usenix
.’ THE ADVANCED
COMPUTING SYSTEMS

ASSOCIATION

Trusted Browsers for Uncertain Times

David Kohlbrenner and Hovav Shacham, University of California, San Diego

https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/kohlbrenner

This paper is included in the Proceedings of the

25th USENIX Security Symposium
August 10-12, 2016 « Austin, TX
ISBN 978-1-931971-32-4

Open access to the Proceedings of the
25th USENIX Security Symposium
is sponsored by USENIX

Trusted browsers for uncertain times

David Kohlbrenner*
UC San Diego

Abstract

JavaScript in one origin can use timing channels in
browsers to learn sensitive information about a user’s in-
teraction with other origins, violating the browser’s com-
partmentalization guarantees. Browser vendors have at-
tempted to close timing channels by trying to rewrite sen-
sitive code to run in constant time and by reducing the
resolution of reference clocks.

We argue that these ad-hoc efforts are unlikely to suc-
ceed. We show techniques that increase the effective
resolution of degraded clocks by two orders of magni-
tude, and we present and evaluate multiple, new implicit
clocks: techniques by which JavaScript can time events
without consulting an explicit clock at all.

We show how “fuzzy time” ideas in the trusted operat-
ing systems literature can be adapted to building trusted
browsers, degrading all clocks and reducing the band-
width of all timing channels. We describe the design of
a next-generation browser, called Fermata, in which all
timing sources are completely mediated. As a proof of
feasibility, we present Fuzzyfox, a fork of the Firefox
browser that implements many of the Fermata principles
within the constraints of today’s browser architecture.
We show that Fuzzyfox achieves sufficient compatibil-
ity and performance for deployment today by privacy-
sensitive users.

In summary:

e We show how an attacker can measure durations in
web browsers without querying an explicit clock.

e We show how the concepts of “fuzzy time” can ap-
ply to web browsers to mitigate all clocks.

e We present a prototype demonstrating the impact of
some of these concepts.

1 Introduction

Web browsers download and run JavaScript code from
sites a user visits as well as third-party sites like ad net-
works, granting that code access to system resources
through the DOM. Keeping that untrusted code from tak-
ing control of the user’s system is the confinement prob-
lem. In addition, browsers must ensure that code run-
ning in one origin does not learn sensitive information

*dkohlbreQcs.ucsd.edu
thovav@cs.ucsd.edu

Hovav Shacham!
UC San Diego

about the user’s interaction with another origin. This is
the compartmentalization problem.

A failure of confinement can lead to a failure of com-
partmentalization. But JavaScript can also learn sen-
sitive information without escaping from its sandbox,
in particular by exploiting timing side channels. A
timing channel is made possible when an attacker can
compare a modulated clock—one in which ticks ar-
rive faster or slower depending on a secret—to a ref-
erence clock—one in which ticks arrive at a consis-
tent rate. For example, browsers allow web pages to
apply SVG transformations to page elements, includ-
ing cross-origin frames, via CSS. Paul Stone showed
that a fast-path optimization in the feMorphology
filter created a timing attack that allowed attackers to
steal pixels or sniff a user’s browsing history, using
Window.requestAnimationFrame () asamodu-
lated clock [24]. More recently, Oren et al. showed that,
in the presence of a high-resolution reference clock like
performance.now, attackers could use JavaScript
TypedArrays to measure instantaneous load on the last-
level processor cache [19].

Browser vendors are aware of the danger that timing
channels pose compartmentalization and have made ef-
forts to address it.

First, they have attempted to eliminate modulated
clocks by making any code that manipulates secret
values run in constant time. In a hundred-message
Bugzilla thread, for example, Mozilla engineers decided
to address Stone’s pixel-stealing work by rewriting the
feMorphology filter implementation using constant-
time comparisons.

Second, they have attempted to reduce the resolution
of reference clocks available to JavaScript code. In May,
2015, the Tor Browser developers reduced the resolu-
tion of the performance.now high-resolution timer
to 100ms as an anti-fingerprinting measure.” In late
2015, some major browsers (Chrome, Firefox) applied
similar patches (see Figure 1), reducing timer resolution
to 5 us to defeat Oren et al.’s cache timing attack [19].

These efforts are unlikely to succeed, because they se-
riously underestimate the complexity of the problem.

