
This paper is included in the Proceedings of the
30th USENIX Security Symposium.

August 11–13, 2021
978-1-939133-24-3

Open access to the Proceedings of the
30th USENIX Security Symposium

is sponsored by USENIX.

PEARL: Plausibly Deniable Flash Translation
Layer using WOM coding

Chen Chen, Anrin Chakraborti, and Radu Sion, Stony Brook University
https://www.usenix.org/conference/usenixsecurity21/presentation/chen-chen

PEARL: Plausibly Deniable Flash Translation Layer using WOM coding

Chen Chen
Stony Brook University

Anrin Chakraborti
Stony Brook University

Radu Sion
Stony Brook University

Abstract
When adversaries are powerful enough to coerce users to

reveal encryption keys, encryption alone becomes insufficient
for data protection. Plausible deniability (PD) mechanisms
resolve this by enabling users to hide the mere existence of
sensitive data, often by providing plausible “cover texts” or
“public data volumes” hosted on the same device.

Unfortunately, with the increasing prevalence of (NAND)
flash as a high-performance cost-effective storage medium,
PD becomes even more challenging in the presence of real-
istic adversaries who can usually access a device at multiple
points in time (“multi-snapshot”). This is because read/write
operations to flash do not result in intuitive corresponding
changes to the underlying device state. The problem is further
compounded by the fact that this behavior is mostly propri-
etary. For example, in a majority of commercially-available
flash devices, an issued delete or overwrite operation from
the upper layers almost certainly won’t result in an actual
immediate erase of the underlying flash cells.

To address these challenges, we designed a new class of
write-once memory (WOM) codes to store hidden bits in the
same physical locations as other public bits. This is made pos-
sible by the inherent nature of NAND flash and the possibility
of issuing multiple writes to target cells that have not previous
been written to in existing pages.

We designed PEARL, a general-purpose Flash Translation
Layer (FTL) that allows users to plausibly deniably store
hidden data in NAND flash devices. We implemented and
evaluated PEARL on a widely used simulator FlashSim [32].
PEARL performs well on real-world workloads, comparably
to non-PD baselines. PEARL is the first system that achieves
strong plausible deniability for NAND flash devices, secure
against realistic multi-snapshot adversaries.

1 Introduction

As computers permeate aspects of daily life, individual
users, government officials, and organizations store increasing

amounts of sensitive and private data on personal computers
and mobile devices. While convenient, the ubiquitousness
of computing devices that move data with individuals poses
increasing threats to privacy. There have been a number of
high-profile cases where a laptop or device with sensitive data
is lost or stolen, leading to disclosure of sensitive informa-
tion [15, 33, 38,39]. To ensure sensitive data confidentiality,
full disk encryption (FDE) is widely used. However, consid-
ering adversaries who are empowered by law or otherwise
to request encryption keys [3, 31, 42, 43, 48], , FDE alone is
not enough as it would be defeated by coercion of users into
submitting the key or password to reveal confidential data.

Plausible deniability (PD) is a key security property that
helps to protect sensitive data against the mentioned powerful
adversaries. PD by definition makes it possible to claim that
“some information is not in possession [of the user] or some
transactions have not taken place” [36]. In the context of
secure storage, PD refers to the ability of a user to plausibly
deny the existence of stored data even when an adversary has
access to the storage medium. It supplements the capability of
encryption to protect sensitive data from powerful adversaries.

PD assurances are sometimes a matter of life and death [41].
This has been demonstrated by numerous cases where infor-
mation had to be transferred through checkpoints manned
by hostile adversaries. One typical and prominent example
involves the human rights group Network for Human Rights
Documentation - Burma (ND-Burma). A large amount of data
on human rights violations by the Burmese government was
carried out of the country on mobile devices by ND-Burma
activists, under threat of exposure at checkpoints and border
crossings [6]. Similarly, in 2012, a videographer smuggled
evidence of human rights violations out of Syria by hiding a
micro-SD card in a wound [37], again risking his life.

Several PD storage mechanisms were proposed [3, 5, 7–9,
36, 40] for both file system and block device layers. However,
a strong assumption underpins all these existing solutions,
mostly deriving from traditional magnetic media, namely a
high level of transactional commitment from the underlying
storage medium. Specifically, write and erase operations are

USENIX Association 30th USENIX Security Symposium 1109

assumed to be honored when issued.
Needless to say, storage media such as NAND flash is

wrapped in logic that prevents this to be the case. For exam-
ple, most Flash Translation Layer (FTL) algorithms will likely
prevent overwrites to touch underlying physical pages when
issued and instead remap data elsewhere, only to later return
and garbage collect such erased data if and when needed.
This immediately breaks existing PD mechanisms built upon
the assumption that the underlying device honors write/erase
operations when requested. Stale data persisted on the under-
lying device (e.g., yet to be garbage collected pages) out of
control of the PD logic then enables adversaries to easily infer
the existence and most often location of hidden data [24].

New media requires new PD logic. Further, arguably, this
logic needs to be placed closer to the physical layer to securely
handle the PD requirements while also providing life-cycle
and efficiency-related elements such as wear leveling and
encoding optimizations.

NAND flash, arguably the most popular flash technology
in modern production, stores data in an array of cells, each
requiring a special ERASE operation before a write. Due to
several addressing and packaging optimization reasons, al-
most always ERASE can only be performed at block level
(containing many cells). As a result, even simple updates
to data require a more complex set of steps which is imple-
mented usually in an intermediary Flash Translation Layer
(FTL) sitting between e.g., a file system and the underlying
flash device. The FTL makes an excellent candidate [24] for
implementing protection functionality including PD logic.

Two existing have considered PD tailored for NAND flash:
DEFY [41], and DEFTL [24]. Unfortunately, neither is se-
cure against practical adversaries which are almost always
multi-snapshot [9]. Crossing a border twice, checking in air-
line luggage, living under an oppressive government with
physical access to devices, leaving devices in untrusted places
subject to “hotel maid” attacks, all these are instances of
multi-snapshot opportunities for an adversary. Naturally, the
security of a PD system should not break down completely
(under reasonable user behavior) and should be resilient to
such realistic externalities (hotel maids, border guards, airline
checked luggage etc). Further, DEFY is compromised in the
presence of capacity exhausting attacks [24].

PEARL introduces the first PD scheme that achieves se-
curity against multi-snapshot adversaries on NAND flash
devices. This is made possible by re-purposing a new class
of write-once memory (WOM) codes to naturally combine
both public and hidden data together in one physical page,
and managing the pages considering the nature of flash mem-
ory. PEARL is implemented as a general purpose FTL that,
in addition to taking all necessary flash management duties,
enables deniability of the existence of hidden data. It guaran-
tees that the resulting state of a device with both public and
hidden data is indistinguishable from a public-data only state.
A number of key insights ground the design as follows.

First, PEARL operates at a much finer encoding granularity
compared with previous PD schemes. Existing work [24, 41]
store public and hidden data in different physical pages or
even different flash blocks. These systems require plausible
reasons to explain away the existence of written pages con-
taining hidden data (e.g. masquerading as “random” or “free”
data). This problem is compounded by the nature of NAND
flash and the realistic adversaries with multi-snapshot access.
Hidden data may end up being relocated even in the absence
of hidden updates, and adversaries can observe implausible
modifications (e.g., to “free” space containing hidden data).
In contrast, PEARL uses the second write stage of a specially-
designed WOM code to encode hidden data in a public cover.
This makes such plausible reasons inherent – all pages contain
public data by design.

Second, PEARL as an FTL smartly manages the mapping
from both public and hidden data to physical pages and han-
dles NAND-specific operations such as garbage collections
considering the special nature of flash memory. As a result, all
physical layer changes can be plausibly explained by public
data requests only, thus preventing multi-snapshot adversaries
from detecting the existence of hidden data by comparing
snapshots and analyzing physical activities on flash.

We evaluated PEARL using a widely used simulator Flash-
Sim [32]. The experimental results show PEARL is practi-
cally fast. It performs comparably to the non-PD baseline on
real-world workloads.

2 Related Work

PD storage systems are designed to protect users against pow-
erful adversaries (e.g., corrupt government officials) who can
coerce users to give up the encryption key(s). Generally speak-
ing, a PD storage system allows the user to only reveal the key
used to encrypt (non-sensitive) public data while claiming
that no other data exists on the device.

Steganographic file systems [3, 36, 40, 41] were firstly pro-
posed to provide plausibly-deniable storage. They allowed
users to store both sensitive (hidden) files and non-sensitive
(public) files inside one file system and hide the existence
of hidden files from adversaries. To defend against single-
snapshot adversaries, Anderson et al. [3] explored the idea
of steganographic file systems and proposed two ideas for
hiding data. Later McDonald et al. [36] implemented StegFS
for Linux on the basis of the solution proposed in [3]. Pang
et al. [40] improved on the previous constructions by avoid-
ing hash collisions and provided more efficient storage. In
addition to these steganographic file systems against single-
snapshot adversaries, Han et al. [17] designed a multi-user
steganographic file system (DRSteg) on shared storage. How-
ever, their solution does not scale well to practical scenarios
as they attribute deniability to joint ownership of sensitive
data. Gasti et al. [12] proposed a deniable shared file system
(DenFS) specifically for cloud storage. Its security depends

1110 30th USENIX Security Symposium USENIX Association

on processing data temporarily on a client machine, and it is
not straightforward to deploy DenFS for local storage.

On the other hand, disk encryption tools [1, 5, 7–9, 20, 45]
were designed to support PD at block device level. They
worked by often storing both hidden and public “volumes” on
the same device while preventing adversaries to gain informa-
tion about how many volumes the device actually contains.
Truecrypt [1], Rubberhose [20] and Mobiflage [45] provided
deniability against only single-snapshot adversaries. Blass et
al. [5] implemented HIVE, the first PD solution against multi-
snapshot adversaries at device level, using a write-only Obliv-
ious RAM (ORAM) for mapping data from logical volumes
to underlying devices and hiding access patterns for hidden
data within requests to public data. Later Chakraborti et al. [7]
proposed DataLair with a more efficient write-only ORAM
and improved the system performance. Chang et al. [8] pro-
posed MobiCeal specifically for mobile devices. The idea is
to use a dummy write mechanism to obfuscate writes to a
hidden volume. Unfortunately the paper suffers from deni-
ability compromises: the space occupied by dummy writes
would be reclaimed while the space occupied by the hidden
data would remain intact, thus enabling an attacker to detect
the static hidden data. Chen et al. [9] introduced PD-DM, a
locality-preserving PD solution that eliminated the random-
ness introduced by ORAM-based solutions and improved the
system throughput especially on hard disk.

The above solutions required that the underlying devices
honor write/erase operations atomically. Unfortunately in the
case of flash this is simply not the case. Old data can linger
on the device for years and attackers can easily unscrew the
flash cover and read the FLASH chips directly with cheap off
the shelf readers. Others have noted this too [24] – PD sys-
tems incorporating deniability in the upper layers (file system
layer or block device layer) very often suffer from deniability
compromises in the lower layers (flash memory). And un-
fortunately even systems such as Mobiflage and MobiCeal
specifically designed for mobile devices do not address this
essential vulnerability.

