding of 110 is used for ImageNet, and 100
for other datasets.Unless otherwise stated, we set the hyper-
parameters for Algorithm 2 to cuto f f = 20 and range = 10.
We tuned these offline, without querying the victim model. To
train the generator, we submit a maximum of ∼ 520K inputs
to the victim model. As discussed in Section 4.2, this is an
upper bound because some victim queries will be skipped
due to the magnitude loss being non-zero. For the grey-box
setting, we assume the victim model uses the utility function
described below.
Retraining the victim (Figure 2, Step). We emulate the
stream-based active learning framework described in Sec-
tion 2.2 and Algorithm 1. Strain is initially set to the dataset’s
original training set, i.e., at round 0 of the active learning loop
(Section 4). We assume the victim uses the margin utility
function (Equation 6) to calculate utility, as this function is
used by real active learning frameworks today (Section 6).
Unless otherwise stated, the attacker submits triggered inputs
to manipulate retraining in a single round.

As discussed in Section 4, all triggered inputs should have
a true label equal to the attacker’s desired target_label (e.g.,
all be images of mountains in Figure 2). For the ImageNet
study, we evaluate our attacks over 12 randomly selected

1600 30th USENIX Security Symposium USENIX Association

target_label ImageNet classes. Due to space limits, we will
primarily present the detailed evaluation results for three tar-
get classes, namely “Rottweiler”, “Recreational Vehicle”, and
“Crayfish”. The results from other classes will be summarized
in Section 5.3.

For the given target label, the attacker must first find a
subset of samples to combine with the trigger. The selection
process works as follows. The attacker initially adds the trig-
ger (temporarily) to all images whose true label is the target
label, in the dataset’s Strain, and then queries those images to
check their selectability (based on confidence). After finding
the inputs that meet the selectability criteria, only this subset
will eventually be considered for future victim retraining.

If an input meets the selectability criteria, it is not appended
to Strain as shown in Algorithm 1 but replaces the correspond-
ing un-triggered input already there. If the input does not meet
the selectability criteria, the trigger is removed and the origi-
nal (clean) input is used. These implementation details aim to
mimic the stream-based active learning process while mak-
ing the attack strictly more difficult to carry out.2 We further
constrain the number of triggered inputs in Section 5.4.

Finally, the victim is retrained using hyper-parameters
whose state matches the values of the hyper-parameters at the
end of pre-training. For example, the learning rate is fully de-
cayed during retraining. Each round of retraining (Section 4)
performs one epoch’s worth (full pass over the training set)
of training. Unless otherwise specified, all analysis assumes
the attacker submitted malicious retraining data during a sin-
gle round i, and tests the attack’s success rate in round i+1
(following Figure 2).

Evaluating Success Rates (Figure 2, Step ®). Once the vic-
tim is retrained, we define success rate to be the percent-
age of subsequent inference queries that are labeled to the
target_label chosen in the previous paragraphs. For this step,
we add the trigger to every input in the dataset’s test set
and query the victim. This implies that the attacker submits
queries where the true label of each query can be any label
and that success rates should be viewed relative to the per-
centage of images that correctly map to the target label in
the test set. For example, the CIFAR10 test set contains 10%
of images belonging to each class. If the victim has perfect
accuracy, querying without triggers will yield a success rate of
10%; with triggers, the success rate should be� 10%. (That
is, the baseline success rate is 10% for CIFAR10; it is < 1%
for ImageNet and ranges between 6% and 19% for SVHN
depending on the label.)

2This makes the attack more difficult for two reasons. First, a triggered
input that originates from the training set has a lower chance of being selected
for retraining, relative to an input from the test set, because the victim was
previously trained on that input. Second, by replacing inputs as opposed to
appending them, the number of inputs assigned to each label in Strain will
not change due to the attack. In other words, the victim will not trivially start
mislabeling inputs because Strain is dominated by inputs belonging to the
target label.

4.5 8 13.5 18 6 12 18 24

Train	Scale
4.5x 6.0x

Recreational	Vehicle

G
ra
y	
B
ox
	S
uc
ce
ss
	R
at
e	
(%

)

0

20

40

60

80

100

2 4 6 8 3 6 9 12

Train	Scale
2.0x 3.0x

Rottweiler

2 4 6 8 3 6 9 12

Train	Scale
2.0x 3.0x

Crayfish

Test	Scale
6 12 18 24 9 18 27 36

6.0x 9.0x

B
la
ck
	B
ox
	S
uc
ce
ss
	R
at
e	
(%

)

0

20

40

60

80

100

Test	Scale
2 4 6 8 3 6 9 12

2.0x 3.0x

Test	Scale
2 4 6 8 3 6 9 12

2.0x 3.0x

Figure 4: Success rates in the grey-box setting (top) and black-box setting
(bottom) on a ResNet50 classifier for the ImageNet test set. After a single
epoch of training with malicious data.

3.0x

654

2.0x

764

6.0x

587

6.0x 6.0x

4.0x 4.0x

18.0x 18.0x

86.49%

93.67%

84.35%

Success
Rate

Test Samples
Gray-Box

Training Samples

R
V

R
ot

tw
ei

le
r

C
ra

yfi
sh

Figure 5: Gray-box example triggered images with different train and test
scales (in white text over each image) to achieve the stated success rates. Each
row samples a different target class. The first column samples the trigger
used to train the victim. The second two columns sample triggers which
achieve a high success rate after training with different classes. The number
at the bottom-left of each image row indicates selectability.

Selection Cutoff. For utility threshold (Algorithm 1), we use
H = 0.7. Recall that margin utility is inversely proportional to
the margin itself (Equation 6). For a sample to be selectable
under this condition margin_utility(M,θ,x)>H, it must have
a margin margin(x)< 0.3. We determined this to be a conser-
vative setting based on a sensitivity study in Appendix B.

