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Abstract

WeChat, the most popular social media platform in China,
has over one billion monthly active users. China-based users
of the platform are subject to automatic filtering of chat mes-
sages limiting their ability to freely communicate. WeChat
is one among many Chinese Internet platforms which auto-
matically filter content using keyword combinations, where
if every keyword component belonging to a blacklisted key-
word combination appears in a message then it is filtered.
Discovering these sensitive combinations has previously been
performed by sending messages containing potentially sensi-
tive news articles and, if the article is filtered, attempting to
isolate the triggering keyword combination from the article
by sending additional messages over the platform. However,
due to increasing restrictions on account registration, this
testing has become decreasingly economical. In order to
improve its economy, we analyzed the algorithm previously
used to extract keyword combinations from news articles and
found large areas of improvement in addition to subtle flaws.
We evaluate multiple approaches borrowing concepts from
group testing literature and present an algorithm which elimi-
nates the aforementioned flaws and which requires on average
10.3% as many messages as the one previously used.

1 Introduction

Internet platform companies operating in China are required
by law to control content on their platforms or else face penal-
ties under the expectation that companies will invest in the
technology and personnel required to ensure compliance [15].
These requirements form a system of intermediary liability
or “self-discipline” in which Internet platform companies are
held liable for content on their services [16]. Previous work
has found little consistency in what content different Chi-
nese Internet platforms censor [12—-14]. However, some high
profile Internet platforms are known to frequently receive
government directives [2, 17].

Many Chinese Internet platforms perform automatic con-
tent filtering client-side, i.e., inside a user’s application,
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where the entire list of forbidden content can be reverse engi-
neered [3, 8, 12]. However, in this work we concern ourselves
with platforms which filter server-side, i.e., on a remote server,
where sample testing is required to measure which content is
automatically filtered. Performing sample testing generally
requires control of user accounts to send test content.

Our work in this paper is motivated by our desire to under-
stand which blacklisted content triggers automatic message
filtering on WeChat, China’s most popular social media plat-
form. WeChat uses a specific kind of filtering that filters mes-
sages based on keyword combinations, i.e., the presence of
blacklisted combination of keywords in the message [20, 21].
We focus on the previously used task of testing news articles
for filtering and, by using additional messages, identifying
which keyword combination in the article is triggering the
article’s filtering. However, due to increasing restrictions on
account registration, sample testing has become decreasingly
economical [19]. Many Chinese Internet platforms now re-
quire non-virtual phone numbers for account registration and
ban accounts for sending excessive sensitive content. Thus,
we require methods that determine blacklisted content using
as few test messages as possible.

In this paper, we present, given an automatically filtered
body of text, a method to identify, using a small number of
test messages, a sensitive keyword combination triggering its
filtering. Our methods utilize techniques from group testing
literature [6]. This literature studies the problem of using
a small number of tests to identify positives among a large
population of samples. A single test can include any number
of samples, but the output of the test is binary, positive when
any of the tested samples are positive. We adapt techniques
from group testing to solve our problem of finding triggering
keyword combinations in filtered news articles.

This paper makes the following contributions:

e We formally define keyword combination based filtering
and present Internet platforms in addition to WeChat that
censor content using this filtering method.

e By analyzing an algorithm previously used to isolate sen-



sitive keyword combinations in text we identify several
subtle flaws in it.

e By borrowing concepts from group testing literature we
develop an algorithm that requires fewer messages and
that fixes these flaws.

e We empirically evaluate the algorithm using historical
data and find that this algorithm requires 10.3% as many
messages as the one used in previous research.

These findings facilitate more economical discovery of black-
listed keyword combinations. Although our work uses chat
messaging data from WeChat for empirical evaluation, our
methods apply to any platform where filtering is implemented
using keyword combinations.