Special PD solutions are designed for NAND flash storage
devices as well, considering its significant distinctive natures.
DEFY [41] is a log structured file system for NAND flash
devices that offers PD with a newly proposed secure deletion
technology. It is based on WhisperYAFFS [47], a log struc-
tured file system which provides full disk encryption for flash
devices. However, as claimed in [24], DEFY will be com-
promised by making several attempts to exhaust the writing
capacity. DEFTL [24] instead incorporates deniability to the
Flash Translation Layer (FTL) of flash-based block devices.
Yet, it is against single-snapshot adversaries.

3 NAND Flash

NAND flash is a non-volatile solid-state storage medium. It
is becoming increasingly popular due to its low power con-

sumption and shock resistance now. Unlike the traditional
magnetic storage disk that stores data by magnetizing the fer-
romagnetic material on a disk, NAND flash stores data using
only electronic circuits (floating-gates). Thus, NAND flash
has its own characteristics [14]: 1) NAND flash supports effi-
cient random accesses. 2) Read and write/program operations
are performed in page units while erase operations are based
on block units (usually larger than the page size by 64 or more
times). 3) In addition to a data area, a page in NAND flash
also contains a small spare OOB area which may be used for
storing a variety of information such as the Error Correction
Code (ECC) bytes, the logical page number and the page state.
4) An erase operation is required before writing in NAND
flash. A floating-gate is charged during writing while only an
erase can remove the charge from the gate. 5) NAND flash
can withstand only a finite number of program-erase cycles
(P/E cycles).

3.1 Flash Translation Layer (FTL)

To use NAND flash devices, we need either a file system
specifically for raw NAND flash or a Flash Translation Layer
(FTL) between the file system and the raw flash device. Some
of the example NAND flash file systems that have been added
to Linux kernel are UBIFS [2] and F2FS [34]. On the other
hand, the FTL is an intermediate software layer between the
host application (e.g. file systems) and NAND flash. It accepts
logical requests from host and maps the logical addresses
(LBAs) to physical addresses of the NAND flash.

In addition to the logical-to-physical address mapping, a
FTL is also responsible for some other necessary flash man-
agement duties such as wear leveling, garbage collection and
so on. Wear leveling aims to smoothly distribute erases among
blocks in the flash so that the blocks all reach their P/E cy-
cle limit at the same time. Garbage collection is designed to
efficiently reclaim pages that are no longer needed (i.e. in-
valid) in the device. Remembering that these pages cannot be
simply erased at your leisure as they may be in blocks that
still contain active data (i.e. valid). Instead, the FTL do the
page recycle following these three steps: 1) adaptively select
a victim block to be erased; 2) transparently move active data
elsewhere; 3) erase the victim block.

According to how the logical-to-physical address map-
ping is performed, FTL schemes can be categorized into
three groups: page-level FTLs, block-level FTLs and hybrid
FTLs. The page-level FTL maps any logical page from the
host to a physical page in the flash while the block-level
FTL maps a whole logical block (containing multiple logical
pages) to a physical block in flash. The hybrid FTL combines
the page-level and block-level FTL by logically partitioning
flash blocks into data blocks and log blocks. Data blocks are
mapped with the block-level mapping while the log blocks are
mapped using the page-level mapping scheme. Updates are
written to log blocks, after which merge operations may hap-

USENIX Association 30th USENIX Security Symposium 1111

Figure 1: The organization of DFTL. LPN is the Logical data Page
Number, PPN is the Physical Page Number, MV PN is the Virtual
Translation Page Number, MPPN is the Physical Translation Page
Number.

pen to combine the active pages in data blocks and log blocks
together as new data blocks. PEARL deploys a page-level
FTL based on DFTL [16].

3.2 Demand-based FTL (DFTL)

DFTL is an efficient page-level FTL that avoids the ineffi-
ciency of hybrid FTLs and reduces the SRAM requirement
for the page-level mapping. The page-level mapping table is
stored in the flash memory and only a small amount of active
mapping entries are cached in SRAM. A data structure called
Global Translation Directory (GTD) is used to keep track
of the whole mapping table scattered over the flash device.
Figure 1 shows the organization of DFTL.
Logical-to-physical address translation. The address trans-
lation in DFTL is related to three data structures: the page-
level mapping table, the Global Translation Directory (GTD)
and the Cached Mapping Table (CMT). As shown in Figure
1, the page-level mapping table is packed into pages (named
as translation pages) in the order of Logical data Page Num-
bers (LPNs) and stored in translation blocks in the flash. The
CMT stores the mapping entries (LPN-to-PPN) for those most
recently accessed data pages and updates them using the seg-
mented LRU array cache algorithm [28]. The GTD maintains
the physical page address information for all the translation
pages. One translation page could store 512 mapping entries,
if an address is represented in 4 bytes and the page size is
2KB. In this case, the first translation page with MV PN = 0
stores the mapping information for the first 512 logical pages
and so forth, and the location of this translation page will be
the first entry in the GTD. Both the CMT and the GTD are
stored in the SRAM.

Once a logical request comes, the DFTL will first query
the CMT for the mapping information. The request will be
directly fulfilled if the mapping is found. Other wise, the
DFTL fetches the mapping information from the flash into
the CMT by the follow steps: 1) it checks the GTD for the
physical location of the corresponding translation page; 2) it
reads the translation page for the mapping and adds it into
the CMT. A CMT eviction may happen during the above
procedure. The evicted item needs to be written back only
if it has been changed after loaded. This consists of 3 steps:
1) locate the corresponding translation page by consulting
the GTD; 2) read the translation page and write it back to a
new physical location with updated information. 3) update the
corresponding GTD entry. After the coming logical request
is performed, the mapping information may be updated if
necessary. Note that it will be always updated in CMT. The
update to the translation pages on flash will only happen if a
CMT eviction happens.
Page allocation and garbage collection. In DFTL, data
pages are written into data blocks whereas translation pages
are written into translation blocks. DFTL maintains two
blocks called Current Data Block and Current Translation
Block for the page allocation. A free block will be chosen
as the new Current Data Block or new Current Translation
Block from a free block list when pages in either of the two
blocks are used up. The garbage collector will choose the
block with the least number of active pages as the victim
to recycle. If the victim block is a translation block, DFTL
copies the active translation pages to the Current Translation
Block and update the GTD before erasing the victim block.
Otherwise, if the victim is a data block, DFTL relocates the
active data pages to the Current Data Block and update the
corresponding mapping information in the CMT.

4 Model

In a typical scenario, a user requires secure data storage for
sensitive hidden data (which needs to be protected from pow-
erful adversaries), and less sensitive public data (which do not
require any special protection mechanisms). The adversary
is coercive and can compel the user to hand over encryption
keys etc. Under duress, the user may need to reveal keys to
public data while denying the existence of the hidden data.
An effective PD system should therefore not only hide the
contents of the hidden data but also its very existence.
Deployment. PEARL incorporates the PD functionality in
the NAND flash FTL. Specifically, PEARL stores multiple
logical block volumes on one physical flash device – some
of the volumes store hidden data while others store public
data. W.l.o.g., for simplicity, we discuss here a design with
only two volumes. The data in the public and hidden volumes
are encrypted with different encryption keys, Kpub and Khid
respectively. The keys may be securely derived from user-
generated passwords or other more secure mechanisms.

1112 30th USENIX Security Symposium USENIX Association

PEARL can be used either in a public-only mode – in
which case the user can only access public data – or in a
public+hidden mode where the user can access both hidden
and public data. To determine the mode of operation, the user
provides appropriate passwords/keys at boot time (or when
the device is plugged in after a reboot etc). For the public-only
mode, the user provides Kpub; to access also hidden data both
khid and Kpub are required. Note that under coercion, the user
will reveal Kpub to the adversary and operate in the public-
only mode. As we will see, PEARL ensures that an adversary
observing flash state does not gain a non-negligible advantage
in detecting the existence of Khid or of any hidden data.

When hidden data is stored on the device, PEARL should
be operated in the public+hidden mode since the system run-
ning in public-only mode (without the hidden key) may over-
write hidden data (e.g., during garbage collection). As dis-
cussed later, hidden data is relocated before an ERASE during
garbage collection. Without the hidden key, PEARL cannot
re-encrypt and relocate this data to new locations. This is a
common assumption for NAND flash PD solutions [41].

We also advocate running PEARL on a secondary/external
flash device which is not used as a primary system device.
This potentially reduces the risk of data loss. Specifically, if
PEARL is mounted in the public-only mode (either acciden-
tally or under coercion) with a full OS running on top then
system level operations e.g., writes to logs, swap spaces etc.
can invoke frequent garbage collections. These operations
may even be independent of user actions and performed only
for bookkeeping purposes. Since in the public-only mode
PEARL cannot identify hidden data, frequent garbage collec-
tions can potentially lead to hidden data loss.

Note that when operating in public-only mode with an
external storage device, if data is not actively written , it is
unlikely that (infrequent) garbage collections will destroy hid-
den data. Of course, an adversary can still write large volumes
data in the public-only mode thus potentially overwriting hid-
den data (if any). This constitutes a denial of service (DOS)
attack, and as with all existing plausibly-deniable storage sys-
tems, PEARL does not protect against DOS attacks. Indeed,
the adversary can simply overwrite everything on the flash
device thus destroying hidden data (if any). Adding resilience
against DOS attacks for plausibly-deniable storage systems is
an open problem and we leave this as future work.
Adversary. When defining a threat model, it is important to
also consider any hardware-related characteristics that may
result in adversarial advantages. The PD adversaries we con-
sider come with the following assumptions:

• Although adversaries can coerce users into giving up
encryption keys, they are computationally bounded and
“rational” – they stop coercing users if no evidence of
hidden data is observed.
• Adversaries are aware of the underlying design of a PD

system. In other words, the goal is not to provide secu-
rity through obscurity. But at the same time, the mere

Figure 2: The organization of a NAND flash storage device
with an FTL supporting PD.

presence of a PD system in the software stack will not
serve as evidence that the user is hiding information. Ide-
ally, once plausible deniability systems become efficient
enough, they will be simply deployed in the standard OS
codebase. Therefore, a flash device with PEARL will
not be a red flag to the adversary.
• Adversaries have "multi-snapshot" capabilities and can

access the raw image1 of a user’s NAND flash device ar-
bitrary number of times. Note that existing work on flash-
based PD systems considers a weak "single-snapshot"
adversary limited to only observing the flash memory
once in its lifetime.
• Adversaries can access the physical device only after it is

unmounted or powered off [5] (these are commonly de-
noted as “on-event” adversaries). Thus, the running state
of the device and the DRAM contents cannot be cap-
tured by the adversary. Indeed, otherwise in the presence
of an online adversary capable of monitoring user I/O
and device state at runtime, arguably it would be close
to impossible to provide strong plausible deniability.

5 Hiding Data Using WOM Codes

PEARL hides information by modulating the written public
data according to the data to be hidden. As we will show, this
is something that WOM codes can be re-purposed for. The
end-result of hiding information is a device state that is indis-
tinguishable from the case of a device that was simply writing
data multiple times using a WOM code. In this section, we
show how it is indeed possible to design such a data encoding
scheme by leveraging a special group of write-one-memory
(WOM) codes.

5.1 Overview
The key idea in PEARL is to store both public data and hid-
den data in the same physical locations using a special data

1The raw image of a devices is not hard to acquire. For example, in many
SSDs, this can be easily achieved by opening the covers and directly reading
the memory chips with cheap off the shelf readers.

