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Abstract
We present Slitheen++, a decoy routing system that—in con-
trast to its predecessor Slitheen—is not susceptible to traffic
analysis in the upstream channel. Slitheen++ overcomes key
challenges such as scheduling for covert connections and tech-
nologies to more realistically emulate a real user’s behavior,
such as crawling or delaying overt communication. We mea-
sure Slitheen++ according to metrics that not only show the
maximum theoretical throughput of the system, but for the
first time, also assess the actual user experience by measuring
loading times of websites from ten covert targets. We show
that emulating a user increases loading times, yet raises the
difficulty for an advanced censor to expose decoy routing as
such. For example, crawling raises the median of the loading
time for covert setups by 1 second from 7 s to 8 s.

1 Introduction

Censorship-resistant communication systems have been chal-
lenged by the increasing censoring capabilities in recent
years [25]. In a world where slight deviations from uncen-
sored (“overt”) communication lead to effective censorship,
careful designs must not allow censors to distinguish overt
from censorship-evading (“covert”) communication. Decoy
routing is one anti-censorship concept that has recently seen
significant developments [4, 10, 15, 17, 19, 29, 30]. The ba-
sic idea is as simple as it is effective: routers on the path
of an overt communication redirect tagged communication
originally addressed to a non-censored target to a censored
host. Basic decoy routing alters communication patterns and
is thus vulnerable to traffic analysis attacks [7, 9, 14, 27]. Yet,
advanced decoy routing systems nearly perfectly imitate nor-
mal communication patterns by carefully replacing content
of the overt traffic. Slitheen [4] is one such decoy routing
system that provides strong anti-censorship guarantees with
the help of a friendly Internet Service Provider (ISP) that is
situated between the censored client and an uncensored tar-
get. In the original Slitheen design, the authors left open a

few key challenges that we address in this work. Most impor-
tantly, Slitheen communication is not immune against traffic
analysis attacks, as its design changes the client’s upstream
communication patterns. In particular, clients simply append
the covert request data to their overt requests, significantly
changing the upstream traffic and allowing for identification
by a censor—even if traffic is encrypted. As several attacks
on existing steganographic systems [1, 6, 14] have shown,
such traffic analysis constitutes a severe threat in practice.
To address this challenge, we augment Slitheen with an up-
stream component that meets the same security guarantees
that Slitheen’s downstream channel already offers: By us-
ing an Hypertext Transfer Protocol Version 2 (HTTP/2)-like
compression function, we create space gains to place covert
upstream data such that the attacker must not be able to tell
whether Slitheen is in use or not, neither based on timing in-
formation, nor based on observable changes to traffic patterns
(packet sizes, delays, etc.). In this paper, as a result of both
our methodological extensions and our fundamental design
improvements, we present Slitheen++, a significantly updated
Slitheen version that is not susceptible to traffic analysis in
the upstream channel and is free of severe bugs identified
in the original Slitheen implementation. Along with these
additions, a major contribution of our work is an assessment
of Slitheen++ in a realistic context, i.e., testing with actual
covert targets and leveraging conservative overt communica-
tion. All in all, our novel design and the underlying rigorous
experiments help to close the gap between academic decoy
routing proposals and tight demands for anti-censorship sys-
tems in practice [2, 25]. We summarize our contributions as
follows: We provide Slitheen++, a design of a stealthy decoy
routing system that meets the requirements of today’s cen-
sored users by tunneling down- and upstream data covertly
in overt communication. We evaluate it according to metrics
to show the maximum theoretical throughput while we also
measure the actual loading time of covert websites. We intro-
duce browsing delays and crawling as means to mimic normal
user behavior during overt communication, and quantify the
negative consequences of such an overt communication.