2 Related work

While the Great Firewall of China filters on the network level,
most individual communication is filtered within domestic
Internet platforms by private companies. Work examining
such systems has included studying censorship performed by
search engines [18,25] as well as by social media platforms
including blogs [10, 15] and micro-blogs [1,17,26]. Research
on chat censorship has mostly studied platforms that perform
censorship client-side. This is because client-side implemen-
tations can be reverse-engineered to extract an exhaustive
list of keywords or rules used to trigger filtering. Such work
has studied instant messaging apps [3, 8, 11], live streaming
platforms [12], mobile games [14], and open source GitHub
projects [13].

While there are methodological advantages to studying
platforms performing censorship client-side, often the most
popular platforms in a social media industry segment perform
censorship server-side, lending to client-side-only analyses
providing an incomplete view of censorship in that indus-
try segment. Due to its popularity in China, previous work
studying server-side chat censorship has mostly focused on
WeChat [4,20,21]. These studies use a method in which text
extracted from news articles is sent as messages in a WeChat
group using test accounts. If a message is not received it is
flagged as censored. This method is limited by the cost of
obtaining non-virtual phone numbers for the creation of test
accounts. In our work we seek to make server-side chat mea-
surement more economically viable by reducing the number
of messages required to determine sensitive content.

The closest work to ours is that of Espinoza et al. [7] who
experimented with a method for selecting individual keywords
from a news article for testing based on their semantic prop-
erties. In their work, they assume a model where keywords
may only be tested for censorship individually. However, in
ours, we assume that large messages the size of entire news
articles may be tested for censorship. We also consider that
censorship may be triggered by the simultaneous presence of

a combination of keywords as opposed to only the presence
of a single keyword.

3 Overview of keyword combination blocking

In this section we briefly set out what keyword combination
based filtering is and how different service operators imple-
ment it. We provide examples of Internet platforms that use
this type of filtering.

Keyword combination filtering is a censorship technique
automatically applied to user-inputted strings of text, such as
messages in chat apps, posts on blogs, or queries in search
engines. We henceforth refer to all such user-inputted strings
of text subject to this filtering as messages. In this censorship
system a message is filtered according to whether it contains
any sensitive keyword combinations (e.g., H1ig + EHE
[Xinjiang + concentration camp]), where a keyword com-
bination is a set of one or more strings of characters called
keyword components (e.g., “H1im" or “6EH1&"). The order
of appearance of the components in the message does not
matter. We say that a keyword combination is sensitive in a
message if the presence of all of its components triggers the
message’s automatic filtering and if removing any component
or character from a component would result in the automatic
filtering no longer being triggered. Similarly, we say that a
keyword component is sensitive in a message if it belongs to
a sensitive keyword combination appearing in that message,
and we say that a character at some index in a message is sen-
sitive when it appears inside a sensitive component containing
that index.

Unlike traditional single-keyword-based filtering, imple-
menting filtering via keyword combinations allows more
finely tuned targeting of content. For instance, a traditional
single-keyword blacklist might include ~J3°F [Xi Jinping]
to filter negative criticism of the Chinese President, but this
would filter general discussion about him as well. Alterna-
tively, the combination >J ¥ + =3%1F [Xi Jinping + three
consecutive terms], which was previously found censored
on WeChat [5], more finely targets sensitive conversations
without censoring other discourse.

In addition to WeChat, we found via testing that keyword
combination based filtering is implemented in other Chinese
services, including Alibaba’s Wangwang (Fi[ B FEHE) chat
platform (e.g., ¥5%¢ + I [Falun + Gong]) and direct mes-
saging in the Zhihu (A1°F) Q&A platform (e.g., fl{# + fil
& [Weibo + WeChat], a keyword combination possibly in-
tended to control spam or filter references to competitors).
We also found via sample testing that Sina Weibo uses key-
word combinations to automatically filter posts (e.g., >J TP
+ 181~ N &2FE [Xi Jinping + engage in personal worship]).
The LINE chat app had been previously found to implement
such filtering using regular expressions [22] (e.g., L7 +
(%F [Beijing + coup] via the expressions . *LJ . *FZF .



and . *(ZZ . «Jb3T. %), although this was implemented client-
side, not server-side.