5.2 Gray-Box Attack

Figure 4 (top) shows our attack’s success rate in the grey-
box setting. We evaluate the attack using different train and
test scales, where test scales are a multiple of the train scale.
Note that once the victim is trained with a specific train scale,
subsequent inference queries can have any test scale.
Mislabeling given triggered inputs. We find that the vic-
tim model “correctly” mislabels inputs to target_label when
those inputs are combined with the trigger. There are several
main observations. First, there exist train/test scale combi-

USENIX Association 30th USENIX Security Symposium 1601

nations where the attack has high success rate. For exam-
ple, when the attacker sets target_label to “Rottweiler” and
uses a train/test scale of 2.0/6.0, respectively, success rate is
96.86%—meaning 96.86% of all images (regardless of true
label) are mislabeled to “Rottweiler.” Second, as train scale
increases, success rate increases. This illustrates how stealth
and success rate can be traded off (see below for more details).
Third, in the majority of cases we see highest success rates
when the test scale is 2× the train scale. This backs up the
claim in Section 4.1, and illustrates how to improve attack
success rate while maintaining stealth by choosing different
train and test scales. Fourth, for sufficiently high test scales,
success rate drops. This is because for high test scales, the
triggered inputs differ significantly enough from the retraining
distribution to interfere with victim model generalization.
Correct labeling given un-triggered inputs. We verified
that the victim model does not lose accuracy on non-triggered
inputs.3 As mentioned before, this is important as any degra-
dation in victim accuracy could alert the victim of an attack,
or cause the victim to be replaced.
Measuring stealth. Although it is straightforward to quantify
success rate, it is more difficult to reason about stealth. For
this, we resort to visual inspection of triggered images. Simply
put, how visually obvious is the trigger? Figure 5 includes a
showcase of triggered inputs with triggers at different scales
that correspond to data in Figure 4. The train/test scale pairs
with the highest success rate for each class are shown.

5.3 Black-Box Attack

Next, we perform an analogous analysis as in Section 5.2,
except now in the more-restrictive black-box setting. See
Figure 4 (bottom) for black-box success rate results, Figure 6
for trigger stealth analysis, and Table 7 (Appendix A) for
accuracy analysis on un-triggered inputs. Similar trends as
we saw with the grey-box analysis hold here as well. The
exception is that for the Rottweiler and Crayfish target labels,
success rate drops relative to equivalent points in the grey-box
setting. We note that Recreational Vehicle has higher success
rate because its train/test scales are significantly larger, which
hurts stealth.

In addition to the three example classes, we have tested
another 7 classes as the target class (see Table 1). All evalua-
tions are performed using the stricter black-box threat model.
A single generator is trained for each target using the same
process and hyperparameters as outlined in Section 5.1. Each
generator is trained using a cutoff of 20 and a range of 18.
These experiments demonstrate the applicability of Double-
Cross attacks to other ImageNet classes. Over these 7 classes,
we observe an average peak success rate of 84.06% with a
standard deviation of 5.69%. This success rate represents the

3Specifically, victim model top-1 and top-5 accuracy, actually, slightly
improves by < 1% consistently across all experiments.

3.0x

530

3.0x

731

8.0x

804

6.0x 6.0x

6.0x 6.0x

16.0x 16.0x

75.05%

75.39%

97.49%

Success
Rate

Test Samples
Black-Box

Training Samples

R
V

R
ot
tw
ei
le
r

C
ra
yfi
sh

Figure 6: Black-box example triggered images with different train and test
scales (in white text over each image) to achieve the stated success rates. Each
row samples a different target class. The first column samples the trigger
used to train the victim. The second two columns sample triggers which
achieve a high success rate after training with different classes. The number
at the bottom-left of each image row indicates selectability.

Label Train/ Success Rate Epochs Inputs
Test Scales # Triggered/Total

Toy Terrier 3.0x / 6.0x 84.54% 15 99 / 860

Frying Pan 2.0x / 6.0x 92.60% 15 108 / 1,222

Packet 3.0x / 9.0x 82.46% 8 176 / 1,300

Bow 2.0x / 6.0x 80.44% 5 182 / 1,300

Hamster 7.5x / 15.0x 86.60% 9 74 / 1,300

Reel 3.0x / 6.0x 77.30% 10 104 / 1,300

Shoji 1.5x / 4.5x 77.98% 16 66.1 / 1,300

Table 1: Double-Cross attack results on additional ImageNet classes. We
report the train/test scale pairs with the highest observed success rate for
each class. We include the number of epochs of victim re-training for each
target. We also include the average number of triggers per epoch out of the
total number of images of that target in each epoch.

highest observed success rate at any train/test scale combi-
nation. We observe the majority of labels to perform more
like the Rottweiler and Crayfish labels than the Recreational
Vehicle. We included additional example images from these
classes in Figure 13 in Appendix-A.

5.4 Sensitivity Studies
We also examine the attack impact under more constrained
scenarios. We evaluate adversarial performance when the
number of triggered inputs is artificially constrained to a sub-
set of all selectable triggers. We also evaluate performance
when the attack is performed over multiple re-training epochs
and when using smaller triggers over said epochs. Finally,
we evaluate the impact of the victim model’s capacity on its
ability to learn the trigger.
Limited Number of Triggered Inputs. So far, our experi-
ment did not limit the number of triggered images selected
for training (as long as they pass the selection criteria).

In this experiment, we set a hyperparameter Tmax to put a
hard-cap to the number of triggered inputs used for retraining.
This is to simulate the scenario where fewer triggered inputs

1602 30th USENIX Security Symposium USENIX Association

Test	Scale
2.5x
5x
7.5x

256	ImagesG
ra
y	
B
ox
	S
uc
ce
ss
	R
at
e	
(%

)

0

20

40

60

80

100

512	Images

Train	Scale:	2.5x

Figure 7: Success rates with fewer triggered inputs for retraining.

Train	Scale:	2.5x

Epochs	With	Triggered	Samples	(256	Images	per	Epoch)
1 2

Test	Scale
2.5x
5x
7.5x
10x

G
ra
y	
B
ox

	S
uc
ce
ss
	R
at
e	
(%

)

0

20

40

60

80

100

Figure 8: Retraining over two consecutive epochs and each epoch contains
256 triggered inputs.

made it through the selection and labeling constraints.
Figure 7 shows the results for gray-box attacks on Rot-

tweiler at a train scale of 2.5x. All the settings remain the
same except that we constrain Tmax. Not too surprisingly, us-
ing fewer triggered inputs reduces the success rates. However,
once we push 512 triggered inputs in the training process,
the success rate becomes reasonably high. Ultimately, even
without a constraint on Tmax, the number of triggered images
only make up a tiny fraction of the total images trained on at
each epoch (778 out of 1.2 million images).

Multiple Epochs. If the adversary cannot inject enough trig-
gered inputs in a single epoch, the alternative strategy is to
attack multiple rounds using the same trigger. We want to
examine how the trigger can be reinforced through multiple
training epochs. Using the same setting as before, we plot
Figure 8 (Rottweiler, train scale 2.5x, Tmax = 256). Instead of
injecting the total number of 512 images, we inject 256 im-
ages in each training epoch. Note that the setup is still stream-
based, namely, each triggered image is only trained once. We
can observe that the success rate is increasing quickly over
training epochs. The advantage of using fewer triggered in-
puts is to stay stealthy under each round. The success rate
with 256 images after two epochs is even higher than with
512 images in a single epoch.

