
32    F EB RUA RY 20 1 5  VO L . 4 0, N O. 1 	 www.usenix.org

SYSADMINCapacity Planning
D A V I D H I X S O N A N D K A V I T A G U L I A N I

Capacity planning can be a torturous exercise in spreadsheets and
meetings that drains the life out of junior engineers, provides little
value to the company, leads to ongoing recriminations for everyone

involved, and results in little planning or capacity.

Alternatively, it can be used to hone the understanding of the core services being offered,
to work across the company to understand risks, and to make thoughtful choices for the
business.

Let’s focus on this second approach and talk about how three different parts of the company
can play an active role in capacity planning. The more the players understand their part in
the greater scheme, the better they can communicate and make tradeoffs that benefit the
company.

Figure 1 represents three different perspectives. They may all be the same person thinking
about the problem differently or they might be three vast organizations that rarely manage
to get people into the same room. Even within a company, some products might need to be
evaluated at different levels based upon their potential impact. The thought process is much
more important than the job title associated with it.

What Is Capacity?
Before we get too far, let us define what capacity is. Very simply, capacity consists of the
resources required to run your service or services in the context you have chosen to run
them. The very core of this may be subject to debate or change, but the key things to predict
are the resources you are constrained by. Depending on your scale or architecture, this could
be gigs of RAM on a machine in your bedroom, cloud VMs, physical computers at your colo,
bandwidth on a CDN, or megawatts of power.

As you increase in scale and complexity, you probably start to experience pressure in several
dimensions, perhaps network capacity as well as storage or compute. And you may have
different scaling limitations based upon your choices, either in terms of flexibility or timing
around growth.

Engineering
Traditionally, the engineering organization would own the technical complexity and have
the best understanding of how the system works right now, what choices were made to get
here, and what things might be done in the future.

Depending on the organization, this might require cooperation across different teams, but
the starting premise is that someone knows how things work and the resources required for
the system to function today. This is far from trivial, but definitely a starting point when
planning for the future.

Bottom-Up Capacity
The first step is to map out current system capacity. What resources does it use in order to
get the work done? Identify all the large parts of the system: things that are material to your
capacity-planning needs. Materiality will depend upon your organization, but there is a huge

David Hixson is a technical
project manager in Site
Reliability Engineering at
Google, where he has been for
eight years. He currently spends

his time predicting how social products at
Google will grow and trying to make the reality
better than the plan. He previously worked
as a system administrator on high availability
systems and has an MBA from Arizona State.
https://plus.google.com/+DavidHixson,
dhixson@google.com

Kavita Guliani is a technical
writer for Technical
Infrastructure and Site
Reliability Engineering at
Google, Mountain View.

Before working at Google, Kavita worked for
companies like Symantec, Cisco, and Lam
Research Corporation. She holds a degree
in English from Delhi University and studied
technical writing at San Jose State University.
kguliani@google.com

www.usenix.org	   F EB RUA RY 20 1 5  VO L . 4 0, N O. 1  33

SYSADMIN
Capacity Planning

value in simplicity, so if you can reduce the number of things you
need to worry about, it will make everyone’s life easier.

So, here we assume that you know how much you are using today
in the resource dimensions that make sense for your service.

PRIMARY DRIVERS
The next step is to figure out why you are using the resources
you are using today and what would make those numbers
change. Metrics like “gigs of data uploaded by users today”
are likely to impact your storage and bandwidth directly. Web
queries per second (QPS) are likely to impact compute and,
possibly, networking. Finding the fewest number of drivers
(QPS, gigs uploaded, etc.) that capture the vast majority of the
demand on your system is a challenge that should be reasonably
thought-provoking.

If you have different types of queries or page views, you may
want to look at a “costed” metric as a way to normalize the work
and make it easier to understand. For example, a database read
may be extremely cheap, but a write may be very costly in terms
of CPU consumed and disk I/O required. So if you measure your
database just in terms of QPS, you may make poor assumptions
about scalability. If you can assign different “costs” to different
actions, you can normalize them and make them better predic-
tors of your ability to scale. Ideally, this is automated and con-
stantly recalculated. However, even a gross estimate is useful.
You may also realize that something like “bandwidth” is a better
estimator than QPS and want to use that instead. Understand-
ing these “costed” metrics can provide value in explaining the
system as well as predicting future usage.

