
Improving Meek With Adversarial Techniques

Steven R. Sheffey

Middle Tennessee State University

Ferrol Aderholdt

Middle Tennessee State University

Abstract

As the internet becomes increasingly crucial to distributing in-

formation, internet censorship has become more pervasive and

advanced. Tor aims to circumvent censorship, but adversaries

are capable of identifying and blocking access to Tor. Meek,

a traffic obfuscation method, protects Tor users from censor-

ship by hiding traffic to the Tor network inside an HTTPS

connection to a permitted host. However, machine learning

attacks using side-channel information against Meek pose

a significant threat to its ability to obfuscate traffic. In this

work, we develop a method to efficiently gather reproducible

packet captures from both normal HTTPS and Meek traffic.

We then aggregate statistical signatures from these packet

captures. Finally, we train a generative adversarial network

(GAN) to minimally modify statistical signatures in a way

that hinders classification. Our GAN successfully decreases

the efficacy of trained classifiers, increasing their mean false

positive rate (FPR) from 0.183 to 0.834 and decreasing their

mean area under the precision-recall curve (PR-AUC) from

0.990 to 0.414.

1 Introduction

Tor [6] is often used to hide a user’s internet traffic in order to

gain privacy or circumvent censorship [7]. However, the IP ad-

dresses of Tor relays are public, and authorities such as China

have used this information to prevent access to Tor [8] [29].

In response, researchers and activists developed traffic ob-

fuscation methods that use techniques such as encryption

and protocol mimicry to make it more difficult for censors to

prevent access to Tor [7]. Many of these traffic obfuscation

methods are made available with Tor Browser as “pluggable

transports” [24].

One such pluggable transport is Meek, which offers strong

protection against metadata-based Deep Packet Inspection

(DPI) attacks using domain fronting [10]. Domain fronting

obfuscates traffic by hiding traffic intended for a forbidden

host inside the encrypted payload of an HTTPS connection to

a permitted host [10]. This is achieved by manipulating the

Host header of the underlying encrypted HTTP payload in

order to take advantage of cloud hosting services that forward

HTTP traffic based on this header. Domain fronting exploits

censors’ unwillingness to cause collateral damage, as block-

ing domain fronting would require also blocking the typically

more reputable, permitted host. From the point of view of

an adversary using DPI and metadata-based filtering, there is

no difference between Meek and normal HTTPS traffic. All

unencrypted fields in Meek traffic that could indicate its true

destination such as DNS requests, IP addresses, and the Server

Name Indication (SNI) inside HTTPS connection headers do

not reveal its true destination.

However, recent work has shown that Meek is vulnerable

to machine learning attacks that use side-channel informa-

tion such as packet size and timing distributions to differenti-

ate Meek traffic from normal HTTPS traffic [20], [28], [30].

Wang et al. [28] were able to differentiate Meek traffic from

normal HTTPS traffic with a FPR as low as 0.0002 using a

CART decision tree, while Yao et al. [30] achieved an ac-

curacy of 99.98% on the same task using a hidden Markov

model. Nasr et al. [20] were able to deanonymize Meek traf-

fic with a FPR of 0.0005 using a neural network. Machine

learning attacks against Meek pose a dangerous threat to its

effectiveness, and strengthening Meek against these attacks

remains an open problem.

Traffic obfuscation is fundamentally a conflict between an

adversary attempting to detect unwanted traffic and a user

attempting to modify their traffic in a way that circumvents

this [7]. Generative Adversarial Networks (GANs) operate

under a similar paradigm. GANs are typically composed of

two components: a generator and a discriminator [12]. The

goal of the generator is to generate realistic looking data,

while the goal of the discriminator is to determine whether

this synthetic data is real or fake. By training the generator

and discriminator in unison, each can learn from the other

until an equilibrium is reached.

In this work, we evaluate the efficacy of GANs in iden-

tifying and correcting identifiable patterns in Meek traffic.