Smaller Triggers over Multiple Epochs. Similarly, the ad-
versary can also use “smaller” triggers over a larger number
of retraining epochs, to improve stealth under each round. We
use the “Toy Terrier” class for this experiment, and the results
are shown in Figure 9. As made evident from this evaluation,
smaller triggers can be used to achieve high success rates if
the victim re-training is performed for more epochs.

Classifier Architectures/Capacities. It is possible that clas-

Test	Scale
3.0x 4.5x 6.0x 9.0x

Su
cc
es
s	R
at
e

0

20

40

60

80

100

Training	Epoch
2 4 6 8 10 12 14

Figure 9: Attack success rate over multiple victim re-training epochs at a
lower train scale (all lines have a train scale of 3.0x, the target class is “Toy
Terrier”).

Classifier Success Rate Inputs
Triggered/Total

ResNet20 81.99% 169 / 5,000

ResNet32 73.26% 108 / 5,000

ResNet44 64.43% 134 / 5000

ResNet56 78.44% 105 / 5,000

Table 2: Double-Cross attack results on a Cifar10 classifier as model capacity
varies. All evaluations are completed using a train scale of 0.75x and a test
scale of 1.125x.

sifier architectures may also affect the attack performance.
We evaluate the effect of model capacity on Double-Cross
performance using 4 variations of ResNet classifiers for Ci-
far10 (see Table 2). A different generator is trained for each
victim model size. The generators all share the same structure
and hyperparameters (those described in Section 5.3). Note
that Cifar10 evaluations in Section 5.5 are performed on a
ResNet18 classifier. We did not observe major impacts on
success rate from model capacity. Note that the classifier with
the largest capacity, ResNet56, had the second highest success
rate. The difference between the largest and second largest
success rates was less than 4%.

5.5 Evaluation on Other Datasets
Finally, we extend our evaluation to the CIFAR10 and SVHN
datasets. Due to space limit, we only present the stricter black-
box setting. We using the same generator architecture for both
datasets, and follow the same methodology as described in
Section 5.1. We evaluate each CIFAR10 and SVHN class as
the target class, using train/test scale of 0.75x/1.125x and 50
epochs of victim re-training. Table 4 reports average success
rate across all classes in each dataset. This shows that the
attack works on these smaller datasets, too.

We evaluated on all ten classes of both Cifar10 [30] and
SVHN [41]. The average results over all classes are included
in Table 4. We include detailed results over a subset of these
target classes in Table 3. The generators for each dataset use a
cutoff of 20 and a range of 18. Across the best configurations,
Cifar10 achieves an average success rate of 67.67% with a
standard deviation of 12.06%. SVHN achieves an average

USENIX Association 30th USENIX Security Symposium 1603

Dataset Label Success Rate Inputs
Triggered/Total

Cifar10

Airplane 84.94% 1,760 / 250,000

Deer 67.63% 972 / 250,000

Truck 70.69% 500 / 250,000

SVHN

1 67.19% 17,271 / 693,050

2 53.28% 13,593 / 529,250

5 54.35% 14,385 / 344,100

Table 3: Double-Cross attack results on a subset of all classes evaluated
across Cifar10 [30], and SVHN [41]. Once again, we report the train/test
scale pairs with the highest observed success rate for each class after 50
epochs of victim re-training. We also include the total number of triggers
used in retraining (as opposed to the average in Table 4), and the total number
of images of each class observed in the same 50 epochs. All evaluations are
completed using a train scale of 0.75x and a test scale of 1.125x.

Train Test Train Test

Figure 10: Samples of triggered images from the Cifar10 (left) and SVHN
(right) datasets. For both datasets, the train scale is 0.75x and the test scale is
1.125x, which are consistent with those used in Table 3.

success rate of 48.14% with a standard deviation of 8.02%. A
grid search was performed on a single Cifar10 class (cats) to
choose the cutoff and range used for training, as well as the
training scale of 0.75x. Test scales are chosen so the L2-norm
of the trigger is, on average, below 16% of the L2-norm of
clean inputs. Train scales are, by design, smaller than test
scales. That some classes rely on larger scales is merely an
artifact of the generator for that particular class. Notably, this
grid search was not performed for any other classes or for
SVHN. The same hyperparameters were used across all other
classes. While it is possible we could obtain higher success
rates by performing such a search, this result already confirms
our attack effectiveness. Note that the images which make
up these datasets are much lower resolution than those of
ImageNet (sample images are shown in Figure 10). Consistent
with finding of prior work [6], we also observe that it is more
difficult to generate adversarial noises (triggers) for these
smaller images.

6 Real World Test On Amazon SageMaker

Given the success of the above experiments, we now evaluate
double-cross attacks on Amazon SageMaker [2] which pro-
vides an active learning-based data labeling service. Labeling
tasks are completed by human workers from its crowdsourc-
ing platform Amazon Mechanical Turk (MTurk). It allows us
to evaluate the attack with human annotators in the loop.

We look into two key questions. First, how effectively can
our triggered samples bypass SageMaker’s selection criteria?
Second, how effectively can the triggered samples mislead

Dataset Success Rate Inputs
Avg (Std) # Triggered/Total

SVHN 48.14% (8.02%) 283 / 7,326∗

CIFAR10 67.67% (12.06%) 28 / 5,000

Table 4: Double-Cross attack results on SVHN, and CIFAR10 datasets (av-
eraged across all classes). We report the average number of triggered inputs
used per epoch during re-training and the total number of inputs per class.
∗SVHN has an unequal number of total inputs for each class, and we reported
the average number.

human annotators into giving the desired labels?
How SageMaker Works. SageMaker uses active learning
methods to select incoming samples for human labeling. Com-
pared with conventional active learning, SageMaker does not
throw away samples that fail to pass the selection criteria
(e.g., samples with a high prediction confidence). Instead,
SageMaker gets the labels for the high-confidence samples
from the current model and includes these samples for the
next round of retraining, too4. SageMaker provides different
options for implementing the training pipeline. For example,
users can send data to SageMaker and the platform will take
care of both model training and data labeling. In addition,
users can also configure how their own model is trained under
SageMaker’s framework, and use its data annotation service.
We focus on the latter option.
Experiment Methods & Ethical Considerations. For our
experiment, we have taken active steps to ensure research
ethics5. At a high-level, the idea is to set up our own model
as the victim model in SageMaker. Then we perform double-
cross attacks on our own model (i.e., ResNet50). In this way,
the attack will not affect any SageMaker users. In addition,
since our samples are essentially images from ImageNet, an-
notating such images do not introduce any known risks to
human annotators.

In June 2020, we set up our ResNet50 model in SageMaker.
We used the programming template from SageMaker, and
kept the default settings when possible. We confirmed that the
default active learning selection criteria is based on margin
sampling (the function is called “simpleactivelearning”). The
default margin threshold is 0.5, meaning that if the sample has
a margin <0.5, it will be sent to MTurk for annotation. This
is a less strict constraint than the one we used for evaluation
in Section 5. We set up our model using the same threshold6.