Popular metrics for product reporting include 30-day active or
seven-day active users, which almost definitely do not determine
the resources required to support your product. Similarly, you
need to aggregate the data finely enough to be able to provision
your system for peaks in demand. A queries-per-day metric is
unlikely to be helpful here. Instead, you want QPS over a short

interval (~minutes, hopefully) so that you can identify the peaks
and be prepared to survive them.

Once you uncover the likely drivers for growth within the sys-
tem, start collecting data. You will need to understand how these
change over time as well as how the system load changes. The
combination of these is the key to your bottom-up plan.

THEORETICAL MINIMUM CAPACITY
Finding correlations (and, hopefully, causality) between your
identified growth metrics and observed capacity is a bit of a holy
grail. For a complex system, it can be surprisingly difficult to get
the two of them to line up nicely. You may never get perfection,
but a thought model around “theoretical minimum blow-up” is a
good way to start looking at it, and it has a nice side effect that we
will get to in a minute. The “blow-up” that we are looking for is
the inflation of either data or work that is inherent in the design.

Step back from your measurements and drivers and think about
what your system is really trying to accomplish. The simplest
example might be backing up bytes for users. If a user gives you a
byte of data and you promise to give it back upon request, you’ve
got a really clear understanding of the product. At no point will
you need to store less than that byte (probably).

So how many bytes of disk do you use to store that byte?

1 for the original byte * 1.2 for RAID5 * 1.3 for “overhead” (file
system, metadata, caching, backups, operational slack), then
* 2 the whole mess for our second site. So we used a total of 3.12
bytes to store the byte that user gave us.

The same kind of thing can be done for the CPU required to
update your database. How many replicas, stored procedures,
and other things have to happen? You almost invariably do a lot
of work many times over in order to make a write. Reads prob-
ably have a different set of factors.

With this kind of model in mind, you can go down two very inter-
esting paths:

◆◆ You might tie together your capacity drivers and observed
growth in a more natural way. Using the disk example, it might
be better to explain why you grow disk capacity 3x as fast as
users are uploading bytes.

◆◆ You could identify a bunch of questions around how you
engineered your product. If you now seek to drive all of your
multiples to 1, you will go out of business shortly because it
isn’t about optimizing without thinking. Instead, you need to
evaluate each of them and see whether they are doing what you
intend. Is that 6-disk RAID configuration the one you wanted
for availability? Do you need that second site, or should you
have more than two? Should you be doubling your investment
in caching, or is it no longer providing the value you expected?

Figure 1: Three forces that impact capacity planning

34    F EB RUA RY 20 1 5  VO L . 4 0, N O. 1 	 www.usenix.org

SYSADMIN
Capacity Planning

You can also use this blow-up model to look at the engineering
changes that you have planned for the future, and account for
them more clearly. A wise engineer will also check in regularly
to make sure that these blow-up factors and assumptions remain
accurate. It may help you spot when your system is drifting away
from how it was intended to operate.

Although it is possible to make this kind of model as complicated
as you have time to work on it, the key thing is to pull out the
large drivers of relevant capacity and to highlight the engineer-
ing tradeoffs. You get the largest benefit if you ignore all the little
things, letting everyone involved focus their attention on the
choices that matter.

PAST PREDICTS FUTURE
The best starting point for predicting the future is observing the
past. It is far from perfect, but the alternatives all involve signifi-
cantly more made-up numbers.

Using the theoretical minimum blow-up factors, extract out your
historical growth, then project it into the future. Is it a curve, is
it a line, is it some complicated pattern too deep for the human
mind to comprehend? Maybe. But in the vast majority of cases,
you can assume that it is a line that extends out since the last
time you made a significant product change.

Growth is frequently broken into two categories: organic growth
and inorganic growth.

Organic growth comes from the natural adoption and usage of
your product by customers. It may change over time, but it should
change comparatively gradually and not as a step function.
Examples of organic growth in an image-serving system might
include uploading more photos, resulting in more bytes that need
to be stored, and having more people view the photos resulting in
more network load and larger serving capacity.