We achieve this by first developing a method capable of gen-

erating large amounts of normal HTTPS and Meek packet

captures, with a focus on efficiency and reproducibility. We

then extract statistical signatures modeling the identifiable

side-channel features of this traffic. Finally, we train a modi-

fied version of StarGAN [4], and evaluate its ability to reduce

the FPR and PR-AUC of multiple trained classifiers.

2 Data Collection

The objective of our data collection method is to capture traf-

fic generated by navigating to the same websites over both

normal HTTPS and Meek, and to do so efficiently and repro-

ducibly. Previous work analyzing Meek traffic uses sequential

scripts [26], [28] or does not appear to specify their Meek

data collection process [20], [30]. We use Docker [13] to

allow our data collection process to be performed in parallel,

and in a reproducible environment.

Docker is a platform based on reproducible environments

known as containers [13]. Our data collection method is com-

posed of two types of containers: a work queue and workers.

The work queue manages and distributes a queue of data col-

lection work. Each work item in the queue contains a URL

and a proxy type. Workers navigate to URLs using the given

proxy type, and produce packet captures for each piece of

work.

Because Meek tunnels traffic through a single HTTPS con-

nection [10], gathering individual Meek connections requires

restarting the Meek process. This limitation presents a ma-

jor bottleneck to our data collection process. In order to cir-

cumvent this, we use Docker Compose [14] to allow for any

number of data collection workers to operate in parallel.

During data collection, each worker repeats the process

shown in Figure 1.

2.1 Datasets

We collect datasets from a residential desktop (H), a university

office desktop (U), and an Amazon Web Service (AWS) server

(A). Datasets H and U were collected using Docker installed

on NixOS hosts, while dataset A was generated using an

AWS m5.2xlarge instance provisioned by docker-machine.

Each dataset contains 20000 samples, created by navigating

to the top 10000 websites of the Alexa top 1M dataset [1]

using both regular HTTPS and Meek using the meek-azure

bridge from Tor Browser. Datasets H and U were collected

in Middle Tennessee, while dataset A was generated from the

AWS us-east-1 region (North Virginia) [25].

Our datasets contain HTTPS traffic, generated with and

without Meek. However, HTTPS traffic does not encompass

the scope of all Meek traffic. We only collect traffic from

connections to the homepages of popular websites, but Tor

Browser users may navigate to other pages, use hidden ser-

vices, or communicate using other protocols. Our data collec-

1. Request URL and proxy from the work queue. If

there is no more work, exit.

2. Start tcpdump to capture all packets.

3. Start Tor/Meek if applicable.

4. If using Meek, wait for 10 seconds to ensure Tor

has been properly initialized, and to provide some

measure of reducing network load.

5. Start Firefox using Selenium.

6. Navigate to the URL.

7. Wait for either an element with a common tag

(<script>) to load, or 60 seconds to pass. This

is done to speed up the data collection process and

avoid getting stuck.

8. Thoroughly shut down Firefox, Tor/Meek, and tcp-

dump, in that order.

9. Send a report to the work queue containing infor-

mation about the work done, and the filename of

the generated PCAP file.

Figure 1: Overview of worker program.

tion framework may be extended to include hidden services,

but is not suited to non-web traffic.

3 Feature Extraction

In this work, we analyze the following side-channel traffic

features: histograms of TCP payload sizes and per-direction

packet inter-arrival times. We ignore basic packet metadata

such as IP addresses or TLS parameters. While Meek traffic

may have distinct values for these features compared to the

wide variety of HTTPS clients on the internet, we assume

that these basic fields could be trivially modified. The side-

channel features we analyze are acknowledged in the original

implementation of Meek [10] and used by Wang et al. [28],

Nasr et al. [20], and Yao et al. [30] to identify Meek. These

features are identifiable weaknesses in Meek, but their sta-

tistical distribution may be modified through traffic shaping

techniques; for example, Verma et al. [27] propose inserting

extra data (chaff) into packets or delaying packet transmission

in order to match a distribution generated by an adversarial

neural network. HTTPOS [17] applies a similar technique to

HTTP traffic.

We use Bro, a DPI engine, to aggregate packets from each

PCAP into a set of HTTPS connections [21]. We then asso-

ciate each packet with an HTTPS connection using its source

IP, destination IP, source port, destination port, and timestamp.