Recall that in Section 5 we already generated triggered
inputs that can successfully manipulate the target model
(ResNet50). Here, we directly use these triggered inputs. The

4SageMaker’s decision to consider auto-labeled samples for retraining
could open up new ways of attacks. For example, adversaries can optimize a
trigger such that triggered inputs can receive a high confidence while getting
the target label. Since this is out of the norm of regular active learning
implementations, in this experiment, we still mainly focus on the active
learning part.

5Our study has been reviewed and approved by our local IRB.
6Although users can customize this threshold, we use this default thresh-

old to represent a generic setting.

1604 30th USENIX Security Symposium USENIX Association

RV Rottweiler Crayfish

Clean 6.0x Clean 2.0x Clean 3.0x

%Correct 100.0 100.0 98.5 100.0 100.0 97.1
%Unsure 0.0 0.0 1.5 0.0 0.0 2.9

(a) Gray-Box Triggers.
RV Rottweiler Crayfish

Clean 8.0x Clean 3.0x Clean 3.0x

%Correct 98.5 100.0 98.5 100.0 100.0 91.4
%Unsure 0.0 0.0 0.0 0.0 0.0 8.6

(b) Black-Box Triggers.

Table 5: Human labeling results. We used the best performing train scale
obtained from Section 5 for this experiment. For example, “6.0x” means the
triggered inputs have a train scale of 6.0x. If %Correct + %Unsure adds up
to less than 100%, the difference is images that were classified incorrectly.
Notably, this only happened for clean inputs in the RV and Rottweiler classes
– no triggered images were classified incorrectly.

rationale is, if these triggered inputs are selected for human
annotation (and received the target label), they can achieve
the same attack impact as described in Section 5. We find all
the triggered inputs can bypass the selection given this margin
threshold 0.5 is more generous than what we used (0.3).
Human Annotation Experiment. we next perform data an-
notation using SageMaker. Here, instead of only using trig-
gered images (which will create an unrealistic scenario), we
mix the triggered images with clean images.

We create two datasets: one for a gray-box attack (500
images) and one for a black-box attack (500 images). Take
the gray-box dataset for example, which contains 500 images
from 5 classes/labels (100 images per label). Among them, we
have three target labels: RV, Rottweiler and Crawfish. Each
label contains 35 triggered images and 65 clean images (300
images in total). The other two labels are non-target labels:
Hummingbird and Great Grey Owl, each of which contains
100 clean images (200 images in total). We have more clean
images (395) than triggered images (105). The triggered im-
ages are selected under the best performing train scale in
Section 5 (see Table 5). The black-box dataset has the exact
same 500 images, except that the triggered images contain
the black-box triggers. Note that these two datasets represent
subsets of the dataset used in Section 5.

We used SageMaker’s default interface and followed Sage-
Maker’s labeling guidelines to configure the annotation tasks.
The guidelines do not include any information about prepar-
ing workers to watch out for adversarial/malicious samples.
As such, to maintain realism, we did not intentionally prime
the workers for potential triggered images. As discussed in
Section 7.2, teaching workers to recognize adversarial inputs
is a non-trivial task, given that attackers can change trigger
patterns, and out of scope for this paper.

In our task, MTurk workers examine one image at a time.
Under each image, the worker is expected to assign one of the
5 class labels. Per SageMaker’s recommendation, we add one
additional option “unsure” in case workers cannot confidently
choose a label. We collected 3 workers’ labels for each image,

i.e., expect 3000 labelings for the 1000 images. SageMaker
will take control of the task dissemination to workers (which
is transparent to us) and return the labeling results.

Results and Findings. Our first observation of is that Sage-
Maker returned the labeling results very quickly. It took less
than an hour to obtain 3000 labels on the 1000 images.

Overall, the experiments returned positive results. Com-
bining the gray-box and black-box settings, 98.1% of the
triggered images received the desired labels, meaning that
MTurkers have assigned the adversary-desired labels for al-
most all the triggered images. This success rate is comparable
to the ratio of correctly labeled clean images (99.1%).

In Table 5, we further break down the results for the three
target classes: RV, Rottweiler and Crawfish. For each target
class, we present the percentage of correctly labeled samples
and the percentage of images labeled as “unsure”. Note that
for triggered images, “correct” label refers to the adversary-
desired label. We show that the vast majority of triggered
images in all target classes received the desired labels. In the
meantime, only a small portion of the triggered images were
marked with “unsure” under Crayfish (black-box and gray-
box). Note that clean images also occasionally received the
“unsure” label, e.g., Rottweiler in the gray-box experiment.
Overall, the results confirm that the triggered samples can
bypass a real-world active learning pipeline and obtain desired
labels with human annotators in the loop.

7 Countermeasures Against Double-Cross

We now outline and evaluate possible defenses against
Double-Cross attacks. We first perform a case study that
evaluates Double-Cross on a system that applies robust train-
ing [37], and then discuss other defense directions.

7.1 Training for Adversarial Robustness

Adversarially-robust training jointly optimizes the training
process for both classification accuracy and model robust-
ness [37]. An explicit “adversarial robustness loss” is intro-
duced in the training loss so that a small perturbation to the in-
put should not significantly alter the model’s outcome. Recent
results show that robust training can force a classifier to ignore
non-robust features (such as imperceptible noise) and focus on
robust features (those related to the objects in the images) to
make classification decisions [24]. As such, it is possible for a
victim model to adopt adversarially-robust training to mitigate
the impact of the triggers (i.e., imperceptible/small-magnitude
noise). Below, we briefly experiment with robust training to
examine how well robust training can defend against Double-
Cross attacks.

We use the CIFAR10 dataset and the robustly-trained model
published by the authors of [37] using ε = .5 (expected noise

USENIX Association 30th USENIX Security Symposium 1605

Train Test Train Test

Figure 11: Sample images used against the robust victim classifier. The top
row shows un-triggered (clean) images; the bottom row shows triggered
images. The left/right train-test pair shows images with the .75x/1x scale
triggers applied.

magnitude).7 We choose ε = .5 because non-adversarial clas-
sification accuracy drops significantly for higher ε, i.e., ε =
0.0, .25, .5,1.0 results in 95%,92%,90%,81% non-adversarial
accuracy. We follow a similar process as that in Section 5.1
to run the Double-Cross attack. The key difference is that,
instead of running a standard training process, we apply the ro-
bust training method to each active learning retraining epoch.