First, eliminating every potential modulated clock
would require an audit of the entire code base, an ambi-
tious undertaking even for a much smaller, simpler sys-
tem such as a microkernel [3]. Indeed, the Mozilla fix
for feMorphology did not consider the possibility that

USENIX Association

25th USENIX Security Symposium 463

floating-point instructions execute faster or slower de-
pending on their inputs, allowing pixel-stealing attacks
even in supposedly “constant-time” code [1].

Second, there are many ways by which JavaScript
code might synthesize a reference clock besides
naively querying performance.now. In this paper,
we show that clock-edge detection allows JavaScript
to increase the effective resolution of a degraded
performance.now clock by two orders of magni-
tude. We also present and evaluate multiple, new
implicit clocks: techniques by which JavaScript can
time events without consulting an explicit clock like
performance.now at all. For example, videos in an
HTMLS5 <video> tag are decoded in a separate thread.
JavaScript can play a simple video that changes color
with each frame and examine the current frame by ren-
dering it to a canvas. This immediately gives an implicit
clock with resolution 60 Hz, and the resolution can be
improved using our techniques.

In short, timing channels pose a serious danger to
compartmentalization in browsers; browser vendors are
aware of the problem and are attempting to address
it by eliminating or degrading clocks attackers would
rely on, but their ad-hoc efforts are unlikely to succeed.
Our thesis in this paper is that the problem of timing
channels in modern browsers is analogous to the prob-
lem of timing channels in trusted operating systems and
that ideas from the trusted systems literature can in-
form effective browser defenses. Indeed, our descrip-
tion of timing channels as the comparison of a reference
clock and a modulated clock is due to Wray [28], and
our fuzzy mitigation strategy technique is directly in-
spired by Hu [10] — both papers resulting from the VAX
VMM Security Kernel project, which targeted an Al rat-
ing [12].

In this paper, we show that “fuzzy time” ideas due
to Hu [10] can be adapted to building trusted browsers.
Fuzzy time degrades all clocks, whether implicit or ex-
plicit, and it reduces the bandwidth of all timing chan-
nels. We describe the properties needed in a trusted
browser where all timing sources are completely medi-
ated. Today’s browsers tightly couple the JavaScript en-
gine and the DOM and would need extensive redesign
to completely mediate all timing sources. As a proof
of feasibility, we present Fuzzyfox, a fork of the Fire-
fox browser that works within the constraints of today’s
browser architecture to degrade timing sources using
fuzzy time. Fuzzyfox demonstrates a principled clock
fuzzing scheme that can be applied to both mainstream
browsers and Tor Browser using the same mechanics.
We evaluate the performance overhead and compatibil-
ity of Fuzzyfox, showing that all of its ideas are suitable
for deployment in products like Tor Browser and a milder
version are suitable for Firefox.

double PerformanceBase::clampTimeResolution
(double timeSeconds)
{
const double resolutionSeconds =
0.000005;
return floor (timeSeconds /
resolutionSeconds) =*
resolutionSeconds;

Figure 1: Google Chrome performance . now round-
ing code

// Find minor ticks until major edge
function nextedge () {

start = performance.now();

stop = start;

count = 0;

while (start == stop) {
stop = performance.now () ;
count++;

}

return [count,start,stopl];

}
// run learning
nextedge () ;

[exp, pre,start] = nextedge();

// Run target function
attack();

// Find the next major edge
[remain, stop, post] = nextedge();

// Calculate the duration

duration = (stop-start)+((exp-remain)/exp) *
grain;
Figure 2: Clock-edge fine-grained timing attack in

JavaScript

2 Clock-edge attack

Web browser vendors have attempted to mitigate tim-
ing side channel attacks like [19] by rounding down the
explicit clocks available to JavaScript to some grain g.
For example, Google Chrome and Firefox have imple-
mented a Sus grain. Figure 1 shows the C++ code
used for rounding a performance . now call in Google
Chrome. Tor Browser makes a different privacy and per-
formance tradeoff and has implemented an aggressive
100ms grain.

Unfortunately, rounding down does not the guarantee
that an attacker cannot accurately measure timing differ-
ences smaller than g. We present the clock-edge tech-
nique for improving the granularity of time measure-
ments in the context of JavaScript clocks. Experimen-

464 25th USENIX Security Symposium

USENIX Association

Know
Major i 3

e Target

I
1 major = i
I

Target = i

8 minor ' (1 +(8+86)) major

Learning Phase Timing Phase

Figure 3: Clock-edge learning and timing

tally, this technique results in an increase in resolution of
at least two orders of magnitude to large grained clocks.
This technique can be generalized to any pair of clocks:
a major clock, which has a known large period, and a
a minor clock, which has a short unknown period. The
major clock is used to establish the period of the minor
clock, and together they can time events with more accu-
racy than alone.