2 Related Work

Censorship circumvention methodologies enable clients in-
side a censor’s domain to access otherwise-blocked con-
tent. For example, Tor has been extended to provide pro-
tections against various censorship tactics to block the
Tor infrastructure, such as Tor bridges or traffic obfusca-
tion [20, 28]. Yet censors can detect such first-generation
evasion attempts [8, 14, 18, 31]. Consequently, researchers
designed censorship-resistant communication mechanisms
that are not prone to traffic analysis and do not reveal end-
points involved in censorship evasion. For example, Fifield et
al. presented domain fronting [11]. However, network traf-
fic analysis [7, 9, 14, 27] could reveal that fronting services
do not belong to the provider in the given domain carried
in the Transport Layer Security (TLS) handshake. Further-
more, domain fronting providers could be replaced inside
the censor’s domain by a similar service under the control
of the censor. To tackle this problem, researchers have elim-
inated the requirement of additional connection endpoints
to circumvent a censor. Most prominently, using decoy rout-
ing, a middle-to-end proxy (also known as a decoy router)
is placed outside a censor’s domain on the path to a non-
censored target [4, 10, 15, 19, 29, 30]. Clients establish en-
crypted connections to such a target using a special tagging
mechanism that is only recognizable by the decoy routers, and
enable it to decrypt the traffic addressed to the non-censored
(“overt”) target. The decoy router extracts the censored target
from the messages of the tagged flow and redirects all traf-
fic towards the specified “covert” target. Some of the decoy
routing technologies are vulnerable to various attacks like
Transmission Control Protocol (TCP) replay attacks. Further-
more, advanced traffic analysis capabilities given by a censor
could reveal the usage of decoy routing. Slitheen is a decoy
routing system that aims to avoid detection by advanced traf-
fic analysis [4]. Slitheen uses multiplexing to transport data
to/from a censored target inside the traffic of a non-censored
target. Thereby, the Slitheen authors aim to achieve immu-
nity to a wide range of detection attacks. However, Slitheen
is susceptible to traffic analysis attacks, given that upstream
covert traffic is just appended to overt upstream, which signif-
icantly changes communication patterns. One way to tackle
this problem of traditional decoy routing is downstream-only
decoy routing as proposed by Nasr et al. [21]. The main idea
is to transmit covert upload data via the downstream overt
data, using overt destinations that offer reflection capabilities.
This technology counters the Routing Around Decoys (RAD)
attack [24], but requires an out-of-band channel for bootstrap-
ping and synchronization with new clients. While Slitheen++
uses “normal” overt communication, downstream-only rout-
ing risks that overt sites recognize and block the excessive
abuse of redirect/error messages.

3 Adversary model

We assume that the censor is a state-level omni-scientist ad-
versary [14], that has passive, active and reactive networking
capabilities. The classification “omni-scientist” represents
rich computation and storage capacities to perform traffic
analysis. That means the adversary can store network traces
over a longer period of time and analyze its master data set to
identify covert connection properties. We leave active attacks
against decoy routing, such as RAD attacks or attempts to
enforce asymmetric routes, out of the scope of this work. How-
ever, in principle, one could integrate proposed additions to
decoy routing systems [5] that are compatible to Slitheen++,
so it withstands RAD attacks.