We found that adversarially-robust training aggravates but
does not prevent Double-Cross attacks. We swept a space of
Double-Cross parameters (e.g., cutoff and range) and found
that, given train/test scales of .75x and 1x, our attack achieved
15.5% and 23.2% success rate, respectively. This is sufficient
for an adversary to do significant damage through targeted
misclassification in practice. We evaluated for 50 epochs in
the .75x scale experiment and 20 epochs in 1x scale. With
additional compute, we believe the success rate for the 1x
experiment could climb 1-10% higher. But the high-order bit
is clear: by increasing scales, the attack success rate improves
as before, albeit at a slower rate relative to non-robust training.
(See Section 5.5: success rates for CIFAR10 before applying
robust training are > 60%.) Intuitively, adversarially-robust
training reduces the effect of adversarial perturbations that
fall within the set ball size (ε). However, perturbations near
or beyond the ball size ε are more difficult to mitigate.

Finally, Figure 11 shows trigger perceptibility for both con-
figurations. While the triggers are somewhat perceptible, the
original class is clearly discernible.

7.2 Other Defense Strategies
While there are other defense strategies in addition to ad-
versarially robust training, these strategies can be inherently
incompatible with the active learning pipeline. Below, we
briefly discuss these strategies to defend against Double-Cross
attacks at the training stage or the testing stage.

At the training stage, one direction is to detect and filter
out potential triggered images (e.g., using “robust heuristics”),
and thus prevent the target model from training on malicious
data. Methods in this direction often look for some forms of
anomalies [14, 46]. However, filtering out anomalous sam-
ples may create a tension with active learning, whose aim
is to identify useful (anomalous) data for model re-training.

7We evaluate on CIFAR10 because the published robust ImageNet classi-
fier suffers large (≥ 20%) accuracy reduction for all reported ε values.

Figure 12: Zooming in on a triggered image.

Future work can look into ways of resolving this tension by
identifying triggered inputs while keeping useful data.

Another direction (at the training stage) is to educate hu-
man annotators and improve their ability to identify triggered
inputs. For example, Figure 12 shows a triggered input. The
original image looks normal, but the trigger pattern is still
visible when zoomed in. A key challenge is to describe the
trigger pattern to human annotators so that they can look for
it. Intuitively, the adversary can change the look of the trigger
pattern to make it hard to describe precisely.

At test time, defense methods can try to remove or destroy
the trigger by slightly transforming the inputs [60]. Alter-
natively, defense methods can help to determine if the tar-
get model is already trained on triggered inputs. Existing
works have looked into detecting whether a model has a back-
door [8, 17, 35, 55, 57] under trojaning attacks. While trojan-
ing is different from double-cross attacks (see Section 8.1
for details), their “after-attack” models share similar behav-
iors, i.e., only mislabeling inputs with the trigger. As such,
these defense methods are potentially applicable. Some of
these methods might face difficulties due the fact that Double-
Cross attacks uses imperceptible triggers. We leave further
validations as future work.

8 Related Work
8.1 Adversarial Machine Learning

Double-Cross attack falls into the broad category of adversar-
ial machine learning attacks [21]. In Table 6, we summarize
the similarities and differences between double-cross and
other related attacks such as evasion [6], poisoning [40], and
trojaning attacks [36].

At the high-level, the goal of these attacks is to cause the
victim model to mislabel inputs to the label target_label.
Each attack is distinct when considered along two main axes.
First, how the inputs are perturbed to induce a mislabeling.
Second, how much control the adversary has over the training
data and the training process. In this paper, for convenience,
we refer to any perturbation or noise applied to the original
input as trigger. A trigger can be coupled or decoupled with
the input. A coupled trigger T(x) means the perturbation is
specially computed based on the given input x, which may
not work for other inputs to cause mislabeling. A decoupled
trigger T() is independent of the input, which works on other
inputs too. In the following, we briefly discuss each attack.

1606 30th USENIX Security Symposium USENIX Association

Attack
Type

Trigger
Type

Impact
(misclassify)

Control
Train.

Trigger
Magnitude

Trojan Decoupled
with input

Inputs w/
trigger Full

Not
Constrained

Evasion Coupled
with input

Inputs w/
trigger No Small

Poisoning None All inputs Partial N/A

Double-
Cross

Decoupled
with input

Inputs w/
trigger Partial Small

Table 6: Comparison between double-cross attack and other adversarial
machine learning attacks.

Trojaning Attacks. Trojaning attacks are conducted by the
party (adversary) who releases a pretrained model to the pub-
lic for other parties (victims) to use [36, 61]. The pretrained
model contains a backdoor which is added by training the
model on inputs with a special trigger pattern. In practice,
the adversary could release a new pretrained model with a
backdoor [61] or take an existing public model to a embed a
backdoor and then release the backdoored model [36]. Once
this pretrained model is used or deployed by other parties, the
adversary can cause mislabeling by sending inputs that carry
this trigger pattern. As shown in Table 6, the trigger T() is
decoupled from inputs—any inputs with this trigger will be
mislabeled as the target_label. In addition, the attack only
applies to triggered inputs. Inputs without this trigger will
still be correctly classified.

The key difference between Double-Cross and trojaning is
that the trojaning attack is launched by the party who releases
the pretrained model. In other words, the trojaning adversary
has a full access to (or control over) the pretrained model
and/or the training process (i.e., white-box). In addition, un-
like double-cross attacks, the trigger for trojaning attacks does
not need to be imperceptible. This is, once again, because the
trojaning adversary has control over training, and the labels
of the triggered training inputs are assigned by the adversary
(there is no need to manipulate, e.g., active learning and the
human labeling process). Researchers have examined defense
methods against trojaning attacks [8, 35, 55, 57].

A related variant of trojan attacks are called clean-label
poisoning attacks [54, 63]. These adopt a threat model un-
der which an adversary can contribute any number of non-
suspicious (i.e., benign-looking) samples to the victim’s train-
ing dataset. Compared with conventional trojan attacks, clean-
label poisoning wants to make sure that poisoned samples
appear benign under manual inspection (similar to Double
Cross).