Consider the case of a page wishing to time some
JavaScript function attack () with a granularity
smaller than some known performance.now grain
g. The major clock in this case is the degraded
performance.now, and we use a tight incrementing
for loop as the minor clock. Figures 2 and 3 show how
a page might execute this technique and a visual repre-
sentation of the process.

The page first learns the average number of loop iter-
ations (Lxp) between the major clock ticks Cyp and Cp,.
After learning, the page then runs until a major clock
edge is detected (Cyqr¢) and then executes attack ().
When attack () returns at major clock time Cy,p, the
page runs the minor clock (for L, ticks) until the next
major clock edge (Cpoy) is detected. The page then cal-
culates the duration of attack () as (Cyop — Csarr) +
8% (Lexp — Lremain) / (Lexp)- In the case of g not remaining
constant, we scale the L, by (Cpost — Csop)/(Cro — Ci1)
and set 8= Cp()st - Cstop-

Since (Lexp — Lremain)/ (Lexp) represents a fractional
portion of g, the duration measurement can plausibly ob-
tain measurements as fine grained as g /Lex,,. Thus, as
long as the attacker has access to a suitable minor clock,
the degradation of a major clock to g by rounding does
not ensure an attacker cannot measure at a grain less than

8.

Grain(ms) | Minor | Measured Durations(ms)

None | - | 0.003 0.030 0.298 3.033
0.001 2 0002 0029 0299 3.103
0.005 94 0.004 0.032 0304 3.031
0.01 192 0.003 0.030 0.298 2998
0.08 1649 0.003 0.030 0.303 3.009
0.1 1965 0011 0.027 0299 3.006
1 20470 | 0.053 0.038 0296 3.010
10 193151 | 0.112 0208 0332 3.159
100 1928283 | 0.436 0.469 0560 3.330
500 9647265 | 1.045 1.076 1294 3.437

Table 1: Results for running the clock-edge fine-grained
timing attack against various grain settings. Averages for
100 runs shown.

Table 1 shows the results of applying the clock-edge
technique on a degraded performance.now major
clock on 4 different targets at different grains. The code
in figure 2 is an abbreviated version of the testing code.
Each duration column represents a different number of
iterations in the at tack () function, which is an empty
for loop. The minor ticks column indicates the number
of iterations the learning phase detected that each ma-
jor tick takes. The “None” row indicates the runtime of
attack with no rounding enabled, and other rows in-
dicate the durations measured at different grain settings
using the clock-edge technique. Measurements were per-
formed with a modified build of Firefox that enabled set-
ting arbitrary grains via JavaScript.

As table 1 shows, the clock-edge attack recovers du-
rations significantly smaller than the grain settings. No-
tably, grains in the millisecond and higher range still per-
mit the differentiation of events lasting only tens of us!

Simply rounding down the available explicit clocks
only has a notable impact if the attacker is attempting
to differentiate between events each lasting less than a
microsecond, at which level the clock-edge attack often
provides no additional resolution to the rounded clock.

3 Measuring time in browsers without ex-
plicit clocks

In this section, we demonstrate different methods an
attacker can use measure the duration of events in
JavaScript. An attacker wishing to mount a timing at-
tack against a web browser is not restricted to the use
of performance.now for timing measurements, this
section will present a number of alternative methods
available. Browser features that enable these measure-
ments are implicit clocks. Depending on the how the tar-
get and the clock interact with the JavaScript runtime,
we define them as exiting or exitless. We do not present
an exhaustive list of implicit clocks. Rather, this section

USENIX Association

25th USENIX Security Symposium 465

should be considered the tip of the iceberg for clock tech-
niques in browsers.

3.1 Measurement targets

Recall that the adversary’s goal in a timing attack is to
measure the duration of some event and differentiate be-
tween two or more possible executions. We assume our
adversary’s goal is to measure the duration of some piece
of JavaScript target () or to measure the time until
some event target fires a callback. There are many
potential targets, exemplified by two different timing at-
tacks on web browsers. We categorize targets and attacks
into exiting and exitless and describe a canonical exam-
ple for each.