Inorganic growth refers to those step changes, likely the result
of a feature launch, a marketing campaign, or business-driven
change to how your product is being used (e.g., acquired another
company and redirected traffic, bundled with another product,
changed pricing, etc.)

Then you can layer on expectations about future inorganic
changes. Perhaps it is the next advertising campaign or an
upcoming change in the business strategy, or just a change of
the background color for your app to a really soothing shade of
teal. Estimate the impact and layer that into your plans, but keep
them itemized because that gives you room to learn as you repeat
the process and a place to begin discussions with the product
and finance representatives. You should also consider how
quickly you start to treat past launches as part of the organic
line. As you start to observe the actual behavior, you will have a
more accurate understanding of the impact on your service than
before you made the change.

Assumptions
The final responsibility of engineering in the capacity-planning
process is to highlight the design assumptions and any risks
that are being taken with the product. It is very difficult to ship a
product. It is even more difficult to get it out the door if you don’t
have any fundamental assumptions about how it will be used.

Did you build in caching at any level? Does it assume that traf-
fic will be distributed in a certain way? Does the system break
down if your assumptions become incorrect? Can you survive
with 90% of your traffic going to a single Web page? What if it is
evenly distributed over your entire corpus?

Did you assume a readers-to-writers ratio for your system? What
if it suddenly flips and all of your traffic surges towards the more
expensive of the two?

Did you assume that load would be distributed evenly over the
day? What if you get a traffic spike from a media event or suc-
cessful advertising?

One great thing about these assumptions is that clearly stating
answers to them provides a warning for your product managers.
However, if we take actions to invalidate these assumptions,
we first need to do the engineering to survive it or consciously
accept the risk it entails.

Risks
Through this analysis, we have identified a couple areas of
risk that should be mitigated or accepted as part of the plan-
ning process. Any risk that is mitigated by capacity planning
is an explicit tradeoff against money (or alternate uses for the
resources aka opportunity cost). So the goal should never be to
eliminate or even reduce risk. The goal should be to drive the
system to the appropriate level of risk for the lowest cost.Figure 2: Examples of organic and inorganic growth over time

www.usenix.org	   F EB RUA RY 20 1 5  VO L . 4 0, N O. 1  35

SYSADMIN
Capacity Planning

Each of the theoretical minimum blow-up factors makes for a
good place to start itemizing the places where you are spending
money to avoid risk. What does that second datacenter buy you?
How about your disk configuration or even the vendor for your
hardware or cloud service? What problem are you avoiding, and
how much are you avoiding it by? These problems and costs will
be extremely specific to the service and might involve reliability,
durability, performance, or even developer velocity. Or they could
easily include all of them.

The other area of risk mitigation is around future growth: the
thing that we are traditionally trying to estimate in capacity
planning. You should plan at least as far ahead as the order time
for your resources. This could be five years if you erect your own
buildings, or 10 minutes if you run a small service in a cloud
and have good automation and a credit card on file. Within that
horizon, you must understand the risk of spending too much
money, or of running out of capacity to handle your growth. That
tolerance should define how aggressively you provision your
service for growth.

PLAN B
Where would you be without a solid backup plan? Living in fear
of a “success disaster” and failing to get a good night’s sleep. Suc-
cess disaster can occur when your product becomes so popular
that the number of users who show up overwhelms your ability
to actually provide the service they seek. It is great to be wanted,
but this can squander your one opportunity to make a good
impression.

As part of this process, always take time to understand what
would happen when your demand for capacity exceeds what is
available. What if the service fails and there is no way to save
it? You might want to highlight that clearly in the process. On
the other hand, if you can come up with some ideas for either
graceful failure modes or improvements to efficiency and esti-
mate the time required to implement them, then you can sleep
more soundly. You just need to be able to build and deploy those
solutions quickly enough to help. I’d suggest setting some alert
thresholds to signal when you really should start to panic.

Product
The job of the product managers in the capacity-planning pro-
cess is simple: Create a product that users love so much that it
completely obliterates the planning and, after a brief period of
panic, brings tears of joy to the finance team and the rest of the
company. No pressure.