USENIX Association 30th USENIX Security Symposium 1113

(a) A WOM code allows multiple writes to the same physical locations
by flipping some of the bits from 0 to 1. In this example, an initial write
of 8 data bits results in setting 3 bits of “1” among 12 physical bits. Then,
later in a second write, a completely different set of 8 bits of data can be
written to the same locations by setting another 3 bits to 1. In the end, the
12 physical bits 010,000,100,001 represent data 11,11,11,11

(b) This is possible because the WOM code
in the above example allows both 011 and
100 bit configurations (codewords) to rep-
resent data 11 in the underlying device

(c) PEARL writes public data only once but chooses the codeword used
based on the bits of the data to hide. This enables it to sureptitiously hide
information even in the presence of a powerful multi-snapshot adversary.

Figure 3: (a) Writing data multiple times using a simple WOM
code. (b) WOM codes allow multiple codewords for the same data.
(c) PEARL hides data by deciding the written codewords based
on the data bits to be hidden. The resulting final physical state
(011,100,100,011) is identical to the physical bits in Figure 3(a)
resulting from two innocent writes.

encoding scheme that renders a sequence of bits encoding
public + hidden data bits indistinguishable from a sequence
of bits only encoding public data. Before detailing the data
encoding scheme used in PEARL, we provide an example to
demonstrate how WOM codes can be used to indistinguish-
ably encode hidden data (Figure 3).

WOM codes (details in Section 5.2) are special data en-
coding schemes that allow multiple writes to the same loca-
tions of write-once memory by writing to some of the yet-
unwritten-to bits (from 0 to 1). A WOM code (Table 1) allows
the same physical bits to be written to multiple (e.g., two)
times. In Figure 3(a) two consecutive writes of different data
(10,00,11,01 followed by 11,11,11,11) can go forward in
the same underlying physical locations. The end physical state
is 011,100,100,011. This is possible because (Figure 3(b))

the WOM code allows data 11 to be represented by either 100
and 011 underlying bit configuration (“codeword”). In the
context of flash devices, WOM codes are used to increase the
amount of data you can write to a block before it is erased.

Our newly proposed data encoding scheme in PEARL
writes public data once but chooses the codeword used based
on the bits of the data to hide. This enables it to sureptitiously
hide information even in the presence of a powerful multi-
snapshot adversary.

For example, as illustrated in Figure 3(c), since the first
hidden bit is “1”, “011” is written to the underlying physi-
cal cells for the first two public data bits “11”. On the other
hand, the second hidden bit is “0”, and in this case “100” is
written for the second two public data bits “11”, etc. The
resulting final physical state hiding bits 1,0,0,1 is the same
(011,100,100,011) as the physical bits in Figure 3(a) result-
ing from two innocent writes. An adversary observing this
final physical state cannot tell whether it is the result of two in-
nocent sequential public writes as in 3(a) or of an information
hiding operation as in 3(c). In other words, it simply cannot
distinguish the two cases with any non-negligible advantage
and thus determine whether any hidden data exists.

It is clear from the example above that WOM codes have
certain desirable properties that could provide opportunities
for a data encoding scheme hiding hidden bits in a public
cover. However, designing a general purpose data encoding
scheme based on WOM codes that enables data hiding and is
secure against a powerful adversary is not trivial. Specifically,
as we discuss later, (e.g., because of device state biases inter-
fering with indistinguishability and more), not all WOM codes
can be used to build suitable data encoding schemes and not
all data encoding schemes derived from WOM codes can be
re-purposed for data hiding securely. Therefore, we first need
identify what types of WOM codes can be re-purposed for
our goals and then build a data encoding scheme accordingly.

We start with an introduction of WOM codes in Section 5.2.
Then we demonstrate the feature of a special group of WOM
codes – WOM codes supporting a 1st partition – that can be
used to encode hidden bits within public messages in Section
5.3. After that, we propose our strategy to convert a WOM
code to a hidden data encoding scheme in Section 5.4. Finally,
we show that not all hidden data encoding scheme based on
WOM codes can ensure the deniability of the existence of
hidden data, and propose a WOM code that can be indeed
re-purposed for PD in the presence of a powerful adversary.

5.2 Write-Once Memory Code

Write-once memory (WOM) was first introduced in 1982 by
Rivest et al. [44] and models a storage medium consisting
of (binary) cells which can transition from a “zero” state to
a “one” state only once. WOMs are written to using WOM
codes, I/O schemes designed for this invariant. The WOM
model was then generalized [10, 11] for storage media cells

1114 30th USENIX Security Symposium USENIX Association

with more than two possible states. Further, “t-write WOM
codes” are WOM codes that can write additional information
into the same group of WOM cells multiple (t) times. The
number of bits that can be written on the each write does not
need to be the same.

For simplicity and without loss of generality, WOM codes
with two states only are used in the rest of the paper. Fur-
ther, for consistency, initial states of NAND flash cells are
considered to be “zero” even if in many chips, empty NAND
flash pages physically contains all bits of 1. It is important to
note that physically, NAND flash memory features the WOM
invariant. Indeed once a flash page is written, its unwritten
cells (only) can accept a second write cycle. Several studies
propose WOM codes for lifetime extension by reduction in
SSD block erasures [4, 21, 22, 51].

Data bits 1st write 2nd write
00 000 111
01 001 110
10 010 101
11 100 011

Table 1: A WOM code that allows 2 writes of 2 bits within 3 bits.

Table 1 shows a WOM code example that allows twice
the encoding of different configurations of 2 information bits
using only 3 physical storage cells/bits. As per the WOM
invariant, the 3 physical cells only change from 0 to 1 in
both writes (the initial bits are considered to be 000 before
any write). For example, if the 2 bit message that needs to be
written in the first cycle is 10, 010 will be physically written to
the 3 storage cells. A subsequent 2 bit message 01 will result
in a second physical write of 110. As can be seen, this requires
a single change: the first physical cell needs to be set as 1 in
the second write (010→ 110). This elegantly enables in-place
updates. Changing 10 into 01 would not have been possible in
NAND flash without an expensive ERASE operation which
significantly reduces lifetime and increases latencies.

Note that at first glance, it may seem that all the 3 physical
cells/bits would change when the 2 bit message remains the
same (e.g. 01) for both 1st and 2nd write. This is actually not
the case. Since both 001 and 110 represent message 01 after
the 2nd write, no physical bits need to be set. Further note
that the physical bits written in the second write are context
dependent. They relate not only to the message itself but also
to the existing data in the written cells. This mandates a read
before the second write to perform the encoding correctly.
Fortunately, NAND flash reads are much faster than ERASE
operations.

5.3 WOM code supporting a 1st partition
Notations. “t-write WOM codes” are WOM codes that can
write additional information into the same group of WOM
cells multiple (t) times (named “1st write, 2nd write”, ...)
before requiring an ERASE. Each write requires a read of

the existing physical state context, a proper encoding of the
new logical data (“message”) using this context, and finally
a physical write of the encoded result. The logical message
encoded in the 1st write is called “1st message” and the
encoded result is called “1st WOM write codeword’, and so
forth. For the sake of simplicity, and w.l.o.g. we consider only
2-write WOM code which has the same message space in
both writes in the rest of the paper.

Let ci ∈C – where C = {0,1}n and 1≤ i≤ 2n – denote the
WOM write codewords of a n-bit WOM code. For example,
for the WOM code example in Table 1, we have C = {c1 =
000,c2 = 001,c3 = 010,c4 = 011,c5 = 100,c6 = 101,c7 =
110,c8 = 111}.

For any two elements cx,cy ∈ C, the relationship cx D cy
is defined by the condition that cx[i] ≥ cy[i] for all i ∈ [1,n],
where c[i] is the i-th bit of c. This is related to the fact that
an unset flash bit can be easily set without requiring a page
ERASE but not vice-versa. Then, a general definition for a
2-write WOM code can be given as follows [50]:

Definition 1 (2-Write WOM Code). A (k,n) 2-write WOM
code, denoted as (k,n)-WOM2, is an encoding scheme with
message space {0,1}k and codeword space {0,1}n consisting
of four algorithms (E1,E2,D1,D2) that satisfy the following
properties:

1. E1: {0,1}k→{0,1}n

2. E2: {0,1}k×{0,1}n→{0,1}n, and E2(m,c)Dc for all
(m,c)

3. D1: {0,1}n→{0,1}k, and D1(E1(m)) = m for all m

4. D2: {0,1}n → {0,1}k, and D2(E2(m,c)) = m for all
(m,c)

Informally, for the 1st write, any message is associated with
a unique WOM write codeword. The 2nd write is a bit more
tricky since the 2nd WOM write codeword to be written de-
pends not only on the 2nd message but also on the existing
data (1st WOM write codeword) present in that location. Dif-
ferent values may end up being written i.e., E2(m,ci) may be
different from E2(m,c j) for ci 6= c j. As a result, one message
could be represented by more than one possible WOM write
codeword after the 2nd write. For example, wrt. Table 1, the
message 00 is always written as 000 in the 1st write, but in
the 2nd write it may be represented as either 000, if the 1st
written message was 00, or 111 otherwise.

E2() may have many different forms. We discovered multi-
ple WOM codes that can represent a message using multiple
WOM write codewords in the 2nd write. Our insight then
is to use this degree of freedom in the choice of the WOM
write codeword in the 2nd write to encode hidden informa-
tion sureptitiously. For example, two WOM write codeword
choices enable the encoding of one hidden bit. Generally,
a choice of 2m WOM write codewords allow the encoding

USENIX Association 30th USENIX Security Symposium 1115

of m hidden bits. A simple encoding convention would be
that using the i-th WOM write codeword choice indicates an
encoded hidden value of i.

In the rest of this paper, for simplicity, and w.l.o.g. we
consider WOM codes with two choices only, i.e., which can
encode one hidden bit through the encoding of each k bit
(public) message. These WOM codes have the following
properties: (i) each message can be mapped to 2 WOM write
codewords in the 2nd write, and (ii) each codeword is corre-
sponding to a few 1st WOM write codewords. We call these
WOM codes WOM Codes Supporting A 1st Partition:

Definition 2 (WOM Code Supporting A 1st Partition). Let
C1 denote the set of all 1st WOM write codewords for all
possible messages, i.e. C1 = {E1(m)}m∈{0,1}k . Consider also
a partitioning function prt(m) = (Am,Bm) which on input
m ∈ {0,1}k, outputs two sets Am and Bm, forming a partition
of C1, namely Am∩Bm = /0 and Am∪Bm =C1.

Then, a (k,n)-WOM2 code (E1,E2,D1,D2) is said to
“support a 1st partition” if:

E2(m,c) =

{
wa(m), if c ∈ Am

wb(m), if c ∈ Bm
(1)

where Am and Bm are the 1st and 2nd output of prt(m), respec-
tively and wa(m) and wb(m) are valid WOM code-specific
functions that map input messages m ∈ {0,1}k to WOM write
codewords in {0,1}n.

Note that for a valid 2-write WOM code – which requires
E2(m,c)Dc – we must have wa(m)Dca for any ca ∈ Am and
wb(m)D cb for any cb ∈ Bm.

Specifically, we call a WOM code supporting a 1st par-
tition where |Am| = |Bm| for all m ∈ {0,1}k, a WOM code
supporting an equal partition.