3.1.1 Exiting targets: privacy breaches with

requestAnimationFrame

Previous work [1] [24] has shown several different ways
to achieve history sniffing or cross frame pixel reading
via timing the rendering of an SVG filter over secret data.
Andrysco et al [1] demonstrate a timing attack on privacy
that differentiates pixels based on how long rendering an
SVG convolution filter takes. This timing requires that
the attacking JavaScript know exactly when the SVG fil-
ter is applied to the target and when the SVG filter fin-
ishes rendering. This is accomplished by sampling a high
resolution time stamp (performance .now) when ap-
plying the CSS style containing the filter and when a
callback for requestAnimationFrame fires. In this
case, JavaScript must exit to allow some other computa-
tion to occur and then receives a notification via a call-
back that the event has completed. We refer to this type
of target as an exiting target, as it exits the JavaScript
runtime before completion.

3.1.2 Exitless targets: cache timing attacks from
JavaScript

Conversely, there are exitless targets, such as Oren et
al’s [19] cache timing attack. This attack does not need to
exit JavaScript for the target to run, instead they need
only perform some synchronous JavaScript function call,
and measure the duration of it. Any exitless target
can be scheduled in callbacks, thus making it an exiting
target, but an exiting target cannot be run in an
exitless manner.

3.2 Implicit clocks in browsers

Supposing that all explicit clocks were removed from the
browser, it is still possible that a motivated attacker can
measure fine-grained durations. Rather than query an ex-
plicit clock, the attacker can find some other feature of
the browser that has a known or definable execution time
and use that as an implicit clock.

We did not test any clocks that resolve durations at an
external observer, such as a cooperating server. For ex-

. L. Clock type
Description Firefox Chrome Safari
Explicit clocks L L L
Video frames L L L
Video played X L L
WebSpeech API L + —
setTimeout X X X
CSS Animations X X X
WebVTT API X X X
Rate-limited server X X X

Table 2: Implicit clock type in different browsers
L Exitless , X Exiting , — Not implemented, + Buggy

ample, a piece of JavaScript could generate a network
request, run a target, and then generate another net-
work request. These clocks are mitigated by the defenses
discussed in section 4.

We observe that just as with exiting and exitless
targets, there are exiting and exitless implicit clocks.
We will refer to a clock or timing method that does not
need to leave JavaScript execution for the value reported
by the clock to change as exitless. Similarly, a timing
method that requires JavaScript execution to exit before
time moves forward is exiting.

All exitless clocks can work for both exiting and ex-
itless targets. However, an exitless target cannot func-
tion with an exiting clock, as the execution of the tar-
get will take control of the main thread, stopping regular
callbacks or events that the exiting clock needs from fir-
ing. There may be exotic exiting clocks that do not have
this restriction, but all of the ones detailed below do. An
exitless attack requires using both an exitless target and
clock (such as in the cache timing attack.)

Depending on the implementation of a browser fea-
ture, the clock technique may be exiting or exitless. A
good example is the updating of the played informa-
tion for an <audio> or <video> tag. This information
is updated asynchronously to the main browser thread
in Google Chrome but will not update during JavaScript
execution in Firefox. Thus, it can be used to construct
a exitless clock in Chrome but only an exiting clock in
Firefox.

See table 2 for how the following clocks manifest in
Chrome 48 (stable), Firefox3, and Safari 9.0.3.

3.2.1 Exitless clocks

Since JavaScript is single threaded and non-preemptable,
exitless clocks do not have to worry about the scheduling
of other JavaScript callbacks or any other events occur-
ring between the target and timing measurements. By the
semantics of JavaScript, an exitless clock is considered a
run-to-completion violation[18] and is a bug. Any time
JavaScript can observe changes caused externally during

466 25th USENIX Security Symposium

USENIX Association

a single callback qualifies as such a bug; it is only when
their timing is dependable that we can construct a clock.
Mozilla has explicitly stated their goal to make Spider-
Monkey (the Firefox JavaScript engine) free of run-to-
completion violations.

We found several exitless
JavaScript in different browsers.

clocks available to

1. Explicit clock queries. While expected, explicit clock
queries are run-to-completion violations and expose
the most accurate timing data. performance.now
is the best source of explicit timing data in JavaScript.

2. Video frame data. By rendering a <video> to
<canvas>, JavaScript can recover the current video
frame. Since the video updates asynchronous to the
browser event loop, this can be used to get a fine
grained time-since-video-start value repeatedly.