On some Internet platforms we observed a degenerate form
of keyword combination filtering where we found that black-
lists consisted of a single keyword but where for some key-
words each character of the keyword could appear anywhere
in the message and in any order. For these keywords, the
filtering rules are equivalent to a keyword combination where
each component is one character of the original blacklisted
keyword. We found source code from the Soku search en-
gine [24] that refers to this type of matching as “fuzzy” hit
matching, and we have also observed this behavior in the Sina
Weibo search engine with some sensitive keywords (e.g., %
+ ¥ + I/ [Fa + lun + Gong])).

4 Previous algorithm

Previous work has used news articles to discover blacklisted
keyword combinations. In this section we describe our find-
ings of analyzing the algorithm previously used [4, 20, 21]
to isolate a sensitive keyword combination in a filtered news
article. We briefly summarize the algorithm, analyze its per-
formance, and identify two subtle flaws in its implementation
which reveal the difficulty of designing an algorithm to cor-
rectly determine keyword combinations.

4.1 Summary of previous algorithm

To isolate a sensitive keyword combination in a censored
article, we found that the previous algorithm begins with a bi-
section step which separates the article into two halves whose
lengths have difference no greater than one. The algorithm
then independently tests each half to see if it is censored by
sending each half as a message. If the left half of the bisection
is censored, this bisection process is recursively applied on
that half, else if the right half is censored, then this process
is recursively applied to that half. This process is repeated
until a bisection results in two halves both of which are not
censored on their own. At this point, the last message to be
censored is returned as the reduced article, which contains
a sensitive keyword combination but typically also includes
non-sensitive characters. The characters in the reduced article
are then sequentially and unilaterally tested for sensitivity by
trialing the removal of characters one at a time. If removing a
character results in a message that is no longer censored, then
that character is marked as sensitive. The non-sensitive char-
acters are then removed, leaving only segments of sensitive
characters. Since keyword components can appear adjacent
to each other in a censored message, component boundaries
between characters are determined in the component splitting
step by sequentially testing the addition of null characters to
the censored string. If inserting a null character between two
sensitive characters still results in a filtered message, then
there exists a component boundary at the index of insertion.

The censored string is then split at all discovered component
boundaries, and the set of components is returned as the sen-
sitive keyword combination.

The performance of this algorithm is highly dependent on
the positions of the sensitive components in the article. The
performance is poor when components are spaced far apart.
In this case the bisection terminates early, leaving a large
amount of the article to be tested character-by-character for
sensitivity.

4.2 Flaws in previous algorithm

In this section we describe two different, subtle flaws that we
discovered in the algorithm that we analyzed.

The Unilateral Elimination Flaw exists because, after bi-
secting, the algorithm unilaterally removes characters, i.e., it
removes characters one at a time and even if removing the
character preserves the censorship of the message it puts the
character back for the next test. This is as opposed to it itera-
tively removing characters, i.e., when removing a character
preserves the censorship of the message then do not include
that character in future tests.

This flaw manifests itself in two conditions. The first is
when more than one unique sensitive keyword combination
exists in the message. In this case, only the keyword com-
ponents which the combinations have in common (if any)
will be discovered, as the removal of characters from the
other components will never cause the message to fail to be
censored. The second occurs when a component from the
censorship-triggering keyword combination appears multiple
times in the reduced article, i.e., the result of the bisection
step. That component will not be identified as part of its sensi-
tive keyword combination because the algorithm unilaterally
removes individual characters, and so no removal will modify
all occurrences of the component. In this case, the charac-
ters in the component will not appear to the algorithm to be
responsible for triggering censorship.

The Overlap Flaw is a result of the mishandling of sensi-
tive components that overlap in the tested message. This flaw
would exist even if the algorithm iteratively removed charac-
ters, and its existence demonstrates the subtlety of correctly
implementing the algorithm, as we found no simple change
to the algorithm which would resolve this flaw. Through test-
ing, we confirmed that WeChat censors a message even if the
components in the sensitive keyword combination overlap
in the message. For example, we found that in the censored
combination 775K + % + BLEE + SHIEK [bring + reform +
entire + field], since the component L ends with the same
character that 2282 begins with, a message can be created
such that they overlap, e.g., 7 Aabc i # B8 xyz4E1,. This
algorithm will incorrectly return 75 2€ + 3588 + 463 as
the triggering keyword combination.