Table 1 illustrates a WOM code supporting a 1st par-
tition, but not an equal partition. Consider C1 = {c1 =
000,c2 = 001,c3 = 010,c4 = 100}. For each message m,
Am = {E1(m)}, and Bm =C1 \Am, wa(m) and wb(m) are the
WOM write codewords in the row corresponding to message
m where wa(m) is in the second column and wb(m) is in the
third column. It can be seeen that |Am|= 1 and |Bm|= 3 for
any message m. Thus, the WOM code does not support an
equal partition.

As we will see later, the ability to support an equal partition
enables the design of a plausible deniability mechanism in
which the resulting distribution of the written bits does not
leak information about the encoded hidden data.

5.4 Hidden data encoding scheme

Hidden data encoding. As discussed above, for a WOM
code supporting a 1st partition, encoding a “hidden” data bit
h within a k-bit “public” message p can be achieved by using

Data bits 1st . write
2nd write

Hidden 0 Hidden 1
00 000 000 111
01 001 001 110
10 010 010 101
11 100 100 011

Table 2: A WOM code that provides a trade-off between wear
leveling and plausibly deniable information hiding. Within a 3 cell
area, between ERASEs, allow either: (i) two writes of 2 bits each, or
(ii) one write of a 2 bit public message plus a 1 bit hidden message.

the bit to decide on the choice of WOM write codeword to
write in the 2nd write.

Then, more generally, the written data E(p,h) is a func-
tion of both the public message p and the hidden message h.
Further as we will see, there exists a relationship between the
existing data c and the resulting encoding.

We call the encoded result the “full write codeword’ and
the write of the full write codeword is called a “full write”
to distinguish it from a 2nd write of a public-only message.
Then, the corresponding simplified encoding function is:

E(p,h,c) =

{
wa(p), if h = 0
wb(p), if h = 1

(2)

As mentioned earlier, for simplicity, and w.l.o.g. we con-
sider WOM codes with two 2nd WOM write codewords
choices only (as in equation 1), i.e., which can encode one
single hidden bit with each k bit (public) message.

Unfortunately there are no free lunches and, as will be
detailed later, the full write codeword can only be written to
empty pages with all 0s. In other words, one page cannot
be written-to twice anymore. Effectively, the hidden bit is
encoded at the cost of the ability of the WOM code to accept
additional information before the next ERASE.

Note that one of wa(p) and wb(p) are written regardless
of the existing data c. And, as discussed above, for a valid
2-write WOM code – which requires E2(m,c)D c – we must
have wa(p)D c and wb(p)D c for all possible p. This is only
possible if the existing data c is all 0s, i.e., the encoding works
only on empty physical pages, and pages can only be written
once before requiring an ERASE.

Table 2 adds the hidden bit encoding cases to the WOM
code in Table 1. Between ERASEs, 3 flash cells can be written
to either: (i) twice with 2-bit public messages or once with a
2-bit public message and a 1-bit hidden message.

The first case corresponds to public-only operation in
which the same set of cells can be reused for a 2nd write
between ERASEs and the second case corresponds to the
case of hidden operation in which hidden messages are to be
encoded plausibly deniable.

The first case corresponds to a sequence of public writes,
e.g., an initial write and subsequent updates to the same loca-
tion. Starting with an empty page (e.g., of 3 bits for simplicity),

1116 30th USENIX Security Symposium USENIX Association

Figure 4: A empty page can be written to twice in two sequential
public writes p1&p2, or once with an encoding combining one public
message p and one hidden message h. The resulting state is the same
c2.

a public message p1 can be written into an empty page firstly
(as c1) in a 1st write (Figure 4). The encoding used is defined
by columns 1&2 in Table 2. A subsequent public message
p2 can be written to the same page (as c2) in a 2nd write.
Columns 1,3 and 4 in Table 2 determine the final written state,
as a function of 1st WOM write codeword c1. Note that after
the 2nd write the first public message p1 will not be available
any more. Only p2 can be decoded from c2.

In the second hidden operation case, both public (p2) and
hidden (h) messages determine the encoding that gets written
(c2) in a full write. c2 is determined by columns 1,3, and 4 of
Table 2. Once written, both p2 and h can be decoded from c2.

5.5 WOM coding & PD
0-1 Distribution Skew. While a step in the right direction,
the proposed hidden data encoding results in a bias in the
distribution of 1s and 0s in the written data when compared
to a public-only operation. This can then be used e.g., by a
multi-snapshot adversary to distinguish devices that contain
hidden information from devices that do not.

Figure 5 shows a simple example of this bias for the exam-
ple WOM code in Table 2. Consider a 2 bits public message
00. In public-only operation mode, the message is written in a
2nd write, and the 2nd WOM write codeword will be 000 if the
1st message residing there was 00, or 111 if 1st message there
is either 01, 10, or 11. If the 1st message written is overall
uniformly distributed, the ratio between the occurrence of 000
to 111 in the public-only operation storage device should be
1:3. However, in the case of a hidden operation, the full write
codeword ends up being 000 for a hidden bit of 0, or 111 for
a hidden bit of 1. Thus, for an overall uniformly distributed
hidden message, the ratio between the occurrence of 000 to
111 in the storage device will be 1:1.

Given this bias, an adversary can do statistic analysis based
on the public data on the storage data and observe a difference
between the expected and observed distribution of 0s and 1s.

A counter-argument to be made is that the public operation
mode was considering the case of two writes, and in practice
numerous pages may end up being written only once. This
may be true, however, given the existence and benefits of the

Figure 5: The WOM code in Table 2 features a bias in the distri-
bution of written 1s and 0s. The top part illustrates the resulting
skew (0s:25%, 1s:75%) for public-only operations after two writes,
whereas the bottom part illustrates the hidden operation (0s:50%,
1s:50%).

WOM encoding in the system, it is reasonable to expect that
in many cases, the device converges to a state where most
cells have been overwritten at least once. Also, while it is
true one can plausibly claim the bias was inherent in the data
itself, the security argument is weakened overall.
WOM Code Supporting an Equal Partition. Thus, the
question inevitably arises: can we do better? How can we
overcome this bias? The answer is WOM codes supporting
an equal partition.

To see why that is the case, consider that the bias comes
directly from the difference in the probability distribution of
2nd WOM write codeword and full write codeword. Reusing
the same group of WOM write codewords in the 2nd write
for the hidden data encoding ensures that the 2nd WOM write
codewords and full write codewords are indistinguishable by
inspecting the individual codes. It is an overall probability
distribution that may give the existence of hidden data away.

Note that the probability distribution of 2nd WOM write
codeword depends on the number of elements in sets A and B
(see equations 1 and 2), while the probability distribution of
full write codeword is decided by the distribution of hidden
bit h. And, since hidden data in a PD system is highly likely
to be encrypted, h ends up uniformly distributed.

To eliminate the bias, sets A and B need to contain the
same number of elements for any arbitrary messages. In other
words, the WOM code needs to support an equal partition.

Lemma 1. The hidden data encoding scheme based on a
WOM code supporting an equal partition ensures that an
adversary cannot distinguish the 2nd WOM write codeword
that encodes public message p from the full write codeword
that encodes both public message p and hidden message h.

Table 3 defines a (3,5) WOM code supporting an equal
partition. For public operation, it allows writing 3 bits of data
twice to 5 storage cells. In hidden operation, 1 hidden bit and

USENIX Association 30th USENIX Security Symposium 1117

Data bits 1st write
2nd write

Hidden 0 Hidden 1
0 000 00000 11110 10011
1 001 00001 11001 10110
2 010 00010 11010 10101
3 011 00100 11100 01111
4 100 01000 11111 01101
5 101 10000 11101 01110
6 110 11000 11000 10111
7 111 10100 11011 10100

Table 3: (3,5) WOM code supporting an equal partition allowing,
within 5 bits: two subsequent public writes of 3 bits, or one write of
1 hidden bit and 3 public bits.

3 public bits can be encoded together in 5 storage cells.
One invariant for this code is that for each 2nd WOM write

codeword c2 in the “2nd write” column (sub-columns 3 and
4), there exist four 1st WOM write codewords c1 for which
c2 D c1, i.e., that can be overwritten to get to c2. In other
words, the size of the sets A or B in this WOM code is 4.

For example, considering wa = 11110 and wb = 10011 –
both of which can be used to represent public message m =
000 in a 2nd write during public operations – the correspond-
ing set A is A000 = {00100,01000,11000,10100}, composed
of the 1st WOM write codewords for messages {3,4,6,7}.
Similarly, set B is B000 = {00000,00001,00010,10000}
composed of the 1st WOM write codewords for messages
{0,1,2,5}. As a result, both 11110 and 10011 are equally
likely to appear in the written device state – for either public
and/or hidden operation modes.

Based on the WOM code in Table 3, we design PEARL,
a plausibly deniable FTL that securely processes the I/O re-
quest from the upper layers, manages the unavoidable inherent
mappings from logical to physical pages and reclaims pages
occupied by the obsolete data. More importantly, PEARL
ensures that adversaries cannot detect the existence of hidden
data by probing multiple device snapshots.

6 Security Requirements for PEARL

The hidden data encoding scheme presented in Section 5
ensures that physical pages containing both public and hidden
data are indistinguishable from pages containing public data
written as 2nd WOM write codewords. However, turning it
into a workable PD solution that can protect hidden data from
the coercive adversary described in Section 4 requires extra
work. Specifically, a multi-snapshot adversary can observe
not only the state of individual pages, but also state changes
across multiple snapshots. Generally speaking, over time, an
adversary can learn (1) what kind, and (2) where page state
transitions happen. A plausibly deniable FTL needs to ensure
that this does not leak the existence of hidden data.

This is made even more difficult by internal characteris-
tics of NAND flash for which page state transitions are not

independent from each other. For example, data updates are
performed via an out-place scheme rather than an in-place
scheme (updated data is written to a new location rather than
where the old data resides). As a result, pages where the up-
to-date data is written becomes valid while at the same time
the page where the outdated data resided becomes invalid.

To mitigate this, we first explore the page states and the
page state transitions in the case of deploying the WOM code.
We then introduce key requirements for a secure plausibly
deniable FTL. Finally, we provide an efficient solution. The
idea is to smartly “cloak” hidden data within plausible public
data so that the hidden data induced page state transitions can
be plausibly explained as a result of public requests.
Page States. NAND flash contains three types of pages:
empty, valid, and invalid. A “valid” page contains active data,
whereas an “invalid” page’s data is obsolete and can be erased.

In the case of a 2-write WOM code, NAND flash pages
can be categorized at a finer granularity. Firstly, based on
their current encoding, pages can be categorized as either “1st
write” or “2nd write” pages. 1st write pages contain only
public data while 2nd write pages may contain both public
data and hidden data. Note that in this case, a page storing
both public data and hidden data is still called a 2nd write
page although the page is literally written only once.

Secondly, a page can be either valid or invalid depending on
the status of the data stored inside. However, since the public
data and hidden data in the same page may have different
status we need to further distinguish things. We use “up-to-
date” and “out-of-date” to indicate data status. Then, since the
existence of hidden data should not be exposed to adversaries,
a page is denoted as valid as long as the public data there is
up-to-date, regardless of whether any hidden data coexists or
whether the hidden data is out-of-date. Note that a valid page
may contain out-of-date hidden data while an invalid page
may contain up-to-date hidden data.