All packets unrelated to HTTPS connections are ignored. As

much more information is found in smaller payload lengths

and inter-arrival times than larger ones, we aggregate these

features into logarithmic bins. For TCP payload lengths, we

use bins of size 10 from 0 to 100 bytes, size 100 from 100

to 1000 bytes, size 1000 from 1000 to 10000 bytes, and a

single bin for packets larger than 10000 bytes. For packet

inter-arrival times, we use bins of size 1 from 0 to 10 ms, size

10 from 10 to 100 ms, size 100 from 100 to 1000 ms, and

a single bin for inter-arrival times above 1000ms. These bin

sizes are similar to those used by Wang et al. [28].

0 10 20 30 40 50 60 70 80 90 10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

20
00

30
00

40
00

50
00

60
00

70
00

80
00

90
00

10
00
0

∞

TCP Payload length (bytes)

0.0

0.1

0.2

0.3

0.4

F
re
qu
en
cy

Meek
HTTPS

Figure 2: Average TCP payload length frequency

0 1 2 3 4 5 6 7 8 9 10 20 30 40 50 60 70 80 90 10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00 ∞

Inter-arrival time from client (ms)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

F
re
qu
en
cy

Meek
HTTPS

Figure 3: Average inter-arrival time frequency (from client)

Figures 2, 3, and 4 show the average frequencies of TCP

payload sizes, inter-arrival times from client, and inter-arrival

times to client, respectively over dataset H, defined in Sec-

tion 2.1. One difference between normal HTTPS and Meek

traffic can be seen in Figure 2 where Meek traffic has a much

larger proportion of packets with payload size between 60 and

0 1 2 3 4 5 6 7 8 9 10 20 30 40 50 60 70 80 90 10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00 ∞

Inter-arrival time to client (ms)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

F
re
qu
en
cy

Meek
HTTPS

Figure 4: Average inter-arrival time frequency (to client)

70 bytes. Additionally, The inter-arrival times of Meek traffic

in Figure 3 and Figure 4 seem to indicate a higher latency in

Meek traffic. Our observed differences in TCP payload length

distribution differ from the TCP payload length distribution

measured by Fifield et al. [10], where Meek traffic exhibited a

much larger number of payloads around 1400 bytes and a lack

of payloads around 50 bytes. This may be due to a difference

in data sources [10], or modifications to Meek [9]. Fifield

et al. [10] compared Google traffic from Lawrence Berkeley

National Laboratory to traffic generated by navigating to the

Alexa top 500 over Meek. Since Meek’s creation, it has intro-

duced many changes such as HTTP/2 support [9], which can

result in different traffic characteristics [18].

4 Adversarial Transformation

While typical GANs contain a generator, which generates

adversarial data from noise, our model uses a transformer,

which transforms a traffic signature from one class to an-

other. This model is similar to an adversarial transformation

network [2]. We use StarGAN [4] as a basis for our model.

StarGAN is an adversarial transformation model that trans-

forms images by selectively applying features from various

domains and datasets. While StarGAN can support modifying

any number of features, we only modify one binary feature:

whether the traffic signature represents Meek traffic or normal

HTTPS traffic. This allows us to significantly simplify Star-

GAN while still taking advantage of its powerful adversarial

transformation features.

4.1 Architecture

In our model, we replace StarGAN’s complex, multi-layered

convolutional layers with a simple fully-connected hidden

layer. While convolutional neural networks are useful for im-

age classification tasks [16], our traffic signatures are very

Figure 5: Training process for our GAN, adapted from the original figure in [4].

simple and can be classified using a very small number of

parameters. The discriminator accepts a signature, contains a

single fully-connected hidden layer of size 16, and outputs a

label Y (the probability that the signature represents a Meek

flow), and a source S (the probability that a signature was

modified using a transformer). The transformer accepts a sig-

nature (X) and a target class, contains a single fully-connected

hidden layer of size 128, and outputs a modified signature

(X ′). The transformer contains a larger hidden layer in order

to avoid losing information during reconstruction.