4 Slitheen++

Slitheen introduced a novel idea to overcome strong censors
that deploy advanced network analysis capabilities [4]. Yet, in
their seminal paper, the authors left open some key challenges,
such as stealth upload communication, or providing a work-
ing prototype of Slitheen that can be evaluated under realistic
circumstances. In this section, we provide Slitheen++, an ex-
tension of Slitheen that tackles these and further shortcomings
of Slitheen. First, we start with the upstream communication.
Slitheen’s communication is trivial to identify via traffic analy-
sis. By design, only the downstream packet sizes stay equally-
large. But Slitheen neglects the fact that simply appending
covert upstream data to overt upstream will be detected by
censors. In Slitheen++, we augment Slitheen’s concept with
a stealth data upstream channel by compressing Hypertext
Transfer Protocol (HTTP) header fields in overt requests and
using the gained space to place covert upload data in overt re-
quests. Technically, we added a HTTP/2-like compression to
the Overt User Simulator (OUS) as well as to the relay station
such that only the Slitheen components themselves are aware
of the compression. We avoided additional GNU ZIP (GZIP)
compression to avoid the Compression Ratio Info-leak Made
Easy (CRIME) attack [16]. In a next step, we took care about
connection scheduling. Covert applications actually require
several concurrent connections, which compete for the avail-
able covert transmission capacities. Slitheen has no dedicated
scheduler and extracts covert upload and download data in
the order it was inserted into a single queue shared by all
connections—a strategy that does not provide fairness and
might cause connection timeouts. In Slitheen++, we support
scheduling for up- and downstream data, using a First In First
Out (FIFO) and a Sliced Round Robin (SRR) scheduler. Ev-
ery scheduler maintains a queue per covert connection. The
FIFO scheduler uses a FIFO list of covert connections. In
contrast, the SRR scheduler consists of a queue of active con-
nections that have to be scheduled. Every connection has a
fixed slice that specifies how much data it can transmit before
another connection gets scheduled. For our testing, we use



an upload slice size of 256 bytes while the download slice
has a size of 1024 bytes. Our third improvement is related
to the browsing behavior of the OUS overt communication.
A fundamental requirement for decoy routing is that clients
create sufficient overt traffic. To this end, Slitheen clients con-
stantly re-visit a predefined, overt Web page (e.g., Wikipedia’s
/index.html). This pattern, however, may be recognizable
by censors. To avoid a detection and to mimic human-like
browsing behavior that mitigates this problem, we added a
Web crawler to Slitheen++’s OUS. The crawler extracts and
visits links from the current overt website, but stays within the
same domain. Another aspect regards the frequency in which
Web sites are visited. Slitheen repeatedly reloaded the same
overt Web page without any “Thinking Time (TT)” between
two page requests. This overly aggressive approach increases
the available covert bandwidth massively. In contrast, adding
delay (“TT”) between two requests to the overt site represents
more realistic human behavior. The next challenge present in
the original Slitheen implementation was the handling of Out-
of-Order traffic. The relay station of Slitheen uses raw sockets
to capture, analyze and manipulate traffic. However, such a
design requires careful thinking when facing real-world traf-
fic. Most importantly, Slitheen assumes that data of the overt
communication is never reordered when being routed to its
destination. However, this does not hold in practice, such that
Slitheen cannot decrypt reordered TLS records. In fact, the
number of decipherable records can decrease to zero. This
is based on the fact that the TLS [23] implementation uses
an internal state per endpoint with sequence numbers that
are increased whenever a new TLS record is sent/received.
These sequence numbers are fundamental for TLS’s Mes-
sage Authentication Code (MAC) computation. The relay
station needs to keep that state as well in order to decrypt
and re-encrypt TLS records as well as to determine the record
bounds. Slitheen faces similar problems with regards to frag-
mented Internet Protocol (IP) packets. When testing Slitheen,
we frequently encountered reordered packets that stalled Slith-
een’s communication. Solving this problem is non-trivial, and
we sketch potential solutions in Section 6. For now, we miti-
gated the problem by augmenting Slitheen with a mechanism
to restore the correct order of out-of-order TCP segments,
using a proxy named traffic server [12] which allows us to
tune various connection parameters, including TLS specific
configurations like the maximum TLS record size. To this
end, we connect the traffic server directly to the relay station
to avoid another reordering. Having said that, this adaption
cannot withstand an advanced censor, since she could simply
measure the reordering rates in downstream traffic originated
from a suspicious target. However, if all downstream traffic
of a specific connection is in order while others are out of
order, the censor would know that this connection is an overt
Slitheen connection. Additionally, reordering would require
that the relay station temporarily store requests, increasing
the packets round trip timings, which leads to another possi-

ble detection by the censor. After the conceptual adaptions,
Slitheen needed TLS based improvements to be operational.
Invalid Nonces: TLS is fundamental for the functionality of