Thus, in summary, a page can be in any of the 5 states:
empty, 1st write valid (V1), 1st write invalid (I1), 2nd write
valid (V2), and 2nd write invalid (I2). Each physical page
transitions between the 5 states directly or indirectly. There
may be more than one possible reason for a page to change
from one state to another. For example, an empty page may be
turned into a V2 page directly because of a full write (defined
in Section 5), or it can become a V2 page indirectly by first
being a V1 page, then an I1 page and finally a V2 page. Thus,
the first requirement is shown as Requirement 1.

Requirement 1. The presence/absence of hidden data is
never the only possible reason for a page state transition.
Note that a hidden data encoding scheme based on a 2-write
WOM code is designed to intrinsically guarantee this.

Figure 6 depicts the page state transition graph for the
above 5 states. Transitions are triggered by either the logical
requests from the host or the built-in functions of the NAND
flash (e.g., garbage collection). Public data can be written to

1118 30th USENIX Security Symposium USENIX Association

Figure 6: Page state transition diagram using the 2-write WOM
code. A page written twice with public data can transition through
all 5 states while a page written once with public and hidden data
skips states V1 and I1. It is also possible that a page is recycled
right after it is written only once with public data (state I1 to Empty
directly).

either an I1 page or an empty page, resulting in a V2 page
or a V1 page, respectively Hidden data can only be written
to an empty page under a cloak of some public data. This is
depicted as a full write that transitions a page from state empty
to state V2 directly. Garbage collection brings all the pages
in a target block back to state empty by an ERASE operation.
Before erasing, the up-to-date data in those pages need to be
relocated elsewhere, while the state of the page may transition
from V1 to I1 or from V2 to I2. Other operations that render
data out-of-date include logical data updates and the TRIMs.

Figure 6 illustrates the fact that a page can transition freely
from one state to another independently of the existence of
hidden data – all page state transitions can be plausibly ex-
plained by public data operations. Moreover, the plausible
public data that can be used as the “cloak” is not unique and
in fact has quite a bit of entropy. For example, as Figure 4
depicts, writing hidden data h + public data p2 ends up being
the same as writing public data p1 + p2. As the 1st WOM
write codeword is completely overwritten by the 2nd WOM
write codeword, a relatively large set of public data messages
can be plausibly provided as a candidate for p1. For a (k,n)
WOM code supporting an equal partition and pages contain
n · x bits, there are 2(k−1)·x possibilities for p1.

More specifically, as an example, consider a physical page
of 10 physical bits. In PEARL the page can contain 6 bits of
public data and 2 bits of hidden data. If the observed physical
page data 1100010101, then p2 = 110010 and h = 01 accord-
ing to Table 3. An attacker obtaining a snapshot aiming to
determine the value of public data p1 can at most know is that
the first 3 bits of p1 are a value in set {000,100,101,110} (the
messages corresponding to WOM write codewords in set A110)
and the last 3 bits of p1 are a value in set {001,011,101,111}
(the messages corresponding to WOM write codewords in set
B010). As a result, p1 has 16 (42) possible values in total. In
reality, a larger page with more physical bits (e.g. 5×1000
bits) results into many possibilities (e.g. 41000). For further
security, this can then be used to select the most semantically
plausible values of p1, e.g., by selecting marching terms from

an English dictionary.
Page Operation Priority. The WOM code based hidden
data encoding scheme ensures multi-snapshot adversaries
cannot tell whether hidden data exists or not by observing state
transitions of any single physical page. However, by observing
aggregated state transitions of a set of pages over time, it may
still be possible for an adversary to detect the existence of
hidden data according to where page state transitions happen
(which page is written to and which page is erased).

For example, if pages containing up-to-date hidden data
have a lower ERASE priority during garbage collection com-
pared to pages containing no hidden data, an adversary could
tell whether the hidden data exists through the order in which
physical pages get erased. Thus, a second requirement can be
concluded as Requirement 2.

Requirement 2. The priorities assigned to blocks according
to which they are erased during garbage collection is not be
related to the location, state or existence of hidden data.

Moreover, as illustrated in Figure 4, hidden data h in a 2nd
write page can be plausibly denied as a sequence of public
operations: p1 written to an empty page, and p2 written to an
I1 page. Solid reasons should exist to justify why p1 is not
written to any other I1 page and p2 is not written to any other
empty page etc. This derives the Requirement 3.

Requirement 3. The presence/absence of hidden data is
never the only possible reason for the presence of any public
data in a 2nd-write page.

Fulfilling this requirement 3 efficiently is related to how
writing priorities for empty pages and I1 pages are defined
in an FTL (more details in Section 7). Note that in order to
maximize writing capacity and minimize wear/ERASE cycles,
normally I1 pages usually have higher priority to be written
to. Otherwise if empty pages are written first, then an I1 page
may be erased before the 2nd write happens to it, which is a
waste of writing capacity.

7 PEARL Design

PEARL is a FTL that satisfies all the security requirements in-
troduced in Section 6. It is designed based on DFTL (Section
3.2). In this section, we first detail the data structures used for
logical-to-physical address translation and the page allocation
mechanism. Based on them, we then introduce how PEARL
deals with the public and hidden requests from the host and
reclaims the obsoleted pages with garbage collection.

7.1 Address Translation
PEARL manages the logical-to-physical mapping for public
data and hidden data separately. Similar to DFTL (Section
3.2), two layer page-level maps are used. The public data is
managed by a public global translation directory (GTD) plus a

USENIX Association 30th USENIX Security Symposium 1119

Figure 7: The diagram about how PEARL allocates physical pages
upon accepting a public write request. The priorities of physical
pages are: 1st invalid pages in UIQ, 1st invalid page in TIQ, empty
pages.

few public translation pages, while the hidden data is mapped
with a hidden GTD in addition with some hidden translation
pages. The hidden GTD is stored in the SRAM together with
the public GTD. If no power loss protection is built into the
flash device, GTDs may get lost during sudden power loss, but
can always be recovered by a full device scan. Furthermore,
storing GTD on nonvolatile storage aids recovery [46].

Translation pages are stored in the flash. Unlike in the case
of DFTL, both translation pages and data pages are stored
in the same group of blocks. The public translation pages
are encoded as public data, while hidden translation pages
are encoded as hidden data. A cached mapping table (CMT)
is used to cache the recently-used mapping information for
both public data and hidden data. The corresponding public or
hidden translation page will be updated in memory whenever
any mapping entry is evicted from the CMT.

7.2 Page Allocation and Garbage Collection

Page Allocation. PEARL uses three variables to track candi-
date pages for writing: a Current Empty Page, a Current UI1
Page, and a TI1 page Queue (TIQ). UI1 pages are I1 pages
caused by logical data updates. Whenever the public data in
a V1 page gets updated, rather than updating in place, the
up-to-date data is written to another page and the V1 page
becomes a UI1 page. TI1 pages are I1 pages resulting from
TRIM operations that delete data. The deleted data in a TI1
page does not have corresponding up-to-date data in any other
pages of the device. We distinguish UI1 from TI1 pages since
an adversary can infer when a UI1 page becomes invalid
with only one device snapshot (detailed later and in Figure 8).
Finally, a free block list (FBL) is used to track empty blocks.

In PEARL UI1 pages have the highest priority to be written
to. As a result, since they always get written to first, there
ends up being at most one UI1 page in the device, tracked by
the Current UI1 Page record. Further, TI1 pages have a higher
priority than empty pages to be written to. Overall, public
data will be written to an empty page only if the Current UI1
Page is NULL and the TIQ is empty. Figure 7 illustrates the

page allocation rule for public data.
In contrast, it should always be the Current Empty Page

that is allocated for a hidden data write. This makes it possible
for an adversary to infer whether a 2nd write page contains
hidden data by inferring whether there exists any I1 page
(either UI1 or TI1) when the 2nd write page is written to.
Moreover, UI1 pages impose different threats compared to
TI1 pages, which can be illustrated with Figure 8 as follow.

For a UI1 page that becomes invalid before any hidden data
is written, an adversary would always know that it is invalid
when the 2nd write page is written to. This is straightforward
if the adversary can observe the UI1 page before writing the
2nd write page. Besides, the example of block 1 in Figure 8
explains that this is also true even if the adversary can access
the device only after the hidden data is written.

The upper half of Figure 8 lists snapshots of block 1 over
time. The adversary observe the block at time T0 and T2. All
three pages are empty at time T0. And they are in state I1, V1
and V2, respectively at time T2. The I1 page is a UI1 page as
it contains the obsoleted data p0 whose corresponding up-to-
date data p0

′ is in the V1 page. Based on the two snapshots,
the adversary can infer that: 1) the first page must be a I1
page right after the second page is written to; 2) the third page
should be still empty at that time (since pages in one block
are written in order). Thus, the adversary can infer (although
not directly observe) that there must exist an intermediate
state where the there pages are in state I1, V1 and empty,
respectively, which is depicted as the snapshot at time T1. In
this case, hidden data is the only possible reason for public
data in the V2 page rather than the I1 page at time T2.

On the contrary, an adversary cannot tell whether a TI1
page becomes invalid before or after any hidden data is written
as long as she cannot observe the TI1 page before the hidden
write happens. This can be demonstrated with the example of
block 2 in Figure 8. Similarly, the adversary takes the snapshot
at time T0 and T2. Then she observes the state transition empty
→ I1 in the first page, and the state transition empty→ V2
in the second page. The only intermediate state she can infer
is that the first page was written to be a V1 page at certain
time T1. After that, the adversary has zero knowledge about
whether the V1 page is invalidated first or the empty page is
written first. Thus, it is completely possible for the second
page to be the V2 page at time T2 without any hidden data,
as long as the second page is written before the first page
becomes invalid.

Thus, to mitigate the possible leaks caused by I1 pages,
two tweaks are used regarding the UI1 page and TI1 page: (i)
before writing any hidden data, the Current UI1 Page is filled
with public data; and (ii) all TI1 pages in the TIQ are written
to (with public data either from user requests or from the
block with the least number of valid pages) before on-event
adversaries are allowed to take a snapshot. These prevent
adversaries from detecting the hidden data by analyzing page
allocation patterns.

1120 30th USENIX Security Symposium USENIX Association

Figure 8: Without hidden data, block 1 cannot plausibly transition
from the state at time T0 to the state at time T2 because of the
existence of the UI1 page – the I1 page in block 1 is a UI1 page as
its corresponding up-to-date data p0

′ is in the V1 page. In contrast,
block 2 can plausibly transition between the states at times T0 and
T2 regardless of the existence of hidden data, because an adversary
cannot identify when a TI1 page becomes invalid – the I1 page in
block 2 is a TI1 page as it does not have corresponding up-to-date
data in the block.

Garbage Collection. PEARL tags the least active block(s)
(with the least number of valid pages) as the next victim
block(s) for garbage collection. As detailed in Section 6, the
status of a page – valid/invalid – is independent of the exis-
tence and status of hidden data stored in that page. Thus, the
selection of victim blocks does not leak any information to
the adversary regarding the presence of hidden data.

Once a victim block is selected, PEARL first checks
whether the Current UI1 Page is in the victim block. If yes,
the Current UI1 Page is set to NULL. Then all the TI1 pages
in the victim block are extracted from the TIQ. These two
actions prevent data from being written to a block that will
be erased soon. Then, up-to-date public and hidden data in
the victim block are relocated to new pages using the same
mechanism that is employed during write requests.