4.2 Training

We train our model using a modified version of the StarGAN

training process. For each training iteration, we train the dis-

criminator using the following steps:

1. Retrieve a batch of 16 signatures X and labels Y from

the training set. A label is 0 if the flow is a regular flow,

and 1 if the flow is Meek.

2. Predict the flow’s label and source, and calculate loss for

the predictions. BCE is binary cross-entropy.

Ypredicted ,Spredicted = D(X)

DLosscls = BCE(Y,Ypredicted)

Dlosssrc =−mean(Spredicted)

3. Generate 16 random labels Yrandom

4. Use T to transform X given Yrandom

X ′ = T (X ,Yrandom)

5. Calculate loss for the discriminator’s source prediction

over the transformed signatures. Class is ignored here,

because the class of traffic does not matter if it is deter-

mined to be fake.

S′predicted = D(X ′)

Dloss′src = mean(S′predicted)

6. Calculate gradient penalty loss DLossgp, as defined in

[4].

7. Calculate the final loss function for the discriminator

Dloss = DLosssrc +Dlosscls +DLoss′src +10DLossgp

8. Perform gradient descent over the discriminator’s

weights to minimize DLoss using the Adam opti-

mizer [15].

Every 5 iterations, we train the transformer using the follow-

ing steps:

1. Calculate loss for the discriminator’s label and source

prediction over the transformed signatures.

Y ′
predicted ,S

′
predicted = D(X ′)

T Losscls = BCE(Yrandom,Y
′
predicted)

T Losssrc =−mean(S′predicted)

2. Calculate the perturbation loss. This measures the mean

absolute distance between unmodified and transformed

traffic.

T Losspert = mean(|X −X ′|)

3. Transform the transformed signature back to its original

class using the transformer, and measure the mean abso-

lute difference between the original and reconstructed

signature.

Xrec = T (X ′
,Y)

T Lossrec = mean(|X −Xrec|)

4. Calculate the final loss function for the transformer

T Loss=T Losscls+T Losssrc+10T Losspert +10T lossrec

5. Perform gradient descent over the transformer’s weights

to minimize T Loss using the Adam optimizer [15].

The signatures generated by our transformer represent a

new distribution of packet sizes and timings that, if matched,

would make Meek traffic appear similar to regular HTTPS

traffic. However, introducing delays or extra data into a traffic

stream in order to match this distribution introduces over-

head [27]. In order to minimize this, we introduce an addi-

tional objective into our transformer’s loss function called

perturbation loss, defined above in step 2 of the training pro-

cess. This measures the mean absolute difference between

the original signature and the transformed signature. By in-

troducing perturbation loss, we train the transformer to make

minimal modifications to the traffic signature while simulta-

neously fooling the discriminator. By minimizing changes

made by the transformer, we reduce the amount of work a

traffic shaping method would have to do to modify the Meek

traffic stream in order to fool classifiers.

In order to reduce overfitting, a situation in which neural

networks generalize poorly due to relying on noise present in

the training set, we introduce early stopping measures [3]. Our

training process iterates repeatedly over the training set until

both the discriminator loss DLoss and transformer loss T Loss

have not decreased by 0.0001 over 2000 batches. This is to

ensure that D and T cease training when they have reached

an equilibrium.

4.3 Evaluation

To avoid biasing our experiments by evaluating models using

data that they have been trained on, we split each dataset into

three parts:

• 30% GAN training set (Gtrain)

• 20% Classifier training set (Ctrain)

• 50% Classifier testing set (Ctest)

Our training and evaluation process is composed of 8 steps:

1. Train the Discriminator (D) and Transformer (T) using

Gtrain, as described in Section 4.2.

2. Train a neural network classifier and decision tree with

Ctrain

3. Split the classifier training set in half

Ctrain1,Ctrain2 = split(Ctrain)

4. Transform one half of the classifier training set into the

opposite class using the transformer, while retaining the

original (unmodified labels). This is to simulate an ad-

versary who is aware of the traffic modification scheme,

and aims to classify modified traffic as its original class.