Slitheen and protects against eavesdroppers. Nonces are an
important element for TLS in conjunction with block ciphers
and Authenticated Encryption with Associated Data (AEAD)
schemes and create the Initialization Vector (IV) for the sym-
metric encryption. Each record will carry its own nonce. Slith-
een’s implementation replaced the nonce in TLS downstream
records with an uninitialized value. This does thus not guar-
antee that the nonce will change for different records of the
same connection, which violates the TLS standard and hence,
undermines TLS’s security guarantees. Furthermore, its non-
unique nonces are easily detectable by censors. We improved
this and changed Slitheen such that it maintains the original
nonce/IV.

Incoherent TLS/TCP/HTTP Interplay: In the next step,
we improved the methodology which Slitheen uses to find
replaceable data in TLS records. Slitheen’s authors assumed
that (a) the HTTP header of a response fits into a single TLS
record, and (b) this record is carried in a single TCP segment.
If (a) is violated, Slitheen discards the content as not replace-
able. If (b) is violated, the TLS record cannot be decrypted
by Slitheen, because Slitheen does not buffer any overt down-
load data. To mitigate this problem and to increase the covert
bandwidth, we used the traffic server to create TLS records
which do not exceed a maximum pre-configured size. The last
step to finish Slitheen++ was the correction of several imple-
mentation problems of the original Slitheen prototype. So far,
we have discussed fundamental adaptations to Slitheen’s orig-
inal concept. However, the original Slitheen implementation
was unfortunately inoperable due to various implementation
mistakes: (1) Segmentation faults, (2) Use of uninitialized
variables, (3) Statically allocated buffer to store messages of
arbitrary length—possibly even allowing for remote code ex-
ecution attacks, (4) OUS SOCKS proxy was unable to handle
TCP connection terminations, causing connection timeouts,
and (5) HTTP parsing issues causing covert data forwarding
to stop due to inappropriate state machine updates. All de-
scribed issues have been fixed1. We will now address a few
important inconsistencies in Slitheen’s implementation:

Mixed Encryption Modes: In Slitheen, all covert down-
stream data is encrypted on the relay station and later de-
crypted by the OUS to mitigate an attack [5] where an addi-
tional adversary (not the censor itself) can read traffic from
both sites of the relay station. This adversary can manipu-
late unencrypted covert data multiplexed into the overt traffic
when it leaves the relay station towards the censored client.
The overt traffic must be encrypted using a symmetric cipher
mode that forbids the reuse of nonces when encrypting mes-

1More details about those implementation related problems can be found
in our technical report [3]



sages. However, if the covert connection is encrypted and
protected by integrity checks, the adversary could simply de-
stroy its integrity. Having said this, most websites today are
TLS-secured, and the tests in our evaluation also use TLS,
making this potential threat obsolete. Consequently, we de-
cided to drop this additional encryption, instead of having
aligned the en-/decryption modes.

Inconsistent Type-Length-Value (TLV) Streams: Slitheen
uses a TLV encoding for covert messages to indicate how
many bytes of user data and garbage were present in the cur-
rent covert message. Beside the inconsistent management of
tagged flows, there was also a problem with the TLV encoding
itself. The original was not able to handle split TLV headers,
as the authors assumed that they would always have enough
space in any TLS record such that they could place an entire
header. Furthermore, if a covert message did not replace all
overt leaf content in current overt record, the software did
interpret the remaining overt bytes as a Slitheen message.