Specifically, the hidden data in the victim block (if any) can
be encoded and written to empty pages together with some
public data. As a result, the hidden data that is stored with
public data that is subsequently deleted is not lost. The public
data written with the hidden data will either be selected from
the victim block or this could be new public data that is in
the queue (due to previous writes) but has not been written
to the disk yet. Note that PEARL does not require any user
intervention during this process.

Moreover, as hidden data are re-encrypted (semantically
secure, randomized) during relocation, an adversary cannot
link a particular hidden data to a public data it is stored with
before and after garbage collection. In effect, deleting public
data stored in a particular page does not impact the security
and consistency of the hidden data within.

7.3 I/O Operations
Common Interface for Public and Hidden Data. As dis-
cussed in Section 4, PEARL supports both public and hidden

data requests. However, crucially, PEARL does not require
different interfaces for accessing public and hidden data. In-
stead, PEARL separates hidden data requests from public data
requests by a simple offset convention. Hidden data requests
(received through the unchanged FTL interface) address an
offset beyond the physical standard device capacity. This sig-
nals that these requests are addressed to the hidden volume.

Note that an adversary attempting to access hidden data
through this interface would have to provide the correct pass-
word at boot-time. Otherwise, the system will be unable to
decrypt hidden data. As a result, simply having access to the
same interface does not provide any advantage to the adver-
sary in detecting the presence of hidden data.
Preprocessing. Upon receiving I/O requests from upper lay-
ers, PEARL divides the incoming requests into page-level
requests first, which are then executed individually. To ex-
ecute these requests, the first step is a logical-to-physical
address translation. PEARL first looks up the logical page
address in the cached mapping table CMT. If no hit, either
the public or the hidden GTD is queried for the location of
the corresponding translation page which contains the target
physical page mapping entry which can be used to access the
page. The mapping is then also cached in the CMT. If this
requires a cache eviction, the least recent used entry will be
evicted, resulting an update to its corresponding translation
page on the device. And if there is any other mapping entries
which belong to the same translation page in the CMT, those
entries will be written back to the device simultaneously. It is
important to note that translation pages are written just like
actual (public or hidden) data pages.
Public Write. In the case of a public write, after the address
translation, PEARL identifies one page for the public data
based on the page allocation algorithm in Figure 7. The public
data is written to the page following the WOM code based en-
coding scheme. If the logical address was originally mapped
to a valid V1 page (the write request is an update to existing
data), the page now transitions to UI1 status and is set to be
the Current UI1 Page. If the logical address was originally
mapped to a TI1 page, the page is deleted from the TIQ and
then set to be the Current UI1 Page. Finally, the mapping
entry is cached in the CMT accordingly.
Hidden Write. Hidden page writes require public data to
“cloak” in: first valid page in the least active public data block.
This can then be explained as a simple garbage collection
related data relocation. Similarly to the other cases, the corre-
sponding public data mapping information is cached in the
CMT. The hidden and the public data are then encoded and
written to the Current Empty Page and the CMT is updated
accordingly. The Current Empty Page then becomes the next
page in the same block, or the first page of a new empty block
if the original Current Empty Page was the last page of a
block. The new empty block is selected from the FBL.
TRIM. For either a public or a hidden page TRIM request,
the deleted data is marked as out-of-date. If the deleted public

USENIX Association 30th USENIX Security Symposium 1121

data was in a V1 page, the page is pushed to the TIQ.
Power Loss. Power-loss recovery is not described in DFTL.
For simplicity, we assume the physical device comes with
standard enterprise grade power loss protection (PLP) backed
by capacitors that power up the device for enough time to
guarantee caches and other memory resident data structures
can be flushed to disk. PEARL adds to standard PLP the
requirement to write our hidden and public GTDs on power
loss also. We also note that if PLP is not available, all data
structures can be reconstructed by traversing the entire disk.
Encryption. Before encoding, public data and hidden data
are first encrypted with different keys using AES-CTR with
random IVs. As hidden and public data share physical pages,
they can also share the IV in the OOB area of each page.

8 Security Analysis

The aim of this Section is to show that both the hidden data
content and operations are protected from a multi-snapshot
on-event adversary. The general idea is that anything that
happens between snapshots is a combination of operations. It
is then sufficient to show that each such operation does not
provide any advantage to a polynomial adversary.

Specifically, we show that any hidden operation leaves the
device in a state indistinguishable from a state resulting from
a plausible set of public operations. Then, if all operations
are sequential, the effect of any combination thereof (whether
or not they include hidden operations) can be explained by a
plausible set of public operations.

Theorem 1. A computationally-bounded adversary cannot
distinguish a physical page containing both public data and
hidden data from a page containing only public data written
as 2nd WOM write codewords.

Proof (sketch): Lemma 1 in Section 5 shows that by con-
struction the encoding scheme prevents an adversary from
distinguishing a page containing full write codewords (con-
taining hidden data) from a page containing 2nd WOM write
codewords. Furthermore, hidden data is encrypted using a
semantically-secure randomized cipher. Adversaries can cer-
tainly interpret all the pages containing 2nd WOM write code-
words as hidden data based on the encode scheme, but all she
can get will be the encrypted hidden data, indistinguishable
from random. Thus, a physical page containing both public
and hidden data is indistinguishable from a page with only
public data written as 2nd WOM write codewords.

Lemma 2. For any page state resulting from writing hidden
messages (either hidden data or hidden mapping table) to
an empty page, there exists at least one sequence of public
operations that results in the exact same state.

Proof (sketch): Any hidden message h is always written to-
gether with some public message p2 (Figure 4) to an empty
page, resulting in a page state transition from empty to V2.

As shown in Section 6, this page state transition can be plausi-
bly explained as the combination of a sequence of page state
transitions (empty→ V1→ I1→ V2). Moreover, there exists
at least one public operation that can result in each of those
page state transitions for the same physical page.

The page state transition empty→ V1 can be explained by
writing some public message p1. Remember that p1 values
are not unique and can be chosen from 2(k−1)·x (Section 6)
values. The V1→ I1 transition can be plausibly explained as
updating or deleting p1. Finally, recall that p2 was relocated
from the block with the least number of valid pages. This
transition I1→ V2 can be plausibly explained as a garbage
collection relocation operation.

The mapping entry for the plausibly appearing public p1
(Figure 4) will not be updated on the device until it is evicted
from the CMT. Thus, it is highly possible that this mapping
entry change does not need to be flushed out to the device (the
mapping entry may be updated again before that), as p1 was
already out-of-date when p2 was written. In summary, the
results of writing hidden messages to an empty page can be
plausibly explained by a series of public operations.

Theorem 2. Any page state transition resulting from either
a hidden read operation or a hidden trim operation can be
plausibly explained by at least one sequence of public opera-
tions.
Proof (sketch): As described in Section 7, for either a hidden
read or a hidden trim, the only possible state change in the
device happens when a mapping entry is evicted from the
CMT. In this cases, there are two possibilities. (1) the evicted
mapping entry is a hidden entry – in that case a hidden trans-
lation page needs to be updated (recall it is treated as a hidden
data page) – and according to Lemma 2, the resulting page
state transition can be plausibly explained as the result of a
sequence of public operations. Or (2) the evicted mapping
entry is a public entry – in that case a public translation page
needs to be updated – and this can be plausibly explained
using public operations only.

Theorem 3. Any page state transition resulting from a hidden
write operation, can also be plausibly explained by at least
one sequence of public operations.
Proof (sketch): A hidden write operation writes the hidden
data and updates the corresponding mapping entry. The map
update happens in the CMT and will be later flushed to the
device during a hidden translation page write when a cache
eviction happens. As proved in Lemma 2, writing either the
hidden data or the hidden translation page can be plausibly
explained with several public operations.

Theorem 4. Any page state transitions resulting from a
garbage collection operation can be plausibly explained by
at least one sequence of public data operations.
Proof (sketch): This follows by construction. First, note that
PEARL select the victim block (the block to be erased) for
garbage collection only based on the state of public data in

1122 30th USENIX Security Symposium USENIX Association

flash devices – the presence/absence of hidden data has no im-
pact on this selection. Moreover, page transitions happen only
because up-to-date data in the victim block is relocated to new
locations. All data relocations are handled in the same way
as new public/hidden data write requests – PEARL employs
the I/O operations discussed in Section 7.3 to complete these
requests. Therefore, by leveraging Theorem 3, we can show
that the resulting page state transitions from the hidden write
operations performed after a garbage collection can be plausi-
bly explained by a sequence of public operations.

9 Practical Concerns

Crypto Primitive. To ensure PD, both the public and the
hidden data encoded with the WOM code must appear to be
indistinguishable from cryptographically secure random data.
Thus, before encoding, public data and hidden data are first
encrypted (semantically secure, randomized) with different
keys in PEARL. Considering the special application scenario
of disk encryption, crypto primitives used in PEARL imple-
mentation must be chosen carefully. For example, when a
block cipher mode requiring an initialization vector (IV) is
used, each page is usually assigned with a page-specific ran-
dom IV to enable random access. These IVs must be easily
derived from or stored in the storage system. Reusing an IV
may result into a catastrophic loss of security. There are a few
special purpose block encryption modes that are specifically
designed to securely encrypt sectors of a disk, such as the
tweakable narrow-block encryption modes (LRW, XEX, and
XTS) and the wide-block encryption modes (CMC and EME).
The application of these modes of encryption can prevent at-
tacks such as watermarking, malleability, and copy-and-paste,
which is critical for PD as a weak encryption system can
significantly amplify an adversary’s advantage.
Storage Capacity. The use of WOM codes in PEARL ampli-
fies the size of data because a single logical bit is now repre-
sented by multiple bits in storage. Therefore, as expected, the
overall logical storage capacity (the total amount of logical
data that can be written) of the device reduces. We analyse the
extent of this reduction in Section 10. However, critically, it is
worth noting here that logical storage capacity for public data
is not impacted by the amount of hidden data stored in the
device. In other words, an adversary cannot detect whether
hidden data is being stored with any non-negligible advantage.
Wear on Flash Device. Flash memory has a limited lifetime
– measured as the number of program/erase cycles a block can
endure before becoming damaged and unusable. Although
erasures are the major contributors to cell wear [23], recent
studies show that programming also has a substantial impact
on flash cell wear. For example, programming MLC cells as
SLC [26] or occasionally relieving cells from programming
[25] can significantly slow down cell degradation, regardless
of the number of erasures. Thus, writing a page twice with
the WOM code may increase the page wear. In other words,

the number of allowed erasures might decrease.
In PEARL, a page is written-to (programmed) once in the

case of both public data and hidden data being stored there.
The page appears to be written-to twice when an adversary ob-
serves the device. This may allow a new type of side channel
attack where the adversary estimates page wear to determine
the presence of hidden data – the page wear may end up be-
ing slightly decreased than what is expected when the page
contains hidden data. A detailed analysis of this physical
side-channel is the subject of ongoing work.
Attacks on Weak Passwords. The security of all PD sys-
tems rely on the confidentiality of the hidden encryption key,
which is usually derived from a password. There could be sev-
eral security issues related to passwords, such as online/offline
brute force attacks, social engineering, phishing etc. As a first
line of defense, PEARL requires users to choose strong pass-
words with high entropy [27] thereby presumably making the
system more resilient to these attacks.
Adequate Public Cover Traffic for Hidden Data. As in
all prior works, PEARL requires public data traffic to hide
data. Hidden data is written together with public data – either
existing public data relocated during garbage collection or
new incoming public data. Garbage collection is triggered
only when empty pages are consumed by new public requests.
Thus, to enable hidden data writes, sufficient public data traf-
fic is required. In many scenarios this may be a reasonable
assumption since in reality the amount of hidden data requir-
ing protection is often less than public data. While it may be
possible to build solutions in a different model where public
data is de-linked from hidden data and hidden data exceeds
the amount public data this requires further validation and is
left for future work.