Xtrain2,Ytrain2 =Ctrain2

X ′
train2 = T (Xtrain2,1−Ytrain2)

C′
train2 = X ′

train2.Ytrain2

C′
train =Ctrain1

⋃
C′

train2

5. Train a neural network classifier over C′
train

6. Evaluate the PR-AUC and FPR of all classifiers over

Ctest

7. Transform Ctest using T

C′
test = T (Ctest)

8. Evaluate the PR-AUC and FPR of all classifiers over

C′
test

The neural network classifiers are simple dense neural net-

works that accept a signature, contain a hidden layer identical

to the discriminator, and output the probability that the signa-

ture represents Meek traffic. The decision tree is the default

decision tree provided by scikit-learn [22], which is identical

to the best-performing classifier type in Wang et al [28].

To avoid overfitting when training C, we separate Ctrain

into a smaller Ctrain with 90% of its original size, and Cval

containing 10% of Ctrain. Each epoch, we evaluate the loss of

N using Cval to calculate the validation loss. If the validation

loss has not decreased by 0.001 in 5 epochs (full iterations

over Ctrain), we stop training the classifier.

We evaluate classifiers using PR-AUC and FPR. PR-AUC

is a particularly useful metric when dealing with a domain in

which the number of negative samples vastly outweighs the

number of positive samples [5]. This suits traffic obfuscation

well, as most internet users do not use Meek. Additionally,

PR-AUC takes prediction confidence into account, and graphs

precision vs recall based on a classifier’s ability to confidently

provide predictions [5]. FPR is commonly used when evalu-

ating obfuscation methods, as falsely blocking a connection

can cause degraded network performance [28]. Additionally,

existing work [28] uses PR-AUC and FPR to measure ob-

fuscator classification performance, allowing our work to be

more readily comparable.

Finally, to increase confidence in our results, we use a

method similar to K-fold validation. We shuffle each dataset,

then repeat the training and evaluation process using all 6

orderings of Gtrain, Ctrain, and Ctest . Our final results are the

average of each evaluation metric over all orderings.

5 Results

The effects of our transformer on classifier PR-AUC and FPR

are shown in Tables 1 and 2 respectively. “Naive NN” is

the neural network classifier trained only on unmodified sig-

natures, while “Informed NN” is the neural network classi-

fier trained on both unmodified and modified signatures. Our

transformer successfully hinders all tested classifiers on all

datasets.

Data Classifier Baseline Modified

PR-AUC PR-AUC

H Naive NN 0.999 0.309

Informed NN 0.915 0.583

Decision Tree 0.998 0.476

U Naive NN 1.000 0.309

Informed NN 0.999 0.428

Decision Tree 1.000 0.503

A Naive NN 1.000 0.309

Informed NN 0.999 0.309

Decision Tree 0.999 0.503

Avg Naive NN 1.000 0.309

Informed NN 0.971 0.440

Decision Tree 0.999 0.494

Table 1: Effect of transformer on PR-AUC

Figures 6, 7, and 8 compare normal signatures from

dataset H and transformed Meek signatures from dataset H

(T (Hmeek)), with a transformer T that has been trained on the

entirety of dataset H. Compared to Figures 2, 3, and 4, the

differences between modified Meek and Normal traffic are

much less pronounced. One notable traffic signature modifica-

tion can be seen in Figure 6, where the difference in payload

lengths between 60 bytes and 70 bytes has been reduced.

Modified Meek inter-arrival times, shown in Figures 7 and 8

are much closer to those of normal traffic, and the frequency

of inter-arrival times above 1000 ms has been reduced.

6 Discussion

The baseline classification results in Figures 1 and 2 show that

Meek is easily identifiable using machine learning attacks. In

every case, our classifiers achieved a near perfect PR-AUC

and FPR on unmodified data. Wang et al. [28], Yao et al. [30],

Data Classifier Baseline

FPR

Modified

FPR

H Naive NN 0.005 1.000

Informed NN 0.654 0.667

Decision Tree 0.001 0.999

U Naive NN 0.000 1.000

Informed NN 0.351 0.501

Decision Tree 0.000 1.000

A Naive NN 0.002 1.000

Informed NN 0.630 0.833

Decision Tree 0.001 0.510

Avg Naive NN 0.002 1.000

Informed NN 0.545 0.667

Decision Tree 0.001 0.836

Table 2: Effect of transformer on FPR

0 10 20 30 40 50 60 70 80 90 10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