5 Evaluation

Our experimental setup is based on the web, i.e., we assume
that the Slitheen++ user wants to browse to censored Web
sites and at the same time can use at least one overt web
page. Consequently, we use web pages both as overt and
covert targets in our evaluation. We used ten scenarios of
covert domains for which we evaluate Slitheen++: Twitter
(0), Instagram (1), Google Play Store (2), Apple Store (3),
Google News (4), BBC (5), Reddit (6), Stack Overflow (7),
GitHub (8) and Google Code (9). For later referencing, we
will use the scenario ID in parentheses. For each of these
scenarios, we use Slitheen++ to load three Uniform Resource
Locator (URL)s. In order to focus on the covert target’s main
content and remove biases, we leverage the browser extension
uMatrix to block advertisements and statistics scripts from
third-party domains. During our evaluation, we define the
following parameters that Slitheen++ uses to operate:
(1) TT: We vary the TT, described in Section 4, to model a
user who loads a website and looks for information, instead
of immediately loading the next page, and
(2) Crawling: Indicates whether or not the OUS will crawl
on the current overt site for new URLs or will stick at the
initial overt URL.

We adapt these parameters to reflect different setups and
evaluate each scenario ten times per setup to stabilize re-
sults. As our overt (starting) URL, we will use the English
“Computer Science” article of Wikipedia. For scheduling, we
decided to use always the best performing scheduler per sce-
nario. For testing, we used an Ubuntu 17.10 (kernel 4.13)
desktop computer with an Intel Core-i5 4690, 32 GB RAM
and a 1 Gbps uplink. The computer itself is used as the re-
lay station. Furthermore, two virtual machines were executed
on it. One represented the client machine, while the other

was used as the traffic server. We used Google Chrome as
the covert web browser for all experiments. To evaluate the
stealthiness and performance of Slitheen++, we use the fol-
lowing metric:

Overt Forwarding Costs (OFC): To avoid detection by ad-
vanced traffic analysis, Slitheen++ has to guarantee that it does
not change the fingerprinting characteristics of the overt com-
munication in any detectable way. This includes the latency
introduced by Slitheen++ and its covert multiplexing task.
Therefore, at the relay station, we measure the forwarding
times for overt upload and download IP packets. Technically,
we measure the time from when the relay station receives a
packet from the kernel until it passes the (possibly modified)
packet back to the kernel. In contrast, the original Slitheen
evaluation measured the time the PhantomJS needed to load
an overt site, not the latency per packet.

Overt and Covert Goodput: We use the term goodput to
specify the amount of application data (e.g., HTTP traffic)
forwarded for a specific program. That is, overt goodput is
the number of bytes used by the application layer of the overt
communication, while covert goodput defines the number of
bytes used by Slitheen++ to multiplex covert data inside the
overt channel (including Slitheen++ headers). To measure
the utility of Slitheen++, we monitor the maximum possible
covert goodput available, and relate this to the goodput that
the resulting covert channel actually generates.

Loading Times for Covert Browser: The time it takes for
the covert application to load data greatly influences user
experience. The loading times refer to the time needed
to load all resources that belong to a URL, determined
by observing when the browser’s internal state named
document.readyState changes to “complete”. As a base-
line, we measure the per-scenario loading time without decoy
routing. We then evaluate loading times when running the
same scenario using Slitheen++. Each scenario runs exactly
ten times in each setup.

Scheduler Evaluation The following tests will not reflect
the performance of the available scheduler. We decided to
only use the best performing scheduler per scenario2.

Evaluation of TT and Crawling We measure the impact
of using Slitheen++ with TT and crawling. Thereby, we will
apply our above described metric.

Loading Times: Figure 1 shows the loading times for the
individual scenarios. We only considered no (0 s) or low (1 s)
TT. The x-axis labels denote the four setups we measured,
where “Naive” corresponds to the traffic generation of the
original Slitheen, while “Crawl” using crawling. Generally,
adding crawling has less negative impact on the covert loading

2More details about the scheduler and their evaluation can be found in
our technical report [3]