10 Evaluation

In this section, we first analyse the storage and I/O overheads
in PEARL. We then present a performance evaluation with
experimental results. PEARL has been implemented with the
(3,5) WOM code (Table 3). As discussed before, the (3,5)
WOM is suitable for data hiding as it supports an equal parti-
tion. While there may exist other (more optimal) two-write
WOM codes with the same properties, as well as WOM codes
that support more writes (e.g., three-write WOM codes) and
also enable data hiding, we leave the discovery and analysis
of such WOM codes as future work.
Storage Overhead. The (3,5) WOM code used requires 5
physical bits to store 3 bits of public logical data and 1 bit of
hidden logical data. Further, storing metadata (e.g. translation
pages) requires a few physical blocks. Overall, this reduces
the total amount of logical data that can be stored within the
total capacity of the device. Specifically, the total amount of
public data cannot exceed 60% of the total physical device
capacity, while the total amount of hidden data cannot exceed
20% of the total device capacity. Thus, around 20% is sac-

USENIX Association 30th USENIX Security Symposium 1123

rificed. Designing a more storage efficient WOM code that
supports equal partitions for PEARL is left as future work.
I/O Overhead. Data amplification also contributes to I/O
overheads. With the (3,5) WOM code, 5 physical bits encode
only 1 hidden bit, which means that 60KB data is accessed
from the device for each 12KB of logical hidden data access.
Similarly, accessing 12 KB of logical public data requires
20KB of physical data access. This is expected to reduce
overall throughput of the system proportionally.

Moreover, as described in Section 5, performing a full write
or a 2nd write requires reading of some existing public data
or the obsolete data in that page. This additional read also
contributes to I/O overhead. Finally, PEARL also requires
additional processing time for address translation and data
encoding etc., which contributes to I/O overhead as well.

10.1 Implementation & Micro-Benchmarks
Setup. PEARL was implemented as a core FTL engine in
FlashSim [32], a popular flash based storage system simula-
tion framework. FlashSim is an event-driven simulator (simi-
lar to DiskSim [13]) and is widely used to study the perfor-
mance implications of different FTL schemes [18, 19, 49, 52].
Specifically, the evaluated PEARL uses the data encoding
scheme based on the (3,5) WOM code as discussed in Sec-
tion 7. Besides, as a baseline for comparison, DFTL is also
implemented and evaluated under the same device settings.
In the experiments below, a 64GB SSD [35] is simulated and
the parameters used for this simulation are listed in Table 4.
The page read, write and erase time are 130 us, 900 us and
10ms, respectively.

Read Write Erase (Die, Plane, Block, Page) Page size
130us 900us 10ms (1, 2, 1437, 768) 16KB

Table 4: Parameters of the simulated NAND flash device.

Logical Volume Capacity. Although the physical capacity
of the SSD simulated is 64GB, the logical capacity for the
public volume and the hidden volume are set to 36GB and
12GB respectively. The difference in capacity is due to the
use of the (3,5) WOM code, as discussed above. Comparably,
the logical volume size when DFTL is used is 54 GB.
Initialization. FlashSim starts by simulating an empty SSD.
However, it is well known that the overall performance of
an SSD degrades with increasing logical capacity utilization.
Thus, for an accurate evaluation, it is important to start with
the device at a state where it has been fairly used for storing
and accessing data for all volumes. This requires two things.
First, the SSD should be “full” – most of the physical pages
have been written at least once and contains some data (may
be invalid data). Only in this case garbage collection can be
triggered. Second, the amount of valid data in each volume
should be “equivalent” relative to volume capacity. In this
case, the write amplification due to the relocation of valid
data will be comparable.

Read Write
0

20,000

40,000

60,000

80,000

Benchmarks

T
hr

ou
gh

pu
t(

IO
PS

)

DFTL (Baseline) PEARL Public PEARL Hidden

Figure 9: Throughput comparison between DFTL (baseline) and
PEARL (higher is better). PEARL is slower mainly due to data
amplification resulting from the use of the WOM code.

Thus, in the initialization phase for the PEARL evaluation,
the SSD was filled with random data coming from the first
halves of the public and the hidden volumes respectively until
most of the physical pages have been written once and at least
one garbage collection has been invoked. When evaluating
DFTL, the SSD was filled with random data from the first
half of the corresponding logical volume.
Performance Metrics. FlashSim reports a total aggregated
response time for each request received. This is a combination
of the device service time and the effect of queuing delays.
Specifically, the response time not only captures the overhead
due to the internal processes in an FTL such as address trans-
lation and data encoding, but also factors in the time spent
by the request in I/O queues etc. While in certain cases it
may be desirable to eliminate scheduling delays etc. from
the performance evaluation, this is not possible in the current
simulator and would require further kernel instrumentation.
Overhead of WOM Codes. To first estimate the overhead
incurred due to the use of WOM codes, we compared the
throughput of public data operations (running in public-only
mode) in PEARL with a DFTL baseline. Note that in public-
only mode, PEARL does not perform any hidden opertions
and the overhead observed is primarily due to the write-
amplification resulting from the use of WOM code for encod-
ing public data. Also, note that DFTL does not employ WOM
codes and therefore does not have any write amplification.

For benchmarks, we used synthetic workloads to test
throughout of the system under conditions of heavy load.
Specifically, we ran multiple synthetic workloads where large
numbers of requests are submitted to the device at the same
time (the request interval arrival time is 0). Specifically,
100000 read or write requests are submitted for either public
or hidden data, and each of them requests for a data chunk of
16KB. Similarly, the response time is recorded for each re-
quest and we calculate the number of request satisfied during
each second (IOPS).

The DFTL baseline features a read throughput of around
8.5∗104 IOPS and write throughput around 2.5∗104 IOPS.

1124 30th USENIX Security Symposium USENIX Association

Financial 1 Financial 2 Web Search
0

500

1,000

1,500

2,000

2,500

Benchmarks

T
hr

ou
gh

pu
t(

IO
PS

)

DFTL (Baseline) PEARL Public PEARL Hidden

Figure 10: The average response time for three real-world traces
with different FTLs (lower is better).

In contrast, PEARL public data throughput is around 5∗104

IOPS for reads and 1.3∗104 IOPS for writes In other words,
PEARL public data throughput is around 60% of the baseline.

The performance penalty for public data operations is pri-
marily due to the data amplification resulting from the WOM
code: 5 physical bits are used to represent only 3 bits of public
data. Meanwhile, additional page reads required during the
2nd write also reduces the write throughput of public data.
Overhead for Hidden Data Operations. Write amplifica-
tion due to WOM codes also significantly affects the through-
put for hidden data operations since 5 physical bits are re-
quired for 1 hidden bit. As a result, the hidden throughput
(when PEARL runs in public+hidden mode) is 1.7∗104 IOPS
for reads and 2.4∗103 IOPS for writes, which is 10% – 20%
of the baseline. Besides, additional page reads and writes are
required for public data that is written together with hidden
data and plausibly explains the changes to the device. This
further explains the low hidden write throughput.

10.2 Application Benchmarks

Workload
Avg. Req. Read Seq Avg. Req. Inter-
Size (KB) (%) (%) arrival Time (ms)

Financial 1 3.47 23.2 2.0 8.19
Financial2 2.45 82.3 2.0 11.08

Web Search1 15.51 99.9 14.0 2.98

Table 5: Enterprise-scale workload characteristics.

Workloads. To evaluate how PEARL performs for real world
applications, we used three popular enterprise-scale workload
traces (Table 5). This includes two different I/O traces (Fi-
nancial1 and Financial2) for an OLTP application running
at a financial institution [29], and an I/O trace from a pop-
ular search engine (Web Search1) [30]. These traces were
particularly selected since (i) their address spaces fit within
the capacity of the SSD being simulated, and (ii) they include
enough writes to invoke garbage collections.

Moreover, these traces provide different characteristics

which capture numerous real-world usage scenarios. For ex-
ample, Financial1 is write-dominant while Financial2 and
Web Search1 are read-dominant. Further, Web Search1 has
more sequential accesses compared to Financial2. Financial1
and Financial2 also have smaller request sizes while Web
Search1 requests more data per request on average. The over-
all parameters for the traces are summarized in Table 5.
Results. Figure 9 illustrates average response times for each
workload. The y axis is in log scale and the actual values
are provided on top of each column for further clarification.
Generally, I/O requests for hidden data consume more time
as compared to public data. Comparing with the baseline
(DFTL), the overhead for accessing public data ranges from
6% to 13%, while the overhead for accessing hidden data in
each workload varies between 13% to 244%. The higher over-
head for hidden data access is expected since the amplification
of data size for hidden data is 3x the amplification of public
data. Thus, a hidden data operation requires more physical
page accesses compared to a public operation requesting the
same data size.

Further, the average response time increases with increas-
ing percentage of writes in a particular trace. This is more
obvious in the case of hidden data accesses. Specifically, for
Web Search1, the reported average response time is compa-
rable to the baseline, since more than 99% of the requests
are read requests. On the contrary, the average response time
when running Financial1 trace is 2-3x higher than the baseline
for hidden data, since most of the requests are writes.

Specifically, we can conclude that hidden write requests
bring much higher overhead than public write requests. This
can be explained with the following reasons. For public data
accesses, the overhead for write operations is incurred pri-
marily when the data is written to a 2nd write page. In this
case, the old data in the page needs to be read first. A similar
overhead is incurred during hidden writes – the public data
that will be stored along with the hidden data needs to be read
first. However, as hidden data has a larger amplification due to
the WOM code compared to public data, the hidden data may
be spread across more pages. And each page of hidden data
requires a page of public data to be read. As a result, hidden
data writes usually require more page operations than public
data writes. In addition, a hidden write also requires updating
the map entry for the corresponding public data. This may
result in additional page accesses. Thus, overall, the over-
heads for hidden writes are much higher than the overheads
for public writes. Interestingly, the above results indicate that
the additional page operations are the main contributors to
performance overhead rather than the data encoding.

11 Conclusion

PEARL is the first system that achieves strong plausible deni-
ability for NAND flash devices, secure against realistic multi-
snapshot adversaries. PEARL employs a new data encod-

USENIX Association 30th USENIX Security Symposium 1125

ing scheme using specially designed WOM codes – the first
scheme that allows hidden data to surreptitiously coexist in
the same physical page as public data. By enabling plausible
explanations for all state transitions base on public opera-
tions only, PEARL ensures that an on-event multi-snapshot
adversary cannot detect the existence of hidden data. PEARL
performance is practical and real-world workloads perform
comparably with the case of running on a standard device
without plausible deniability assurances.

12 Acknowledgements

We thank our shepherd, Kevin Butler and the anonymous
Usenix Security Symposium reviewers for their excellent sug-
gestions and feedback.