On Firefox, video frame data updates at 60 FPS, giv-
ing a granularity of 17ms. We can load a video at
120FPS, which does not allow JavaScript access to
new frames faster, but the frames JavaScript gets are
a more accurate clock. We demonstrate this by gen-
erating a long-running video at 120FPS that changes
the color of the entire video every frame. Thus, by
sampling the current color via rendering the video to
<canvas>, the page can measure how much time
has elapsed since the video started. Video can be ren-
dered off-screen or otherwise invisible to the user and
will still update at 60FPS, making it an ideal choice
for an implicit clock. We have also found that using
multiple videos and averaging the reported time be-
tween them provides additional accuracy.

3. WebSpeech API. This can start/stop the speaking
of a phrase from JavaScript and will give a high-
resolution duration measurement when stopped.
The WebSpeech API allows JavaScript to define a
SpeechSynthesisUtterance, which contains
a phrase to speak. This process can be started
with speak () and then stopped at any time with
cancel (). The cancelation can fire a callback
whose event contains a high resolution duration of
how long the system was speaking for. Thus, the
attacker can start a phrase, run some target JavaScript
function, and then cancel the phrase to obtain a timing
target. Note that while the callback must fire to get
the duration value, the duration measurement stops
when window.speechSynthesis.cancel ()
is called, not when the callback eventually fires. This
makes the WebSpeech API a pseudo-exitless clock in
Firefox, even though we must technically wait for a
callback to get back the duration measurement. Time
moved forward, we just couldn’t observe repeatedly.
Since we can only measure the clock by stopping it,

the clock-edge technique cannot be used to enhance
the accuracy of the clock.

The WebSpeech API is only supported in Firefox
44+, and on many systems will need to be man-
ually enabled in about:config. Additionally,
unless the OS has speech synthesis support, the
clock cannot be used as it will never start speak-
ing. Ubuntu can get this support by installing the
speech-dispatcher package.

4. SharedArrayBuffers. While we did not test these, as
the implementation is still ongoing, any sort of shared
memory between JavaScript instances constitutes an
exitless clock. As demonstrated in [23], this can be
used as a very precise clock in real attacks.

3.2.2 Exiting clocks

Exiting clocks are far more numerous but also signifi-
cantly less useful to an attacker, as their measurements
and target execution are unlikely to be continuous.

1. setTimeout. Set to fire every millisecond, these
then set a globally visible “time” variable when they
do. This is the most basic of the exiting clocks. We set
timeouts every millisecond as this is lowest resolution
that can be set.

2. CSS animations. Set to finish every millisecond, these
then set a globally visible “time” variable in their
completion callback. These behave almost identically
to set Timeouts and are measured in the same way.

3. WebVTT. This API can set subtitles for a <video>
with up to millisecond precision and check which
subtitles are currently displayed. The WebVTT in-
terface provides a way for <video> elements to
have subtitles or captions with the <t rack> element.
These captions are loaded from a specified VTT file,
which can specify arbitrary subtitles to appear for
unlimited duration with up to millisecond precision.
By setting a different subtitle to appear every mil-
lisecond, the page can determine how much time
has elapsed since the video started by checking the
track.activeCues attribute of the <t rack> el-
ement. This only updates when JavaScript is not exe-
cuting.

4. A rate limited download. Using a cooperating server
to send a file to the page at a known rate causes reg-
ular progress updates to be queued in callbacks. Us-
ing the onprogress event for XMLHTTPRequests
(XHRs), the page can get a consistent stream of call-
backs to a clock update function. Note that the rate
of these callbacks is related to the size of the file be-
ing retrieved, as well as the upload rate of the server.

USENIX Association

25th USENIX Security Symposium 467

10

+-t

=10}

20

Measured error (ms)

30}

— WebVT -+ 1
- - WebVTT+clockedge

5 15 25 35 45 55 65 75 85 95 105 115 125 135 145 155
Target duration (ms)

Figure 4: WebVTT error measurements with and without
clock-edge technique

In our experiments, we used a file 100mB in size,
with a server rate limited to 100kB/s using the Linux
utility trickle. The page then assumes that the
server is sending data at exactly 100kB/s and has an
initial learning period to determine the rate at which
the onprogress callbacks fire. After that is com-
plete, the page can continue running as usual, with
the assumption that it now has a regular callback fir-
ing at the calculated rate. Note that the onprogress
events can also be requested to fire during the loading
of <video> elements.

5. Video/audio tag played data. These contain the in-
tervals of the media object that have thus far been
played. By checking the furthest played point re-
peatedly, we can measure the duration of events. In
Firefox, this only updates after JavaScript exits, but
in Chrome, it updates asynchronously (making it an
exitless clock for Chrome).