Figure 1: URL resource loading times for phase three evaluation grouped by scenarios

performance than adding 1 second of TT without crawling.
Considering scenario 0, crawling can even have a positive
effect on the loading time, as demonstrated by the decreased
median loading time. This is caused by a random correlation
between the available covert data and the offered multiplex-
ing overt capacity. One of the fundamental problems with
automated link-extracting crawling (as we use it) is the uncer-
tainty whether the following URL will provide a rich covert
goodput. With crawling, the available covert goodput thus
fluctuates across overt URLs. On the other site, TT decreases
the available covert goodput, which we will explain in the
following segment. The average of the medians for the naive
variant is 7 seconds, while it becomes 8 seconds when crawl-
ing is enabled. The Baseline-to-Covert factor varies from 3.7
to 8.5 without TT. The resulting Baseline-to-Covert factor for
crawling with a TT of 1 second varies from 7.6 to 21.4. The
average of the medians when TT is used without crawling is
13 seconds, while crawling increases it to 19 seconds. TT in
addition to crawling stacks the advantages of both technolo-
gies, as well as their disadvantages. In almost all test cases,
adding TT or using crawling decreased the user experience.
Consequently, using both together leads to a further slowdown
in performance the decoy routing system can provide, while
in such a setup it gets much harder for a censor to expose
the overt communication as decoy routing. Covert Goodput:
The total amount of goodput (a) fluctuates due to the fact that
the crawled URLs varied in their goodput capabilities and (b)
is reduced by the TT idle periods where no overt/covert data
is transmit. Loading all resources of wikipedia’s Computer
Science article takes an average of 838 ms on our system.
Hence, using a TT of 1000 ms creates a chainsaw pattern
of overt goodput, resulting in a covert bandwidth of roughly
50 % compared to a test with no TT used. Figure 2 shows that
the available covert goodput decreased when crawling is en-
abled. Most crawled URLs have a worse covert goodput than
the starting URL, and only very few crawled URLs provide

Figure 2: Maximum covert goodput and used covert goodput

an increased covert goodput. Inspecting all crawling-enabled
examples, tests with a higher runtime (such as scenarios 0
and 2) show a greater covert transport capability compared
to setups with a relatively low runtime (e.g. scenarios 1 and
9). The high average of tests where crawling is used shows
that we have some rich URLs which raise the average, but the
lower median shows the majority of URLs are less suitable.
Furthermore, there is no guarantee that rich covert transport
windows can be used, since the generation of the overt carrier
is independent from the covert transport needs. Consequently,
the percentage of bytes used for covert communications de-
creased in almost all setups, especially in downstream. Fur-
thermore, covert web servers prematurely closed connections
if the upload capabilities were temporarily low such that Dis-
tributed Denial-of-Service (DDoS) protection mechanisms
close the connection before (a) any covert goodput gets trans-
mitted or (b) the connection can be reused for further data



transmissions. This increased the total number of covert con-
nections needed, including the overhead for establishing the
TLS-secured covert communication. In this case, the usage of
the FIFO scheduler helps reducing the number of connection
closes. Finally, we encountered several connections that have
to transmit large amounts of covert downstream data, which
are further delayed due to temporal drops in the maximum
covert goodput.

OFC: We considered the percentage of packets forwarded
in a specific direction that exceed a certain delay (1 ms to
50 ms). 95% of the setups encountered downstream delays
between 1 ms and a maximum of 4 ms, but not above this. On
average, 0.0029% of downstream packets were involved; the
highest value ever measured in a single scenario was 0.006%.
Table 1 shows the fraction of delayed upstream packets. The
second column named “Avg(D)” provides the average per-
centage of all packets in all tests that encountered the given
delay D. Column number three named “Max(D)” show the
maximum percentage of packets delayed by D that occurred
in the execution of a single scenario run. The last column
indicates how many setups that we have tested encountered
the current delay D. One upload outlier was around 60 ms;
all others stayed under 60 ms. An investigation showed that
the usage of many threads to handle covert connections on
the relay station can cause higher delays, especially if new
threads must be spawned. Due to crawling and the resulting
goodput fluctuations, the relay station’s load behavior varies
and it encounters more situations where threads compete for
resources. This behavior can increase the delays as well.