References
[1] TrueCrypt. "http://truecrypt.sourceforge.net/".
[2] Ubifs - ubi file-system, 2015. "http://www.linux-mtd.infradead.org/

doc/ubifs.html".
[3] Ross Anderson, Roger Needham, and Adi Shamir. The steganographic file sys-

tem. In Information Hiding, pages 73–82. Springer, 1998.
[4] Amit Berman and Yitzhak Birk. Retired-page utilization in write-once memory

— a coding perspective. IEEE ISIT, 2013.
[5] Erik-Oliver Blass, Travis Mayberry, Guevara Noubir, and Kaan Onarlioglu. To-

ward robust hidden volumes using write-only oblivious ram. In ACM CCS, 2014.
[6] Reporters Without Borders. Internet enemies, 12 March 2012. "http://goo.

gl/x6zZ1.".
[7] Anrin Chakraborti, Chen Chen, and Radu Sion. Datalair: Efficient block storage

with plausible deniability against multi-snapshot adversaries. Proceedings on
Privacy Enhancing Technologies, 2017(3):179–197, 2017.

[8] Bing Chang, Fengwei Zhang, Bo Chen, Yingjiu Li, Wen-Tao Zhu, Yangguang
Tian, Zhan Wang, and Albert Ching. Mobiceal: Towards secure and practi-
cal plausibly deniable encryption on mobile devices. In 2018 48th Annual
IEEE/IFIP International Conference on Dependable Systems and Networks
(DSN), pages 454–465. IEEE, 2018.

[9] Chen Chen, Anrin Chakraborti, and Radu Sion. Pd-dm: An efficient locality-
preserving block device mapper with plausible deniability. Proceedings on Pri-
vacy Enhancing Technologies, 2019(1), 2019.

[10] A Fiat and A Shamir. Generalized “write-once” memories. IEEE Transactions
on Information Theory, 30(3):470–480, 1984.

[11] Fang-Wei Fu and AJ Han Vinck. On the capacity of generalized write-once
memory with state transitions described by an arbitrary directed acyclic graph.
IEEE Transactions on Information Theory, 45(1):308–313, 1999.

[12] Paolo Gasti, Giuseppe Ateniese, and Marina Blanton. Deniable cloud storage:
sharing files via public-key deniability. In Proceedings of the 9th annual ACM
workshop on Privacy in the electronic society, pages 31–42, 2010.

[13] Bruce Worthington Greg Ganger and Yale Patt. The disksim simulation environ-
ment (v4.0), 2008. "http://www.pdl.cmu.edu/DiskSim/index.shtml".

[14] Laura M Grupp, Adrian M Caulfield, Joel Coburn, Steven Swanson, Eitan
Yaakobi, Paul H Siegel, and Jack K Wolf. Characterizing flash memory: anoma-
lies, observations, and applications. In Microarchitecture, 2009. MICRO-42.
42nd Annual IEEE/ACM International Symposium on, pages 24–33. IEEE, 2009.

[15] The Guardian. Blackmail fear over lost raf data. 2008.
[16] Aayush Gupta, Youngjae Kim, and Bhuvan Urgaonkar. DFTL: a flash trans-

lation layer employing demand-based selective caching of page-level address
mappings, volume 44. ACM, 2009.

[17] Jin Han, Meng Pan, Debin Gao, and HweeHwa Pang. A multi-user stegano-
graphic file system on untrusted shared storage. In Proceedings of the 26th An-
nual Computer Security Applications Conference, pages 317–326. ACM, 2010.

[18] Yang Hu, Hong Jiang, Dan Feng, Lei Tian, Hao Luo, and Shuping Zhang. Per-
formance impact and interplay of ssd parallelism through advanced commands,
allocation strategy and data granularity. In Proceedings of the international con-
ference on Supercomputing, pages 96–107, 2011.

[19] H Howie Huang, Shan Li, Alex Szalay, and Andreas Terzis. Performance model-
ing and analysis of flash-based storage devices. In 2011 IEEE 27th Symposium
on Mass Storage Systems and Technologies (MSST), pages 1–11. IEEE, 2011.

[20] R. P. Weinmann J. Assange and S. Dreyfus. Rubberhose:cryptographically deni-
able transparent disk encryption system. "http://marutukku.org".

[21] Adam N Jacobvitz, R Calderbank, and Daniel J Sorin. Writing cosets of a convo-
lutional code to increase the lifetime of flash memory. In 2012 50th Annual Aller-
ton Conference on Communication, Control, and Computing (Allerton), 2012.

[22] Ashish Jagmohan, Michele Franceschini, and Luis Lastras. Write amplification
reduction in nand flash through multi-write coding. In 2010 IEEE 26th Sympo-
sium on Mass Storage Systems and Technologies (MSST). IEEE, 2010.

[23] Jaeyong Jeong, Sangwook Shane Hahn, Sungjin Lee, and Jihong Kim. Lifetime
improvement of nand flash-based storage systems using dynamic program and
erase scaling. In USENIX FAST, 2014.

[24] Shijie Jia, Luning Xia, Bo Chen, and Peng Liu. Deftl: Implementing plausibly
deniable encryption in flash translation layer. In ACM CCS 2017, 2017.

[25] Xavier Jimenez, David Novo, and Paolo Ienne. Wear unleveling: Improving
NAND flash lifetime by balancing page endurance. In USENIX FAST, 2014.

[26] Xavier Jimenez, David Novo, and Paolo Ienne. Libra: Software-controlled cell
bit-density to balance wear in nand flash. ACM Trans. Embed. Comput. Syst.,
14(2), February 2015.

[27] B. Kaliski. Pkcs 5: Password-based cryptography specification version 2.0, 2000.
"https://tools.ietf.org/html/rfc2898".

[28] Ramakrishna Karedla, J Spencer Love, and Bradley G Wherry. Caching strate-
gies to improve disk system performance. Computer, 27(3):38–46, 1994.

[29] Bruce McNutt Ken Bates. Umasstracerepository-oltp application i/o. "http:
//traces.cs.umass.edu/index.php/Storage/Storage".

[30] Bruce McNutt Ken Bates. Umasstracerepository-search engine i/o. "http://
traces.cs.umass.edu/index.php/Storage/Storage".

[31] Gabriela Kennedy. Encryption policies: Codemakers, codebreakers and rulemak-
ers: Dilemmas in current encryption policies. Computer Law & Security Review,
2000.

[32] Youngjae Kim, Brendan Tauras, Aayush Gupta, and Bhuvan Urgaonkar. Flash-
sim: A simulator for nand flash-based solid-state drives. In 2009 First Interna-
tional Conference on Advances in System Simulation. IEEE, 2009.

[33] Kingston. Nearly half of organizations have lost sensitive or confidential infor-
mation on usb drives in just the past two years. 2011.

[34] Changman Lee, Dongho Sim, Jooyoung Hwang, and Sangyeun Cho. F2fs: A
new file system for flash storage. In USENIX FAST, 2015.

[35] Chun-Yi Liu, Jagadish B. Kotra, Myoungsoo Jung, Mahmut T. Kandemir, and
Chita R. Das. Soml read: Rethinking the read operation granularity of 3d nand
ssds. In ASPLOS, 2019.

[36] Andrew D McDonald and Markus G Kuhn. Stegfs: A steganographic file system
for linux. In Information Hiding, pages 463–477. Springer, 1999.

[37] J. Mull. How a syrian refugee risked his life to bear witness to atrocities, 2012.
"shorturl.at/yHJL1".

[38] BBC News. Uk’s families put on fraud alert. 2007.
[39] BBC News. Blackmail fear over lost raf data. 2009.
[40] HweeHwa Pang, Kian-Lee Tan, and Xuan Zhou. Stegfs: A steganographic file

system. In Data Engineering, 2003. IEEE, 2003.
[41] Timothy Peters, Mark Gondree, and Zachary N. J. Peterson. DEFY: A deniable,

encrypted file system for log-structured storage. In NDSS 2015, 2015.
[42] Denver Post. Password case reframes fifth amendment rights in context of digital

world. "http://www.denverpost.com/news/ci_19669803".
[43] The Register. Youth jailed for not handing over encryption password. 2010.
[44] Ronald L Rivest and Adi Shamir. How to reuse a “write-once memory”. Infor-

mation and control, 55(1-3):1–19, 1982.
[45] Adam Skillen and Mohammad Mannan. On implementing deniable storage en-

cryption for mobile devices. 2013.
[46] AGYKB Urgaonkar. Dftl: A flash translation layer employing demand-based

selective caching of page-level address mappings. 2008.
[47] WhisperSystems. Github: Whispersystems/whisperyaffs: Wiki, 2012. "https:

//github.com/WhisperSystems/WhisperYAFFS/wiki".
[48] Wikipedia. Key disclosure law. "http://en.wikipedia.org/wiki/Key_

disclosure_law".
[49] Zhiyong Xu, Ruixuan Li, and Cheng-Zhong Xu. Cast: A page-level ftl with

compact address mapping and parallel data blocks. In IPCCC. IEEE, 2012.
[50] Eitan Yaakobi, Scott Kayser, Paul H Siegel, Alexander Vardy, and Jack Keil

Wolf. Codes for write-once memories. IEEE Transactions on Information The-
ory, 58(9):5985–5999, 2012.

[51] Gala Yadgar, Eitan Yaakobi, and Assaf Schuster. Write once, get 50% free: Sav-
ing SSD erase costs using WOM codes. In USENIX FAST, 2015.

[52] Jian Zhou, Dezhi Han, Jun Wang, Xiaobo Zhou, and Changjun Jiang. A
correlation-aware page-level ftl to exploit semantic links in workloads. IEEE
Transactions on Parallel and Distributed Systems, 30(4):723–737, 2018.

1126 30th USENIX Security Symposium USENIX Association

"http://truecrypt.sourceforge.net/"
"http://www.linux-mtd.infradead.org/doc/ubifs.html"
"http://www.linux-mtd.infradead.org/doc/ubifs.html"
"http://goo.gl/x6zZ1."
"http://goo.gl/x6zZ1."
"http://www.pdl.cmu.edu/DiskSim/index.shtml"
"http://marutukku.org"
"https://tools.ietf.org/html/rfc2898"
"http://traces.cs.umass.edu/index.php/Storage/Storage"
"http://traces.cs.umass.edu/index.php/Storage/Storage"
"http://traces.cs.umass.edu/index.php/Storage/Storage"
"http://traces.cs.umass.edu/index.php/Storage/Storage"
"shorturl.at/yHJL1"
"http://www.denverpost.com/news/ci_19669803"
"https://github.com/WhisperSystems/WhisperYAFFS/wiki"
"https://github.com/WhisperSystems/WhisperYAFFS/wiki"
"http://en.wikipedia.org/wiki/Key_disclosure_law"
"http://en.wikipedia.org/wiki/Key_disclosure_law"

	Introduction
	Related Work
	NAND Flash
	Flash Translation Layer (FTL)
	Demand-based FTL (DFTL)

	Model
	Hiding Data Using WOM Codes
	Overview
	Write-Once Memory Code
	WOM code supporting a 1st partition
	Hidden data encoding scheme
	WOM coding & PD

	Security Requirements for PEARL
	PEARL Design
	Address Translation
	Page Allocation and Garbage Collection
	I/O Operations

	Security Analysis
	Practical Concerns
	Evaluation
	Implementation & Micro-Benchmarks
	Application Benchmarks

	Conclusion
	Acknowledgements