But that isn’t the part of the job we are focusing on right now.
This is about communication of the practical costs and risks that
the engineers either have built or plan to build into the product,
the needs of the users, and making sure those are aligned.

Alignment with Engineering
PROVIDE INFORMATION TO ENGINEERING
Start with the information you can provide to engineering. The
big items are growth estimates, user behavior changes, and real
product requirements. Attempt to understand how users will use
the service in the future, with as much lead time as your capac-
ity planning requires and in the growth dimensions used by
the engineering model. These estimates will form the basis for
future growth if you want to predict anything more complicated
than an extrapolation from the past. You can pull the numbers
out of thin air or dive deeply into the metrics of similar products,
or survey your customers—whatever will provide you with num-
bers you can confidently use to drive planning far enough into
the future that it makes a difference.

Second, you should help identify changes in user behavior,
particularly when they conflict with any assumptions that have
been made in the product design. Did you plan on building a sys-
tem for sharing photos publicly, but people are using it to back up
their receipts and keeping everything private? If so, you probably
want to rethink that caching strategy. These kinds of changes
can be critical to the success of your product but also need to be
accounted for in the planning.

Third, product requirements should come from someone rep-
resenting the customer. Is availability critical? Two nines or
five? How fast does the system need to be? And if your answer is
“all the nines” and “instant,” then you probably need to rethink
how you see the product. The goal should be to identify at least
a minimum level of quality (i.e., the minimum level before it
slows adoption), or better yet, a range of requirements that can
be tied to how customers will feel about the product. For many
products, it is possible to run experiments, making changes to
the performance of the system, and observing the behavior of
users in order to get firm numbers around what the real require-
ments are. For example, you can increase latency artificially or
decrease it by moving the user to a less loaded copy of your infra-
structure and measure differences in how they use the product.

An example would be latency requirements and establishing
their impact on customers. We should understand how users
perceive our service based on different levels of responsiveness.
This might let us learn that anything faster than 250 ms is indis-
tinguishable to the user and that anything slower than 750 ms
conveys a sense of low product quality. This would let us target
between 250 and 750 ms as an ideal range for our planning.

You can use this kind of information to drive engineering and
finance decisions, potentially making your product much less
expensive to operate or much easier to develop and deploy. The
earlier you can create and refine these numbers and feed them
into the design process, the more potential you have to build the
product you need at the lowest cost.

36    F EB RUA RY 20 1 5  VO L . 4 0, N O. 1 	 www.usenix.org

SYSADMIN
Capacity Planning

RECEIVE INFORMATION FROM ENGINEERING
The engineering assumptions about the product should provide
extremely valuable information about how it is being designed
and deployed. In a negative sense, it should highlight the parts
of the product that are either expensive or particularly risky if
the consumer behavior changes dramatically. So it is important
to keep these in mind either while marketing or while designing
upcoming features because these are likely to increase the risk
in the system.

On a more positive note, you may discover functionality that is
particularly inexpensive or trivial to implement in the product,
and this may help you come up with features for the future. Or
you might gain a better understanding of how your competitors
may have designed their infrastructure, letting you focus on
features that will be difficult for them to quickly emulate.

Finance
“Finance” is shorthand for people responsible for keeping the
business funded and growing. At the end of the day, this is every-
one’s responsibility, but most companies have people that focus
on these types of things to the exclusion of developing new prod-
ucts or talking with users. Most importantly, this is the role that
looks across the entire company and not just your product.

Asking Hard Questions
So the defining characteristic of Finance is actually that of
scope, and with that comes the ability to make tradeoffs across
multiple products and across time.

Working through these questions in a small well-funded com-
pany with a single product is a difficult task. As the size and
complexity of the products offered by the company increase,
doing holistic capacity planning becomes increasingly difficult.
The goal should be to gain the advantages of scale and risk pool-
ing to offset this increased challenge.

TIMELINES
Start by filling out a small table (Table 1). We can assume that
we have a good resource model in place and this has been done
before, but invite the engineering and product people to help
generate these numbers.