Clean-label poisoning has several major differences from
Double-Cross attacks. First, clean-label poisoning assumes
that an adversary can contribute an arbitrary number of
benign-looking samples to the training dataset and, more im-
portantly, that all of the contributed samples will be used for
training. As such, clean-label triggers do not need to opti-
mize to meet the selectability constraints in active learning

pipelines. Furthermore, clean-label attacks require the adver-
sary to contribute samples before the victim begins training.
Thus, malicious samples will be repeatedly trained on over all
epochs. Double-Cross attacks do not make this assumption.
Our evaluation assumes a streaming scenario where malicious
samples are discarded after each training epoch. Training for
more epochs allows the victim to better learn/memorize the
trigger (Figure 8). Finally, clean-label attacks rely on a sur-
rogate model to generate malicious samples, as they require
malicious samples to be generated and added to the training
dataset before the victim model begins training. In contrast,
Double-Cross attacks target an already-trained victim model.
Evasion Attacks. In evasion attacks [6, 19, 44, 45], the adver-
sary attacks the victim model only at testing time, causing the
victim to mislabel an input. This is done by adding a small
perturbation (trigger) to the input. This is fundamentally dif-
ferent from Double-Cross attack (which attacks the training
phase). In addition, most existing evasion attacks assume the
target model is static, while double-cross attack focuses on
models that are continuously updated as new data arrives.
Also, evasion trigger is computed based on a given input, i.e.,
the trigger is a coupled trigger T(x) that does not work on
other inputs. To make the attack more realistic, researchers
have studied black-box attacks for evasion [4, 23, 44, 45]. Our
double-cross attack has adapted the black-box method of [23]
(originally designed to learn coupled noise for evasion) to
generate decoupled trigger.
Poisoning Attacks. Poisoning attacks aim to manipulate the
training phase of the target model, by injecting a small por-
tion of poisoned training samples [28, 29, 38, 58, 59, 62].
Unlike double-cross attack, poisoning attacks aim for input-
independent damage to the victim model. In other words,
poisoning attacks aim to cause large classification errors dur-
ing test time for all test inputs [3, 7, 40, 52]. This is opposite
to double-cross attacks (which only causing mislabeling to
triggered inputs).

8.2 Other Closely Related Works
Miller et al. [39] have discussed the adversarial threats to
active learning and pointed out the risk of adversaries ma-
nipulating the selection process that identifies samples for
labeling. For example, adversaries may mislead the active
learning model to select samples that have little (or nega-
tive) impact on training, which wastes labeling efforts and
hurts model performance. Unlike Double-Cross, the attack de-
scribed in [39] is indiscriminate, aiming to cause mislabeling
on all test inputs (and is therefore more related to poisoning
attacks; c.f. Section 8.1). Another difference is that we explic-
itly addressed the challenge of obtaining the desired labels
from human annotators and realized the attack end-to-end
whereas [39] just posits such an attack might be possible.

Shafahi et al. [51] present a related attack called “poison
frogs.” The idea is to poison the victim model so the vic-

USENIX Association 30th USENIX Security Symposium 1607

tim only mislabels one target testing input. The adversary
achieves this goal by generating and inserting a poisoned sam-
ple that appears to carry the desired label for the target testing
input. There are two key differences between Double-Cross
and poison-frog attacks. First, the poison-frog attack requires
knowledge of the victim model and its parameters. Second,
the poison-frog attack targets a single testing input (instead
of learning a decoupled trigger).

Regarding the active learning selection criteria, we focus
on the margin sampling-based method (Section 2.2) since
it is most commonly used. There are other choices such as
reinforcement-based methods [15], instance correlation-based
methods [48], and hybrid methods that combine uncertainty
sampling and instance correlation [22]. If adversary optimizes
for the wrong selection criterion, it might affect the gray-box
attack. However, our black-box attack does not rely on knowl-
edge of the selection criteria. We leave further exploration of
the transferability of selection criterion to future work.

9 Conclusion

This paper presents double-cross attacks, a new attack against
active learning-based applications. The key novelty is that
the attack simultaneously manipulates the active learning-
based data labeling process and the target application. By
generating inputs with a special trigger pattern, the attack is
able to bypass the active learning selection criteria and human
labeling process, insert itself into the victim retraining set, and
change the victim model’s future behavior. With extensive
evaluations, we show both gray-box and black-box attacks are
feasible. We also conduct empirical experiments on Amazon
SageMaker to evaluate the attack with human annotators in
the loop, and confirm the practicality of the attack.
Acknowledgments. This work was partially funded by NSF
grants 1942888 and 2030521, an Intel ISRA, and an Amazon
Research Award.

References
[1] About face id advanced technology, 2020. https://support.apple.

com/en-us/HT208108.

[2] Amazon sagemaker, 2020. https://aws.amazon.com/sagemaker/
groundtruth/.

[3] Nathalie Baracaldo, Bryant Chen, Heiko Ludwig, and Jaehoon Amir
Safavi, 2017, Mitigating poisoning attacks on machine learning models:
A data provenance based approach, AISec’17.

[4] Wieland Brendel, Jonas Rauber, and Matthias Bethge, 2018, Decision-
Based Adversarial Attacks: Reliable Attacks Against Black-Box Ma-
chine Learning Models, ICLR’18.

[5] Holger Caesar, Varun Bankiti, Alex H. Lang, Sourabh Vora, Venice Erin
Liong, Qiang Xu, Anush Krishnan, Yu Pan, Giancarlo Baldan, and
Oscar Beijbom, 2019, nuscenes: A multimodal dataset for autonomous
driving, arXiv’19.

[6] Nicholas Carlini and David Wagner, 2017, Towards Evaluating the
Robustness of Neural Networks, S&P’17.

[7] Eric Chan-Tin, Daniel Feldman, Nicholas Hopper, and Yongdae Kim,
2009, The Frog-Boiling Attack: Limitations of Anomaly Detection for
Secure Network Coordinate Systems, SecureComm’09.

[8] Bryant Chen, Wilka Carvalho, Nathalie Baracaldo, Heiko Ludwig, Ben-
jamin Edwards, Taesung Lee, Ian Molloy, and Biplav Srivastava, 2019,
Detecting backdoor attacks on deep neural networks by activation clus-
tering, SafeAI@AAAI’19.

[9] Pin-Yu Chen, Huan Zhang, Yash Sharma, Jinfeng Yi, and Cho-Jui Hsieh,
2017, ZOO: Zeroth Order Optimization based Black-box Attacks to
Deep Neural Networks without Training Substitute Models, AISec’17.

[10] Child safety on youtube, 2020. https://support.google.com/
youtube/answer/2801999.

[11] David Cohn, Les Atlas, and Richard Ladner, 1994, Improving general-
ization with active learning, Mach Learn’94.

[12] Crowdai, 2020. https://crowdai.com/.

[13] Ido Dagan and Sean P. Engelson, 1995, Committee-based sampling for
training probabilistic classifiers, ICML’95.

[14] Min Du, Ruoxi Jia, and Dawn Song, 2020, Robust anomaly detection
and backdoor attack detection via differential privacy, ICLR’20.

[15] Meng Fang, Yuan Li, and Trevor Cohn, 2017, Learning how to Active
Learn: A Deep Reinforcement Learning Approach, EMNLP’17.

[16] Yifan Fu, Xingquan Zhu, and Bin Li, 2013, A survey on instance selec-
tion for active learning, KAIS’13.