Algorithm 1 BINSEARCH(S, g)

Algorithm 3 BINSEARCHBACKTRACK(s)

lo 0, hi < |g|
while /i —lo > 1 do
mid < | (lo+ hi) /2]
if ISCENSORED(S U {g[mid:]}) then
lo + mid
else
hi < mid
end if
end while
return [o

Algorithm 2 SpLITCOMPS(C)

D ()
for s € C do
i+ 0
for j=1,...,|s|—1do
if ISCENSORED(C\ {s}U{s[:j],s[j:]}) then
D < DU{s[i:j]}
i+ J
end if
end for
if i < |s| then
D+ DU {sli:]}
end if
end for
return D

5 Improved algorithms

In this section we present three different algorithms that im-
prove upon the one used in previous work described in the
prior section. We desire to reduce the number of messages
required to isolate a sensitive keyword combination in a cen-
sored article while simultaneously rectifying the previous
algorithm’s flaws.

5.1 Framework

In this section we lay out the basic operations used in the
algorithms we describe.

|s| — the length of string s.

e s || 52 — concatenate strings s1 and s;.

e s[i:j] — slice zero-indexed string s from index i, inclusive,
to j, exclusive. If i or j are omitted, then slice from the
beginning or to end of the string, respectively.

o s[i] —slizi+1].

e ISCENSORED(S) — true if, for s;,s7,...,5, € S, 51 ||

"™O" || s2 || "\O" | ... || s, is censored by WeChat, else

false. Null characters are placed in between the concate-

nated strings so that no new sensitive keyword compo-
nents can be accidentally introduced crossing multiple

stack < empty stack with LIFO PusH() and POP() ops
PUSH(stack, (0, s|))
repeat
(lo, hi) < POP(stack)
z < a string of (hi —lo)-many "\0"s
s" < s[:lo] || z || s[hi:)
if hi — lo < |s| and ISCENSORED(s’) then
s
else if 1i —[o > 1 then
mid < | (lo+ hi)/2]
PUSH(stack, (mid, hi))
PUSH(stack, (lo,mid))
end if
until |stack| =0
C < the set of nonempty strings from splitting s by "\0"
return SPLITCOMPS(C)

strings in S.

e BINSEARCH(S,g) — find and return the index of the left-
most character of a sensitive component in g by per-
forming binary search over g given S, a set of strings to
include in all test messages. See Algorithm | for full
details.

e SPLITCOMPS(C) — for each string s € C, split s, which
may be multiple keyword components concatenated to-
gether, into all of its individual components. See Algo-
rithm 2 for full details.

5.2 Binary search with backtracking

We found that a simple but effective way to enhance the
algorithm presented in Section 4 is to not abort the binary
search when neither side of a bisection is censored when
tested by itself. The key insight is that binary search can be
extended to find the exact sensitive subsequence of characters,
as opposed to merely some substring that contains the sensi-
tive subsequence. We accomplish this by performing binary
search while (1) zeroing out, with null characters, bisection
halves of the article in order to test if any sensitive charac-
ter is contained in either half and (2) performing recursive
backtracking in the binary search whenever both halves of a
bisection contain a sensitive character. If a half contains no
sensitive characters (i.e., if the modified message is filtered),
then we keep that half zeroed out. We revert this modification
if it caused the message to no longer be filtered and, similar
to the previous algorithm, we recursively attempt to separate
the modification into two smaller halves. See Algorithm 3 for
full details.

Upon termination of the binary search step in this algorithm,
the entire article will have been zeroed out except for all
characters of one sensitive keyword combination. However,
the resulting nonadjacent set of strings C may not be the



exact sensitive keyword combination, as adjacent keyword
components in the article will appear as a single component
in C. Since we may need to further split each string, as a
final step we test for the existence of additional component
boundaries using SPLITCOMPS(C).