Sum up those dates, and if any part of this can only be done at
specific times of the month, quarter, or year, add that in as well.
Specifically, if your organization has budgets that are only flex-
ible at quarterly or annual boundaries, it leads to a substantial
increase in your lead time. This lead time is critical for anyone
doing capacity-planning to be familiar with.

One of the most valuable things that a company can do to drive
down capacity-planning risk and cost is to shorten that cycle.
So over time, each step should be evaluated to see whether it
provides value to offset the cost of the additional delay.

CONFIDENCE AND PRECISION
For each growth estimate that you receive from each product,
you need to understand more than just the bottom-line number
around the resources required. The first thing to do is ignore the
precision. Precise numbers are easy to generate since they just
require the multiplication of two or three made-up numbers and
very little rounding, but they trick almost everyone into thinking
that they are “better” than a person who just writes down a 10
and moves on with their life.

Dig deeper. Check out the confidence associated with both the
capacity model as well as the growth predictions that went into
turning that model into a future-growth forecast. Check out the
sensitivity that those estimates have to their time horizon and
how far into the future people are being asked to forecast. There
is a very natural tendency to overstate the potential upside of
a launch. The people involved are likely very excited about the
changes, and that may make it difficult for them to remain objec-
tive. Challenge these assumptions and make sure they aren’t
unnecessarily keeping you from spending resources seeking out
other opportunities.

Finally, look across the products and see whether they appear to
be correlated with each other in terms of growth and cost. You
may be able to collapse the “upside” of several products together
and plan on having only some of them succeed. This is a very
specific way to trade increased risk for the organization against
lowered cost. It assumes that the resources you are under-plan-
ning are fungible across products and that someone is in a posi-
tion to resolve conflicts if your demand outstrips your resources
because of this choice.

Alternatively, there may be two forms of synergy that make this
particularly dangerous. The first is technical coupling, where
the success of one product forces work on the other products,
so they aren’t actually independent. The second is that if one
product is successful and is able to pull along the other products

Lead Time Topic Description

Generate planning
numbers

Create the numbers that
drive the process

Estimate resources
Turn growth estimates
into specific resource
requests

Request resources Ask for budget and
equipment

Approve resources Complete budget and
ordering process

Provision resources Deliver and set up

Ready to serve Provide service to users

Table 1: Timeline for resource delivery

www.usenix.org	   F EB RUA RY 20 1 5  VO L . 4 0, N O. 1  37

SYSADMIN
Capacity Planning

indirectly, then growth may be correlated, again increasing the
risk of a bundled approach to planning. Brand recognition, news
coverage, cross-promotion between products, or any other ideas
you have can tie together the growth rates of various products. In
cases where you desire more traffic, these are great problems to
have, but you must consider the potential in your planning.

PORTFOLIO RISK MANAGEMENT
The risks of each product and their growth scenarios must be
understood in the context of the larger portfolio of the company.
These risks come in two general forms: the specific product risks
and the organizational risks.

The specific product risks should largely be as explained by the
engineers. What happens if growth exceeds the capacity that is
planned for the service? Do we have legal liabilities or customer
dissatisfaction that will be particularly harmful to the company?
Options may be available to mitigate these risks if it is not pos-
sible to provide the required resources, but they should be fairly
explicit.

The second class is more difficult. Identify the risks that cross
product boundaries and that may be less obvious to the specific
product teams. If you have a company with multiple products
that have dependencies on each other, this is where you need to
look for those and highlight them specifically. Make sure that
failure (or success) of one product doesn’t do anything surprising
and harmful to other products. This is when help from leaders
within engineering will be very helpful to identify linkages and
make them explicit. It may provide a sort of transitive priority or
mutual dependencies between different products that need to be
evaluated.

SUPPLY CHAIN AND LOGISTICS
Very specific to the table at the beginning of this section, it is
important to understand what can be done to drive down the
time required to go from having the desire to fund a product
to having the ability to make that product functional with the
resources in hand. With a cloud-provisioning model and a small-
scale relative to your cloud provider, this may be trivial. But as
your resource requirements increase in size or complexity, this
may be about shaving months or even years off the system.