[17] Yansong Gao, Change Xu, Derui Wang, Shiping Chen, Damith C.
Ranasinghe, and Surya Nepal, 2019, Strip: A defence against trojan
attacks on deep neural networks, ACSAC’19.

[18] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David
Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio, 2014,
Generative adversarial nets, NeurIPS’14.

[19] Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy, 2015, Ex-
plaining and harnessing adversarial examples, ICLR’15.

[20] Carl-Johan Hoel, Katherine Driggs-Campbell, Krister Wolff, Leo Laine,
and Mykel J. Kochenderfer, 2020, Combining planning and deep rein-
forcement learning in tactical decision making for autonomous driving,
T-IV’20.

[21] Ling Huang, Anthony D. Joseph, Blaine Nelson, Benjamin I.P. Rubin-
stein, and J. D. Tygar, 2011, Adversarial machine learning, AISec’11.

[22] Sheng-Jun Huang, Rong Jin, and Zhi-Hua Zhou, 2014, Active Learning
by Querying Informative and Representative Examples, TPAMI’14.

[23] Andrew Ilyas, Logan Engstrom, Anish Athalye, and Jessy Lin, 2018,
Black-box Adversarial Attacks with Limited Queries and Information,
ICML’18.

[24] Andrew Ilyas, Shibani Santurkar, Dimitris Tsipras, Logan Engstrom,
Brandon Tran, and Aleksander Madry, 2019, Adversarial examples are
not bugs, they are features, NeurIPS’19.

[25] ILSVRC2012 - Imagenet Large Scale Visual Recognition Challenge
2012 — dbcollection 0.2.6 documentation.

[26] Imagenet dataset, 2020. http://image-net.org/about-overview.

[27] Muhammad Imran, Carlos Castillo, Ji Lucas, Patrick Meier, and
Sarah Vieweg, 2014, Aidr: Artificial intelligence for disaster response,
WWW’14.

[28] Matthew Jagielski, Alina Oprea, Battista Biggio, Chang Liu, Cristina
Nita-Rotaru, and Bo Li, 2018, Manipulating Machine Learning: Poison-
ing Attacks and Countermeasures for Regression Learning, S&P’18.

[29] Marius Kloft and Pavel Laskov, 2007, A “ Poisoning ” Attack Against
Online Anomaly Detection, NeurIPS’07.

[30] Alex Krizhevsky, 2009, Learning multiple layers of features from tiny
images.

1608 30th USENIX Security Symposium USENIX Association

https://support.apple.com/en-us/HT208108
https://support.apple.com/en-us/HT208108
https://aws.amazon.com/sagemaker/groundtruth/
https://aws.amazon.com/sagemaker/groundtruth/
https://support.google.com/youtube/answer/2801999
https://support.google.com/youtube/answer/2801999
https://crowdai.com/
http://image-net.org/about-overview

[31] Anders Krogh and Jesper Vedelsby, 1994, Neural network ensembles,
cross validation and active learning, NeurIPS’94.

[32] Labelbox, 2020. https://labelbox.com/.

[33] David Lewis and William Gale, 1994, A Sequential Algorithm for
Training Text Classiiers, SIGIR’94.

[34] Erik Lindernoren. eriklindernoren/PyTorch-GAN: PyTorch implemen-
tations of Generative Adversarial Networks.

[35] Kang Liu, Brendan Dolan-Gavitt, and Siddharth Garg, 2018, Fine-
pruning: Defending against backdooring attacks on deep neural net-
works, RAID’18.

[36] Yingqi Liu, Shiqing Ma, Yousra Aafer, Wen-Chuan Lee, Juan Zhai,
Weihang Wang, and Xiangyu Zhang, 2018, Trojaning attack on neural
networks, NDSS’18.

[37] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris
Tsipras, and Adrian Vladu, 2018, Towards Deep Learning Models
Resistant to Adversarial Attacks, ICLR’18.

[38] Saeed Mahloujifar, Mohammad Mahmoody, and Ameer Mohammed,
2019, Universal Multi-Party Poisoning Attacks, ICML’19.

[39] Brad Miller, Alex Kantchelian, Sadia Afroz, Rekha Bachwani, Edwin
Dauber, Ling Huang, Michael Carl Tschantz, Anthony D. Joseph, and
J.D. Tygar, 2014, Adversarial active learning, AISec’14.

[40] Luis Muñoz González, Battista Biggio, Ambra Demontis, Andrea Pau-
dice, Vasin Wongrassamee, Emil C. Lupu, and Fabio Roli, 2017, To-
wards poisoning of deep learning algorithms with back-gradient opti-
mization, AISec’17.

[41] Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu,
and Andrew Ng, 2011, Reading Digits in Natural Images with Unsu-
pervised Feature Learning, NIPS’11.

[42] Hieu T Nguyen and Arnold Smeulders, 2004, Active Learning Using
Pre-clustering, ICML’04.

[43] Augustus Odena, Christopher Olah, and Jonathon Shlens, 2017, Condi-
tional Image Synthesis With Auxiliary Classifier GANs, ICML’17.

[44] Nicolas Papernot, Patrick McDaniel, Ian Goodfellow, Somesh Jha,
Z. Berkay Celik, and Ananthram Swami, 2017, Practical black-box
attacks against machine learning, ASIA CCS’17.

[45] Nicolas Papernot, Patrick Mcdaniel, Somesh Jha, Matt Fredrikson,
Z. Berkay Celik, and Ananthram Swami, 2016, The limitations of deep
learning in adversarial settings, EuroSP’16.

[46] Lei Pi, Zhuo Lu, Yalin Sagduyu, and Su Chen, 2017, Defending active
learning against adversarial inputs in automated document classifica-
tion, GlobalSIP’17.

[47] Tobias Scheffer, Christian Decomain, and Stefan Wrobel, 2001, Active
hidden markov models for information extraction, IDA’01.

[48] Burr Settles, 2009, Active learning literature survey.

[49] Burr Settles, 2011, From Theories to Queries: Active Learning in Prac-
tice, JMLR’11.

[50] Burr Settles and Mark Craven, 2008, An Analysis of Active Learning
Strategies for Sequence Labeling Tasks, EMNLP’08.

[51] Ali Shafahi, W. Ronny Huang, Mahyar Najibi, Octavian Suciu,
Christoph Studer, Tudor Dumitras, and Tom Goldstein, 2018, Poi-
son frogs! targeted clean-label poisoning attacks on neural networks,
NeurIPS’18.

[52] Jacob Steinhardt, Pang Wei Koh, and Percy Liang, 2017, Certified
defenses for data poisoning attacks, NeurIPS’17.

[53] Torch Contributors. torchvision.models - PyTorch master documenta-
tion, 2018.