20
00

30
00

40
00

50
00

60
00

70
00

80
00

90
00

10
00
0

∞

TCP Payload Length (bytes)

0.0

0.1

0.2

0.3

0.4
F
re
qu
en
cy

Meek (modified)
HTTPS

Figure 6: Average TCP payload length frequency over dataset

H

and Nasr et al. [20] also achieve impressive classification re-

sults. However, this strength can also be a weakness. Machine

learning models are prone to overfitting [3], making them sen-

sitive to perturbation. For example, over all datasets, the naive

neural network achieves a PR-AUC of 1.00 on unmodified

data while the informed neural network achieves a PR-AUC

of 0.971. However, when classifying modified data, the neural

network trained with unmodified data achieves a PR-AUC of

0.309, while the neural network trained using both unmodified

and modified data achieves a PR-AUC of 0.440. However,

the informed neural network tends to perform poorly in terms

of false positive rate compared to the naive neural network.

This may be due to catastrophic interference [11] caused by

conflicting information between the unmodified and modified

training set.

However, because we ignore hostnames, we lose some iden-

0 1 2 3 4 5 6 7 8 9 10 20 30 40 50 60 70 80 90 10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00 ∞

Inter-arrival time from client (ms)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

F
re
qu
en
cy

Meek (modified)
HTTPS

Figure 7: Average inter-arrival time frequency (from client)

over dataset H

0 1 2 3 4 5 6 7 8 9 10 20 30 40 50 60 70 80 90 10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00 ∞

Inter-arrival time to client (ms)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

F
re
qu
en
cy

Meek (modified)
HTTPS

Figure 8: Average inter-arrival time frequency (to client) over

dataset H

tifiable features. During training, we compare Meek traffic to

all regular HTTPS traffic, rather than with HTTPS traffic to

the Meek fronting host. For example, the meek-azure bridge

uses ajax.aspnetcdn.com as the fronting host [23]. This

host typically serves “popular third party JavaScript libraries

such as jQuery” [19]. Traffic that mimics average HTTPS

traffic to all domains may appear unusual to an adversary

compared to typical traffic through this host. In this work,

we assume that an increase in false positive rate is sufficient

to make classification of Meek traffic less feasible, but fu-

ture work may target hosts on CDN used for domain fronting

during data collection.

Additionally, our dataset lacks geographical diversity. All

traffic was generated from the Eastern US, and models gen-

erated from this data may not be useful to Meek users in

other countries. While the Alexa top 1M dataset [1] contains

websites from around the world, the data collection workers

are set to use an English locale, which may result in latency

differences compared to requesting the webpages in other

languages.

7 Conclusions

In this work, we develop a data collection framework capable

of efficiently producing reproducible packet captures of Meek

and normal HTTPS traffic. We evaluate multiple classification

methods over this captured traffic and train classifiers capable

of identifying Meek. We then show that our adversarial mod-

ification scheme is capable of modifying traffic signatures

in a way that reduces average classifier PR-AUC from 0.990

to 0.414 and increases average classifier FPR from 0.183 to

0.834.

While we focus on Meek and normal HTTPS traffic in this

work, our adversarial modification scheme and data collection

framework can potentially be applied to any Tor pluggable

transport in order to identify and correct for weaknesses. In

the future, adversarial models could be applied to shape traffic

in real-time in order to improve any obfuscation method that

relies on protocol mimicry or tunneling.

As adversaries performing censorship become more ad-

vanced, researchers developing obfuscation methods must

become aware of their capabilities. Performing classification

and transformation simultaneously using adversarial machine

learning can allow researchers to model theoretical capabili-

ties of both the censor and the obfuscator.

Availability

All code used to produce the results in this work including the

traffic generation framework, feature extractor, and machine

learning code is open source, and can be accessed at

https://github.com/starfys/packet_captor_sakura

References

[1] Alexa Internet, Inc. Keyword research, competitive anal-

ysis, website ranking. https://www.alexa.com. Ac-

cessed: 2019-05-01.