As a result of the use of backtracking in the algorithm, we
no longer need to spend messages sequentially testing the
removal of characters as in the previous algorithm once both
halves during the binary search contain a sensitive character.
Moreover, since our character zeroing is persistent and not
unilateral, we have also fixed the Unilateral Elimination Flaw
identified in the previous algorithm. However, this algorithm
does not address the Overlap Flaw as it still does not correctly
detect components which overlap in an article.

5.3 Binary splitting

We recognized that our problem of finding sensitive characters
was similar to that explored in group testing literature, which
studies the problem of using a small number of tests to identify
positives among a large population of samples. A single test
can include any number of samples, but the output of the test
is binary, positive when any of the tested samples are positive.

The next algorithm that we implemented was adapted from
the binary splitting group testing algorithm [6, p.24]. The
intuition behind binary splitting is that, unlike with binary
search, after the discovery of each positive sample (and the
discovery of whichever negative samples were identified dur-
ing the search by any negative-yielding test), the remaining
unidentified samples are then regrouped together and binary
search is again applied to them as a whole. This is often
desirable as binary search requires a sublinear number of tests
with respect to the number of samples being searched, making
it less expensive to search a larger space all at once versus
smaller spaces serially. The general steps of this method for
finding positive samples among a group of samples can be
summarized as follows:

While there exist remaining unidentified samples:

1. Test all remaining samples.

2. If the result is negative, then mark all remaining sam-
ples as negative.

3. Else if the result is positive, perform binary search
to find one positive sample and mark it as positive.
Mark all the samples in any negative-resulting test
during the binary search as negative.

We directly adapt this algorithm to find a sensitive keyword
combination in an article s as shown in Algorithm 4. We
found that this algorithm actually performed more poorly (see
Section 6) than the binary search with backtracking algorithm
despite being taken from group testing literature. Also, similar
to binary search with backtracking, this algorithm also does
not resolve the Overlap Flaw, as it does not correctly detect
overlapping components.

Algorithm 4 BINSPLIT(s)

C{}
fe""
repeat
i < BINSEARCH(CU/{t},s)
if i # 0 and |¢| > O then
C+ Cu{t}
fe""
end if
t <+t s
s+ sli+1:]
until |s| = 0 or ISCENSORED(C U{r})
if |t > O then
C+ Cu{r}
end if
return SPLITCOMPS(C)

5.4 Component-aware binary splitting

Upon observing that the previous algorithm actually per-
formed more poorly, we decided to analyze where the algo-
rithm performed worse. Group testing literature generally
assumes the mutual independence and uniformity of positive
samples. Thus, since our direct translation of the binary split-
ting algorithm in the previous section had no awareness of
keyword components, it found each sequential character of
a keyword component by performing binary search on the
remainder of the article. The binary search with backtracking
algorithm performed better because it generally had to search
a smaller space for each sequential character due to the use of
backtracking. In response to this, we decided to modify the
binary splitting algorithm to specifically cater to our problem
domain and to be more “aware” of the concept of keyword
components.

To accomplish this, we modified the binary splitting algo-
rithm such that when a sensitive character is found, we se-
quentially test each character moving rightward until finding
the end of the sensitive keyword component. See Algorithm 5
for full details. This algorithm does not need to bisect from
scratch to find each sequential character of a sensitive key-
word component, but it still benefits from binary splitting’s
regrouping of the remaining unevaluated characters after the
discovery of each sensitive keyword component.

When designing this algorithm to be more component-
aware, we also saw an opportunity to make the algorithm
more efficient. When looking for the end of each sensitive
keyword component, by carefully coding this test, we were
able to obviate the need to call SPLITCOMPS at the end of
our algorithm. After finding the first sensitive character of a
component, a naive approach would have been to test each
successive character until finding one that is non-sensitive.
Instead, we design the inner loop to increment j until ISCEN-
SORED(CU{s[i:j],s[i+ 1:]}), which is when j is large enough



Algorithm 5 COMPAWAREBINSPLIT(s)

C—{}
repeat
i <~ BINSEARCH(C,s)
j—i+1
k+ |s|
while j < k do
if ISCENSORED(CU {s[i:j],s[i + 1:]}) then
k<j
else
j+—j+1
end if
end while
C«+ CU{sli:j]}
if j # |s| then
s < s[i+ 1]
else
s "
end if
until |s| = 0 or ISCENSORED(C)
return C

to fully slice out the entire sensitive keyword component at
index i. This condition ensures that the loop terminates even
if there is an adjacent sensitive keyword component at index
J» and so the discovered sensitive keyword component will
never need to be further split.