6. Cooperating iframes/popups from same origin. By
creating a popup in the same origin, or by embedding
iframes from the origin, two pages can cooperate and
act on the same DOM elements. In our testing there
was no way to get exitless DOM element manipula-
tions updates in this situation. Thus, this case reduces
to the set Timeout case or another similar method.
We do not present any timing results for these clocks.
Critically, if a method of sharing DOM element up-
dates exitlessly were found this would become an ex-
itless clock.

3.3 Performance of implicit clocks

The granularity, precision, and accuracy of implicit
clocks varies widely by technique. We observe that

—— Timeout
- - Timeout+clockedge

ol L. J |
- J_ . |)
: N

|
v
T

T -

L
e
1

1 .

=10}

Measured error (ms)

-15}

20+

_l !

I !
mee |
I 1

=25

5 15 25 35 45 55 65 75 85 95 105 115 125 135 145 155
Target duration (ms)

Figure 5: setTimeout error measurements with and
without clock-edge technique

20

10+

-10}+

- [
o
| e
——ef——
I !

| !
SR i E—
|_I__-

Measured error (ms)

=20+ 1

i

1

1

1
L

1

1

— Video frame
- - Video frame+clockedge

-30

5 15 25 35 45 55 65 75 85 95 105 115 125 135 145 155
Target duration (ms)

Figure 6: Video frame error measurements with and
without clock-edge technique

most implicit clocks can be improved with the clock-
edge technique from section 2. By substituting the
performance.now major clock with the implicit
clock technique, and using a suitable minor clock, most
techniques showed notable improvements in accuracy. In
this case, we want to examine how easy it would be to
differentiate two different duration events. Thus, tight
error bounds that are consistent are ideal.

Applying the clock-edge technique to exitless
clocks only requires the replacement of the explicit
performance.now call to some other exitless clock;
no change to the minor clock is needed. Exiting
clocks require a new minor clock technique; instead
of a tight loop, the minor clock must schedule regular
timeouts that check the state of the implicit major clock.
Otherwise, the exiting major clock would not change

468 25th USENIX Security Symposium

USENIX Association

40

20 +

S e

Measured error (ms)
- _i. -
|

-40} T

—60 |

~—— XHR
- - XHR+clockedge

5 15 25 35 45 55 65 75 85 95 105 115 125 135 145 155
Target duration (ms)

Figure 7: Throttled XMLHTTPRequest error measure-
ments with and without clock-edge technique

40

30

1
20 - 1 ‘

10}-- _ - -

Measured error (ms)

L

'

- I 1
-1

1

1

[

—10}+ 1

—— CSS Animation
- - CSS Animation+clockedge

5 15 25 35 45 55 65 75 85 95 105 115 125 135 145 155
Target duration (ms)

Figure 8: CSS animation error measurements with and
without clock-edge technique

state while the minor clock is running. While repeated
setTimeout calls would work, set Timeout of O is
actually a 4ms timeout per the HTMLS spec, making it
a major clock. Instead, we use repeated postMessage
calls to the current window. These execute at a much
higher rate, but the period is unknown. Thus the new
implicit major clock now has a fast, unknown period
minor clock, just as in the exitless case.

Measurements were done with the same Firefox as in
section 2. Error (y values) was calculated as the dif-
ference between the clock technique measurement and
the actual duration as reported by performance . now.
Target durations (x values) are the expected duration
(N milliseconds) of the target event, which may differ
slightly from actual duration due to system load or even
the implicit clocks themselves interfering in the case of

10 T T T T T

o) I]

|
-
o
T

|
[
o
T

Measured error (ms)

|
w
o
T

—40 | -_ £

b i i S R T R S e e o

=50

5 15 25 35 45 55 65 75 85 95 105 115 125 135 145
Target duration (ms)

Figure 9: WebSpeech error measurements without clock-
edge technique

exiting clocks. Each target was measured 100 times, with
measured durations of O or less removed. While actual
durations varied slightly from expected, there was not
considerable noise.

The exitless target we measure is a loop that runs for
N milliseconds, as determined by performance . now.
Our exiting target is a set Timeout for N milliseconds.

Figures 4, 5, 6, 7, 8, and 9 show the clock technique er-
ror with and without clock-edge improvements for a vari-
ety of clock techniques described above. WebSpeech has
no clockedge data for the reasons detailed in 3.2.1. Note
that the y-axis differs per figure, to allow for easier com-
parison between clock-edge and non-clock-edge results.
As can be seen in WebVTT, throttled XHRs, and video
frame data, many clock techniques have a large native pe-
riod that they operate at. These large periods leave plenty
of space for clock-edge to improve accuracy. WebVTT
shows massive improvement in the clock-edge case due
to the precision of its major clock ticks; the more precise
the original technique, the more accurate clock-edge can
be.