[2] Shumeet Baluja and Ian Fischer. Adversarial transfor-

mation networks: Learning to generate adversarial ex-

amples. arXiv preprint arXiv:1703.09387, 2017.

[3] Rich Caruana, Steve Lawrence, and C Lee Giles. Overfit-

ting in neural nets: Backpropagation, conjugate gradient,

and early stopping. In Advances in neural information

processing systems, pages 402–408, 2001.

https://github.com/starfys/packet_captor_sakura
https://www.alexa.com

[4] Yunjey Choi, Minje Choi, Munyoung Kim, Jung-Woo

Ha, Sunghun Kim, and Jaegul Choo. Stargan: Uni-

fied generative adversarial networks for multi-domain

image-to-image translation. In The IEEE Conference

on Computer Vision and Pattern Recognition (CVPR),

June 2018.

[5] Jesse Davis and Mark Goadrich. The relationship be-

tween precision-recall and roc curves. In Proceedings of

the 23rd international conference on Machine learning,

pages 233–240. ACM, 2006.

[6] Roger Dingledine, Nick Mathewson, and Paul Syverson.

Tor: The second-generation onion router. In Proceed-

ings of the 13th Conference on USENIX Security Sym-

posium - Volume 13, SSYM’04, pages 21–21, Berkeley,

CA, USA, 2004. USENIX Association.

[7] L. Dixon, T. Ristenpart, and T. Shrimpton. Network

traffic obfuscation and automated internet censorship.

IEEE Security Privacy, 14(6):43–53, Nov 2016.

[8] Arun Dunna, Ciarán O’Brien, and Phillipa Gill. Analyz-

ing china’s blocking of unpublished tor bridges. In 8th

{USENIX} Workshop on Free and Open Communica-

tions on the Internet ({FOCI} 18), 2018.

[9] David Fifield. pluggable-transports/meek - https

transport. https://gitweb.torproject.org/

pluggable-transports/meek.git/commit/?id=

cea86c937dc278ba6b2100c238b1d5206bbae2f0.

Accessed: 2019-05-10.

[10] David Fifield, Chang Lan, Rod Hynes, Percy Wegmann,

and Vern Paxson. Blocking-resistant communication

through domain fronting. Proceedings on Privacy En-

hancing Technologies, 2015(2):46–64, 2015.

[11] Robert M French. Catastrophic forgetting in connection-

ist networks. Trends in cognitive sciences, 3(4):128–135,

1999.

[12] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza,

Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron

Courville, and Yoshua Bengio. Generative adversar-

ial nets. In Z. Ghahramani, M. Welling, C. Cortes, N. D.

Lawrence, and K. Q. Weinberger, editors, Advances in

Neural Information Processing Systems 27, pages 2672–

2680. Curran Associates, Inc., 2014.

[13] Docker Inc. Docker | what is a container? https://

www.docker.com/resources/what-container. Ac-

cessed: 2019-04-21.

[14] Docker Inc. Docker compose | docker documenta-

tion. https://docs.docker.com/compose/. Ac-

cessed: 2019-07-05.

[15] Diederik P Kingma and Jimmy Ba. Adam: A

method for stochastic optimization. arXiv preprint

arXiv:1412.6980, 2014.

[16] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton.

Imagenet classification with deep convolutional neural

networks. In Advances in neural information processing

systems, pages 1097–1105, 2012.

[17] Xiapu Luo, Peng Zhou, Edmond WW Chan, Wenke

Lee, Rocky KC Chang, and Roberto Perdisci. Httpos:

Sealing information leaks with browser-side obfuscation

of encrypted flows. In NDSS, volume 11. Citeseer, 2011.

[18] Diogo Belarmino Coelho Marques. Learning from

http/2 encrypted traffic: a machine learning-based anal-

ysis tool. 2018.

[19] Microsoft. Microsoft ajax content delivery net-

work | microsoft docs. https://docs.microsoft.

com/en-us/aspnet/ajax/cdn/overview. Accessed:

2019-07-02.