Finally, we also saw a simple opportunity to eliminate the
remaining unresolved flaw in the previous algorithms. By
carefully choosing how to slice out the “remaining article”
(i.e., anywhere s[i+ 1:] appears in Algorithm 5), we were able
to handle overlapping keyword components, thus resolving
the Overlap Flaw. Consider instead if in Algorithm 5 we had
naively taken the remainder of the article as s[j:], i.e., the
remainder of the characters after the sensitive sequence of
characters under consideration has been removed, instead of
s[i+ 1:], i.e., the remainder of the characters after only the
first character in the sensitive sequence of characters under
consideration has been removed. In this case, the algorithm’s
inner loop terminates when ISCENSORED(C U {s[i: j],s[;:
1}). However, if, for the component at index i, there exists
a second component overlapping it starting at some index
> i but < j, then the inner loop will increment j until this
second component is fully contained in the s[i: j] slice such
that ISCENSORED(C U {s[i:j],s[j:]}). This will erroneously
combine the two components (e.g., “abcde” instead of “abc”
and “cde”). Since a component can overlap as early as the
(i+ 1)th index, we use s[i + 1:] instead of s[;:].

6 Empirical evaluation

In this section we evaluate the three algorithms we introduced
and compare them to the algorithm used in previous research.

Average messages

Method .
per news article
Previously used algorithm 342.72
Binary search with backtracking 57.01
Binary splitting 70.11
Component-aware binary splitting 35.47

Table 1: For each algorithm, the average # of messages
required to isolate a sensitive keyword combination.

Previous
Algorithm
BinSearch | |
Backtrack | ! {mm «©

BinSplit 1 I— 4{!@2 ]

CompAware |
BinSplit |_ ?
0 50 100 150 200

Figure 1: Tukey box plot of the # of messages required
for each algorithm to isolate a sensitive keyword combi-
nation across tested articles.

The dataset we used for empirical evaluation consisted of
5,521 news articles filtered on WeChat, primarily written
in simplified Chinese, and a list of 1,956 sensitive keyword
combinations triggering their censorship, which we obtained
by sample testing between September 2017 and October 2018.
The average article length is 2,287 characters.

We wrote a simulator in Python that, given a keyword com-
bination blacklist and a message, returns whether the message
would be automatically filtered. The simulator implements
keyword combination filtering as we define in Section 3. It
filters messages even when keyword components overlap in
the message to be consistent with the behavior we observed
with WeChat. We then implemented the four algorithms that
we evaluate. For each of the censored 5,521 news articles,
we measured how many messages were required for each
algorithm to isolate the sensitive keyword combination in the
article. This text corpus included test cases such as multi-
ple keyword combinations in one article, multiple keyword
components of the same keyword combination in an article,
and overlapping keyword components. We record whenever
an algorithm does not correctly return a sensitive keyword
combination in the article. We summarize the average number
of queries required by each algorithm to isolate a sensitive
keyword combination from a censored news article in Table 1.
Additionally, we show the overall distribution of queries re-
quired to isolate a sensitive keyword combination from each
article in our test set in Figure 1.



We found that the algorithm that we analyzed from pre-
vious work performed the worst, requiring on average 9.66
times as many messages as the best performing algorithm.
The algorithm’s highly variable and often poor performance
is a result of the ineffective recursive bisection step. In 9% of
articles, due to the large distance between keyword compo-
nents, bisection was unable to reduce the length of the article,
leaving each character of the entire article to be sequentially
tested. In contrast, for at least half of the articles, when key-
word components were nearby, the article was reduced to an
average length of 41.6 characters before sequentially remov-
ing characters. Additionally, this algorithm exhibited both
the Unilateral Elimination and Overlap flaws as described
in Section 4.2. In 44% of cases, the algorithm incorrectly
identified the sensitive keyword in the article. This was typ-
ically because many articles contained a sensitive keyword
combination with at least one component appearing multiple
times. This algorithm can mishandle this case as a result of
the Unilateral Elimination Flaw.