Delay D ↑ Avg(D)% ↑ Max(D)% Setups involved %
> 1 ms 0.0149 0.0248 100
> 5 ms 0.0035 0.0090 90

> 10 ms 0.0033 0.0090 90
> 30 ms 0.0018 0.0036 80
> 50 ms 0.0007 0.0007 15

Table 1: Phase Three Upload OFC Evaluation

6 Discussion and Future Work

We now discuss limitations of Slitheen++ and describe our
future work directions to address them. When testing other
overt domains, we encountered problems with those that em-
bed Completely Automated Public Turing test to tell Comput-
ers and Humans Apart (CAPTCHA)s that require input from
users. We tried to evade CAPTCHAs by randomizing the user
agent, but with little success. The consequence is a sudden
drop in covert goodput. In our evaluation, we ignored such
websites and stuck to Wikipedia, and we believe that censored
clients can always find overt domains without CAPTCHAs.
Furthermore, we encountered timeouts if covert targets de-
ployed specific DDoS protection mechanisms, especially if
web servers close TCP connections if they have not been used
for a few (e.g., two) seconds. If TT is used, this causes prob-
lems on the client site, as it frequently takes several seconds to

transfer a covert request. This can force the client to establish
multiple connections to load a single resource or even deny
the client to load that resource. For our evaluation, we used the
traffic server, which limits the maximum TLS record size and
reorders all incoming TCP traffic. However, in a real-world
setup, downstream traffic has to pass the relay station in the
same order as it comes from the wire, as reordering would
be detectable by a censor. Yet as mentioned in Section 4,
reordered traffic is potentially unusable for multiplexing of
overt and covert data. Hence, unordered traffic would reduce
the available maximum covert goodput, resulting in longer
loading times for resources. To tackle this challenge, Slith-
een++ could be made aware of Out-of-Order (OOO) traffic,
including proper handlers for all protocols involved, such as
TCP and TLS. For example, a TLS handler would have to wait
for the TCP layer to collect all data, such that the TLS handler
can count the number of records passed and re-encrypt traffic.
Adding such capabilities requires various protocol handlers
for the overt connection, such as for IP, TCP, TLS and HTTP.
TT and crawling increase loading times. To stay stealthy, users
thus face a dilemma. Either they can reach blocked resources
slower, or their communication can potentially be revealed by
the censor. Therefore we envision additional concepts that fur-
ther reduce loading times. First, we could add a cache to the
relay station to store complete request messages with unique
IDs from a covert client. The OUS could replace an already
sent request with the according ID and use the rest of the
overt message to place covert data there. Second, our observa-
tions show that crawling can also decrease loading times. We
could use a predefined list of URLs which guarantee higher
covert goodput or adapt the crawler to generate the overt car-
rier based on the current covert queue state. On the other
site, a fixed crawling could be identified using traffic analysis,
such that the usage of the system is still detectable by an
advanced censor. Finally, mixing user applications for Slith-
een++ could also increase the available bandwidth, such as
video/music streaming or online games [26]. Third, a replace-
ment for the PhantomJS as overt browser in the OUS, such as
Chrome or Firefox, would also help. Both support a headless
running mode, which shows much better performance com-
pared to PhantomJS [13]. Our own measurement (crawling
20 pages belonging to Wikipedia) indicated that a headless
Chrome is 51.9% faster on average than PhantomJS and sends
37.9% more requests. In essence, we believe that the usage
of Chrome or Firefox in the OUS would improve the perfor-
mance of Slitheen++. The performance results of our current
evaluation show that the CPU-based, multithreading design
of the system (a) was limiting the maximal throughput of the
system and (b) caused high delays, especially for upstream
packets. We think that the usage of a Protocol-Independent
Switch Architecture (PISA)-based implementation [22] of
the relay station could speed up Slitheen++ massively, as the
PISA-based switches can perform both stateful operations as
well as custom packet parsing at line rate.
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