[54] Alexander Turner, Dimitris Tsipras, and Aleksander Madry, 2019,
Clean-Label Backdoor Attacks, ICLR’19.

[55] Akshaj Kumar Veldanda, Kang Liu, Benjamin Tan, Prashanth Krish-
namurthy, Farshad Khorrami, Ramesh Karri, Brendan Dolan-Gavitt,
and Siddharth Garg, 2020, Nnoculation: Broad spectrum and targeted
treatment of backdoored dnns, arXiv’20.

[56] Nguyen Viet Cuong, Wee Sun Lee, and Nan Ye, 2014, Near-optimal
Adaptive Pool-based Active Learning with General Loss, UAI’14.

[57] Bolun Wang, Yuanshun Yao, Shawn Shan, Huiying Li, Bimal
Viswanath, Haitao Zheng, and Ben Y. Zhao, 2019, Neural cleanse: Iden-
tifying and mitigating backdoor attacks in neural networks, S&P’19.

[58] Yizhen Wang and Kamalika Chaudhuri, 2018, Data poisoning attacks
against online learning, arXiv’18.

[59] Huang Xiao, Battista Biggio, Gavin Brown, Giorgio Fumera, Claudia
Eckert, and Fabio Roli, 2015, Is feature selection secure against training
data poisoning?, ICML’15.

[60] Weilin Xu, David Evans, and Yanjun Qi, 2018, Feature Squeezing:
Detecting Adversarial Examples in Deep Neural Networks, NDSS’18.

[61] Yuanshun Yao, Huiying Li, Haitao Zheng, and Ben Y. Zhao, 2019,
Latent backdoor attacks on deep neural networks, CCS’19.

[62] Hengtong Zhang, Tianhang Zheng, Jing Gao, Chenglin Miao, Lu Su,
Yaliang Li, and Kui Ren, 2019, Data Poisoning Attack against Knowl-
edge Graph Embedding, IJCAI’19.

[63] Shihao Zhao, Xingjun Ma, Xiang Zheng, James Bailey, Jingjing Chen,
and Yu-Gang Jiang, 2020, Clean-Label Backdoor Attacks on Video
Recognition Models, CVPR’20.

A Black-box ImageNet Results

We include the sample images (Figure 6) and the testing
accuracy on clean samples (Table 7) for the Black-box at-
tack experiments discussed in Section 5.3. These samples
and statistics are complementary to the Gray-box variant pre-
sented in Section 5.2.

B Key Hyperparameters

Margin Threshold. We first evaluate the impact of margin
threshold. As shown in Figure 14, using Rottweiler as the
target class, a larger margin threshold can further increase the
number triggered samples that get selected for retraining. Our
threshold 0.3 is on the relatively conservative side.
Limiting Number of Queries. We present evaluations on the
Black-Box attack by limiting the number of queries made dur-
ing generator training. Note that if the magnitude constraints
are not met (i.e., a magnitude greater than cuto f f + range),
the generator does not query the victim. This cuts out thou-
sands of queries during the early epochs of training. The
number of queries made can be further restricted by early
termination of generator training. Figure 15 demonstrates that
terminating a generator early does not necessarily hamper the
victim’s ability to learn the trigger. However, it does affect the
stealthiness of the trigger. Generating a stealthy trigger with
fewer queries is possible, but we’ve found it to depend heavily
on the starting conditions of the generator. We include exam-
ples from the generator which yielded high quality triggers
with few queries.

USENIX Association 30th USENIX Security Symposium 1609

https://labelbox.com/

3.0x

104

2.0x

108

3.0x

99

6.0x 6.0x

6.0x 6.0x

6.0x 6.0x

77.30%

92.60%

84.54%

Success
Rate

Test Samples
Black-Box

Training Samples

To
y
Te
rr
ie
r

Fr
yi
ng

Pa
n

R
ee
l

Figure 13: Black-box example triggered images for the Imagenet classes
described in Table 1 in Section 5.3. The first two columns depict images
from the target class, used during victim re-training. The top left number
indicates the scale used during training and the bottom number indicates the
average number of triggered samples used in each epoch. The average is
displayed because each target was trained for a different number of epochs.
The last two columns depict images from a non-target class used to evaluate
the success rate of the trigger during the victim’s testing phase. The number
in their top left indicates the test scale used.

													Scales
Gray-Box			Black-Box

2.0x
2.5x
3.0x

2.0x
2.5x
3.0xN

um
be
r	o

f	S
el
ec
te
d	
Sa
m
pl
es

200

400

600

800

1000

1200

Threshold
0.1 0.2 0.3 0.4 0.5 0.6 0.7

Figure 14: Number of selected samples as the margin threshold increases
(Rottweiler triggers).

2.5x 3x 5x 7.5x 2.5x 3x 5x 7.5x 2.5x 3x 5x 7.5xG
ra

y
B

ox
Su

cc
es

sR
at

e
(%

)

0

20

40

60

80

100

503872 Queries39503 Queries14472 Queries

Sa
m

pl
e

Tr
ig

ge
r

Test Scale

Figure 15: Adversarial success rates and corresponding trigger examples
as the generator trains. From left to right, the plots represent an increasing
number of queries made during generator training. Each plot represents the
success rates achieved if generator training was early terminated after that
number of queries.

Target Black-Box

Train
Scale

Triggered
Inputs

Top-1
(%)

Top-5
(%)

RV
6.0 747 76.49 93.07

8.0 804 76.42 92.99

9.0 813 76.32 93.09

Rottweiler
2.0 645 76.56 93.01

2.5 691 76.46 93.12

3.0 731 76.46 93.05

Crayfish
2.0 438 76.49 93.06

2.5 524 76.47 93.07

3.0 530 76.50 93.09

Table 7: Victim accuracy on un-triggered (clean) data after each attack.
Recall, victim accuracy before the attack is 76.13% and 92.86% for Top-
1 and Top-5, respectively. The “Triggers” column denotes the number of
triggered inputs selected for labeling and retraining. Each epoch is trained
with about 1.2 million images.

1610 30th USENIX Security Symposium USENIX Association

	Introduction
	Background
	Deep Learning Basics
	Active Learning
	Adversarial Machine Learning Terms

	Threat Model
	Double-Cross Attacks
	Simple Noise-Based Trigger
	Learning High-Quality Triggers

	Evaluation
	Methodology
	Gray-Box Attack
	Black-Box Attack
	Sensitivity Studies
	Evaluation on Other Datasets

	Real World Test On Amazon SageMaker
	Countermeasures Against Double-Cross
	Training for Adversarial Robustness
	Other Defense Strategies

	Related Work
	Adversarial Machine Learning
	Other Closely Related Works

	Conclusion
	Black-box ImageNet Results
	Key Hyperparameters