We found that all three of the new algorithms that we in-
troduce in this paper required substantially fewer messages.
Moreover, due to designing the algorithms to not unilaterally
test the removal of characters, our results empirically veri-
fied that none of the new algorithms exhibit the Unilateral
Elimination Flaw.

Component-aware binary splitting, the best performing al-
gorithm, required on average 10.3% as many messages as the
original algorithm. Its interquartile range is the smallest of
any of the algorithms evaluated, as its performance is also
more consistent across the articles which we tested. Moreover,
due to specifically designing this algorithm to handle overlap-
ping components, our results empirically confirmed that this
was the only algorithm that does not exhibit the Overlap Flaw.
During simulation, the algorithm exhibited no flaws and, to
our knowledge, contains no flaws. These results demonstrate
that adapting techniques from group testing literature to our
problem domain was an effective approach.

7 Conclusion and future work

Given the economics of server-side testing it is desirable to
isolate sensitive keyword combinations using as few messages
as possible. In this work we formally defined keyword com-
bination based blocking and documented its use on multiple
Chinese Internet platforms, including chat services (WeChat
and Wangwang), search engines (Soku and Weibo), and blog
posts (Weibo). We present new approaches to determining
keyword combinations efficiently. Our component-aware
binary splitting algorithm improves upon previous work in
terms of overall message cost and additionally resolves some
subtle flaws associated with the previous method. We empiri-
cally evaluated the algorithm using a dataset of news articles
and sensitive keyword combinations and found that 35.47
queries are required on average, per article, to isolate a key-

word combination which triggers censorship, 10.3% as many
messages as the algorithm used in previous research. This
algorithm makes continued measurement more economically
viable, where research may depend on purchasing non-virtual
phone numbers and where test accounts may be banned after
a certain amount of time or messages sent.

It is our hope that our methods will be useful to future
researchers for measuring keyword combination based cen-
sorship on a large number of Internet platforms. While not
evaluated as part of this project, we expect that these methods
will apply to Internet platforms other than WeChat which per-
form keyword combination based filtering. These methods
are anticipated to work for the detection of keyword combina-
tions in languages other than Chinese as well.

Despite our improvements, there is still room for future
work in this area. In this work we discover at most one key-
word combination responsible for triggering the censorship of
a message. However, the algorithms discussed in this paper
can be extended to find multiple combinations.

The COMPAWAREBINSPLIT algorithm performs a linear
search for the end of a keyword component. We also tested an
approach using one-sided binary search [23, p. 134]. While
we found this slower for our dataset, if component sizes are
expected to be large, one-sided binary search should perform
better. The code for this approach is included in our source
code release.

Moreover, we may be able to use historical data on the
location of sensitive keyword components in an article or
on the frequency of which a character or word has histori-
cally been sensitive to further improve the efficiency of the
algorithm. In Chinese, as text contains no word separators,
text segmentation is required to detect these boundaries. We
have preliminary data showing that bisecting on these bound-
aries can further improve efficiency by 1%, but more work is
needed to understand how this works and to determine if this
method can be further improved.

Better performance may be obtainable by further drawing
from group testing literature. We experimented with adapting
generalized binary splitting [9], an algorithm which deter-
mines the number of samples to simultaneously test as a func-
tion of the expected number of positive samples remaining.
However, after adapting this algorithm, we saw virtually no
improvement, possibly due to the small number of keyword
components which we expect to find in an article. Neverthe-
less, adapting other group testing algorithms to the problem
domain addressed in this work may yet prove promising.
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Availability

Our

source code for our simulator and for each key-

word combination isolating algorithm is available here:
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