[20] Milad Nasr, Alireza Bahramali, and Amir Houmansadr.

Deepcorr: Strong flow correlation attacks on tor using

deep learning. In Proceedings of the 2018 ACM SIGSAC

Conference on Computer and Communications Security,

pages 1962–1976. ACM, 2018.

[21] Vern Paxson. Bro: a System for Detecting Network

Intruders in Real-Time. Computer Networks, 31(23-

24):2435–2463, 1999.

[22] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,

B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,

R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cour-

napeau, M. Brucher, M. Perrot, and E. Duchesnay.

Scikit-learn: Machine learning in Python. Journal of

Machine Learning Research, 12:2825–2830, 2011.

[23] Tor Project. doc/meek – tor bug tracker &

wiki. https://trac.torproject.org/projects/

tor/wiki/doc/meek. Accessed: 2019-07-01.

[24] Tor Project. Tor project: Pluggable transports.

https://2019.www.torproject.org/docs/

pluggable-transports.html.en. Accessed:

2019-04-20.

[25] Amazon Web Services. Aws regions and endpoints -

amazon web services. https://docs.aws.amazon.

com/general/latest/gr/rande.html. Accessed:

2019-07-05.

[26] Khalid Shahbar and A Nur Zincir-Heywood. Traffic

flow analysis of tor pluggable transports. In 2015 11th

International Conference on Network and Service Man-

agement (CNSM), pages 178–181. IEEE, 2015.

https://gitweb.torproject.org/pluggable-transports/meek.git/commit/?id=cea86c937dc278ba6b2100c238b1d5206bbae2f0
https://gitweb.torproject.org/pluggable-transports/meek.git/commit/?id=cea86c937dc278ba6b2100c238b1d5206bbae2f0
https://gitweb.torproject.org/pluggable-transports/meek.git/commit/?id=cea86c937dc278ba6b2100c238b1d5206bbae2f0
https://www.docker.com/resources/what-container
https://www.docker.com/resources/what-container
https://docs.docker.com/compose/
https://docs.microsoft.com/en-us/aspnet/ajax/cdn/overview
https://docs.microsoft.com/en-us/aspnet/ajax/cdn/overview
https://trac.torproject.org/projects/tor/wiki/doc/meek
https://trac.torproject.org/projects/tor/wiki/doc/meek
https://2019.www.torproject.org/docs/pluggable-transports.html.en
https://2019.www.torproject.org/docs/pluggable-transports.html.en
https://docs.aws.amazon.com/general/latest/gr/rande.html
https://docs.aws.amazon.com/general/latest/gr/rande.html

[27] G. Verma, E. Ciftcioglu, R. Sheatsley, K. Chan, and

L. Scott. Network traffic obfuscation: An adversarial

machine learning approach. In MILCOM 2018 - 2018

IEEE Military Communications Conference (MILCOM),

pages 1–6, Oct 2018.

[28] Liang Wang, Kevin P. Dyer, Aditya Akella, Thomas

Ristenpart, and Thomas Shrimpton. Seeing through

network-protocol obfuscation. In Proceedings of the

22Nd ACM SIGSAC Conference on Computer and Com-

munications Security, CCS ’15, pages 57–69, New York,

NY, USA, 2015. ACM.

[29] Philipp Winter and Stefan Lindskog. How china is

blocking tor. arXiv preprint arXiv:1204.0447, 2012.

[30] Zhongjiang Yao, Jingguo Ge, Yulei Wu, Xiaodan Zhang,

Qiang Li, Lei Zhang, and Zhuang Zou. Meek-based

tor traffic identification with hidden markov model. In

2018 IEEE 20th International Conference on High Per-

formance Computing and Communications; IEEE 16th

International Conference on Smart City; IEEE 4th In-

ternational Conference on Data Science and Systems

(HPCC/SmartCity/DSS), pages 335–340. IEEE, 2018.

	Introduction
	Data Collection
	Datasets

	Feature Extraction
	Adversarial Transformation
	Architecture
	Training
	Evaluation

	Results
	Discussion
	Conclusions