Figures 11 and 10 show the comparison of the av-
eraged error for all techniques and all techniques with
clock-edge respectively. The closer a line is to O on
these graphs, the more accurate the averaged measure-
ments will be for that technique. Again, the exceptional
accuracy of WebVTT with clock-edge for long-duration
events is evident.

4 Fermata

In this section we describe Fermata, a theoretical
browser design that provably degrades all attacker visi-
ble clocks. Sections 5 and 6 describe our prototype im-
plementation, Fuzzyfox, and an evaluation. Fermata is

USENIX Association

25th USENIX Security Symposium 469

Average error (ms)
[
N
(=)
T
—

|
N
o

Timeout™ . *“
Video Frames "/ \
€SS Animation N e
WebVTT h
WebSpeech

—60 |

0 20 40 60 80 100 120 140
Target duration (ms)

Figure 10: Average error for all clock techniques with-
out clock-edge

an adaptation of the fuzzy time operating systems con-
cept detailed in [10] to web browsers.

Since browser vendors have expressed an interest
in degrading time sources available to JavaScript, we
present Fermata as a design ideal for a browser that will
provably degrade all clocks. Fermata’s goal is to pro-
vide the attacker with only time sources that update at
a rate such that all possible timing side channels have a
bounded maximum bandwidth. This includes the use of
all the implicit clocks described in section 3 as well as
any other such clock unknown to us.

4.1 Why Fermata?

We propose Fermata because we believe that attempting
to audit and secure all possible channels in a modern web
browser is infeasible. The evaluation of a provable se-
curity focused microkernel found several tricky timing
channels [3]. In that case, the microkernel was designed
to be audited and already had a number of concerns ac-
counted for; this is not true in the case of a modern web
browser. Rather than allow any unknown channel to leak
data arbitrarily until fixed, Fermata restricts all known
and unknown channels to leak at or below a target ac-
ceptable rate.

Fermata proposes a principled alternative to the “find
and mitigate all clocks” methodology that Tor Browser
has already begun. Rather than manually examine every
DOM manipulation, extension, or new feature, Fermata
requires minimal defined interfaces between all com-
ponents. By automatedly proving that all information
passes through these interfaces and that all such inter-
faces are subject to the fuzzying process, Fermata will
drastically reduce the burden of code that needs to be ex-
amined. This is analogous to other such approaches in

20 |

Average error (ms)
|
N
o

|
i
o

XHR
Timeout

Video Frames
CSS Animation
WebVT

—60 |

0 20 40 60 80 100 120 140
Target duration (ms)

Figure 11: Average error for all clock techniques with
clock-edge where available

the programming languages and formal software com-
munity.

Limiting the channel bandwidth for an attacker leak-
ing information is not a complete solution to timing
attacks on browsers, but it is a realistic one. Previ-
ous attacks on history sniffing [1] [24] have consistently
cropped up. These privacy breaches are only as valuable
as the amount of data they can collect. Learning that
a user has visited 2-3 websites is not likely to create a
unique profile of them. Learning tens of thousands of
websites likely would [27]. History sniffing attacks are
therefore classified based on how fast they can extract the
visited status of a URL. By limiting the rate at which this
information can leak, Fermata can make history sniffing
impractical. As an example, [27] indicates that an at-
tacker may need to sniff in excess of 10,000 URLs to
create a reasonable fingerprint for a user. With an attack
like [24] the attacker can read 60 or more URLS per sec-
ond. Previous attacks not utilizing timing side channels
read in excess of 30,000 URLs per second.

We expect that Fermata would allow a channel band-
width of < 50 bits per second in the general case, and
< 10 for security critical workflows. The protection is
even stronger than initially obvious, as attacks that rely
on small timing differences are entirely unusable. Only
attacks that can scale their detection thresholds up (for
example, Andrysco et al [1]) can still leak data. If the at-
tack relies on a small, inherent microarchitecture timing,
such as Oren et al’s [19] cache timing attack, which mea-
sured differences around 100ns, this timing difference
may no longer be perceptible at all. An additional ben-
efit is that many of these attacks require intensive learn-
ing phases, during which many measurements must be
taken to establish timing profiles. Fermata would force
this learning phase to take significantly longer, adding

470 25th USENIX Security Symposium

USENIX Association

to the time-per-bit of information extracted. From this
survey of previous attacks, we believe that a strong lim-
itation on channel bandwidth represents an powerful de-
fense against timing attacks in browsers.