The rule of thumb here should be that if you know what you
are going to do in the future, you probably shouldn’t get
hung up on the paperwork. This is much more difficult than
it sounds and will likely present a challenge for any company
that tries to implement it, but the goal is simple: shrink the time
horizon between taking estimates and providing capacity. If the
resources used by different products are fungible, you can pool
them and manage their provisioning much more quickly than
their full lead time.

Alternatively, if you spend the money before the customer arrives
and you have reasonable fungibility between resources, you may
be able to greatly reduce the time from request to provision-
ing, by ordering the resources in advance and scheduling the
capacity plans to arrive in time for provisioning rather than for
ordering the resources. An example of this would be building out
datacenter space based on past growth trends for the company,
but not deciding which product you would fund until right before
the machines landed.

Fungibility is obviously very helpful: letting tradeoffs be delayed
until the last moment, having resources shifted as necessary
between different products, or keeping pooled resources avail-
able to manage risks on short notice.

RELIABILITY AND OTHER METRICS
The final valuable questions center around the metrics that each
product is attempting to achieve. Understanding what these
mean and the choices made by engineering to achieve them, as
well as the value provided to the customer, is critical to providing
the “best” experience possible at the lowest cost.

Reliability is the easiest example, since it is fairly straightfor-
ward to buy reliability with increasingly large piles of money as
you request more “nines” of availability. However, in most cases,
it actually has diminishing returns to your users. Take the time
to dive into this for the big products, find commonalities around
how you are reaching your targets, and look for the things that
cost the most. The cost could be in buying Tier-4 vs. Tier-1
datacenter space, fault-tolerant hardware, licensed software
solutions, or through engineering and operational complexity
that slows down your rate of development. Don’t underestimate
the cost or value of having reliability designed into your software
stack and your operational practices. It may be a much more
effective investment than hardware. Having common solutions
across the company and regular investigations into each of these
choices can provide opportunities to improve products and save
money at the same time.

Prioritization
The most difficult task that will come up at the company level is
that of prioritization. In most organizations, it will almost cer-
tainly be impossible to fund the capacity requested of each prod-
uct at its most optimistic growth rate without any improvements
in efficiency. And over any reasonable period of time, it prob-
ably isn’t a wise investment either. On the other hand, in case of
small companies or startups, the cost of resources is probably
small relative to other expenses. As a result, the limiting factors
around prioritization won’t be around capacity planning but
engineering time or management attention.

What is important is having a full understanding of the risks of
underfunding each product relative to its actual growth. This

38    F EB RUA RY 20 1 5  VO L . 4 0, N O. 1 	 www.usenix.org

SYSADMIN
Capacity Planning

risk is likely an “opportunity cost” in many cases as well as some
more “real” costs in the places where customers are negatively
impacted by the underfunded products. Prioritization, then, is
about making clear choices between products so that they can
operate with certainty, and doing it in a clear and timely man-
ner. Timeliness is particularly critical in systems that have long
cycle times since time spent in analysis is actually costly in
terms of the accuracy of estimates and planning that fed into the
process.

Conclusion
More than just drawing graphs of how services will grow in the
future, capacity planning should ideally be a process that pulls
together different parts of the organization to determine how
resources should be allocated to maximize their benefit to the
company. Out of this will flow improvements in engineering,
product, and process in a virtuous cycle.

Calling All ;login: Readers!

We’re looking for:
* Programmers * Testers
* Researchers * Tech Writers
* Anyone Who Wants to Get Involved

Find out more by:

-- Checking out our Web site:
http://www.freebsd.org/projects/newbies.html

http://www.freebsd.org/where.html

We’re a welcoming community looking for
people like you to help continue developing this
robust operating system. Join us!

FreeBSD is internationally recognized as an innovative leader in
providing a high-performance, secure, and stable operating system.

Not only is FreeBSD easy to install, but it runs a huge number of
applications, offers powerful solutions, and cutting edge features.
The best part? It’s FREE of charge and comes with full source code.

Did you know that working with a mature, open source project is an
excellent way to gain new skills, network with other professionals,
and differentiate yourself in a competitive job market? Don’t miss
this opportunity to work with a diverse and committed community
bringing about a better world powered by FreeBSD.

proudly supported by:

Help Create the Future
Join the FreeBSD Project!