4.2 Threat model

We define our attacker as the canonical web attacker who
legitimately controls some domain and server. They are
able to cause the victim to visit this page in Fermata
and run associated JavaScript. The attacker thus has two
viewpoints we must consider: any external server con-
trolled by the attacker and the JavaScript running in Fer-
mata.

The attacker in our case possesses a timing side-
channel vulnerability they wish to use on Fermata. The
specific form of the vulnerability does not matter, only
that it can be abstracted as a single JavaScript function
that is called either synchronously or asynchronously.
The attacker uses the duration of this function to derive
secret information about the victim, possibly repeatedly.

We do not present a solution for plugins like Adobe
Flash or Java applets. Significant changes to the runtime
of these plugins on-par with Fermata itself would need to
be made for them to be similarly resistant. Considering
the number of known vulnerabilities and privacy disclo-
sures in most of these plugins, we do not believe they
should be a part of a browser design focusing on secu-
rity and privacy. Alternatively, such plugins should be
disabled during sensitive work flows.

The attacker succeeds against Fermata if they are able
to extract bits using their side channel at a higher rate
than the maximum channel bandwidth.

4.3 Design goals and challenges for Fermata

Fermata must mediate the execution of JavaScript to re-
move all exitless clocks and degrade all exiting clocks.
This would include mediating and randomly delay-
ing all network I/O, local I/O, communication between
JavaScript instances (iframes, workers, etc), and commu-
nication to other processes (IPC). If Fermata were addi-
tionally able to make all DOM accesses by JavaScript
asynchronous and delay them in the same principled
fashion, this would accomplish our goals. The coupling
of JavaScript’s globally accessible variables to the DOM
represents the most significant challenge to such a de-
sign and presents a shared state problem not found in the
model for this work [10].

Given this shared state problem, Fermata has two op-
tions for JavaScript: redesign JavaScript execution to be
entirely asynchronous or degrade explicit clocks and me-
diate known APIs in a principled manner. The former
provides a formal guarantee but cannot be done in cur-
rent browser architectures. We explore options for the
latter later in this section and in Fuzzyfox.

4.4 Fermata guarantees

We believe that the analysis of Hu’s fuzzytime by Gray
in [5] applies to Fermata. The means that we can place
an upper bound on the leakage rate of Fermata at ﬁ

symbols per second, assuming the median tick rate of §.

As in [5], we assume that increasing the size of the al-
phabet used will provide negligible benefits. Thus, this
bound is an upper bound for the bits-per-second leakage
rate of Fermata. We view the vulnerable functionality
targeted by the attacker in the strongest possible way:
the attacker has complete control over when and how it
leaks timing information. This is effectively the high/low
privilege covert channel scenario the fuzzytime disk con-
tention channel is analyzed under. Similarly, in Fermata,
the leaking feature may have access to the same fuzzy
clock as the attacker. This allows them to synchronize in-
stantly from “low to high” privilege as in the fuzzytime
analysis. Thus, the side channel threat model Fermata
operates under is a subset of the fuzzy time model.

There is further analysis of the capacity of covert chan-
nels with fuzzy time defenses in [6]. The general case
problem of covert channel capacity under fuzzy time ap-
pears to be intractable but can be bounded under specific
circumstances.

4.4.1 Transmitted bits vs information learned

Fermata makes a guarantee about the actual transmitted
bitrate of some side channel. This has obvious benefits in
the case of leaking a CSRF token or a cryptographic key:
the bits the attacker needs to learn equals the number of
bits in the key or token. However, this becomes trickier
to quantify with a goal like history sniffing where the
details of the side channel can influence what the attacker
learns with each leaked bit.

Consider a timing side channel that can indicate if a
single URL has been visited by the victim one at a time.
Each time the channel is used one bit of information
(visit status of the URL) is leaked. If the attacker wishes
to learn the visit status of 10,000 URLs they must check
each individually.

If instead a timing side channel could indicate if any
URLSs from an arbitrary set were visited, the attacker
could use this along with prior knowledge that almost all
URLSs have not been visited to learn about more URLS in
less bits. Given some set of 10,000 URLSs, the side chan-
nel indicates that at least one was visited and then, in a
divide-and-conquer approach, the first half indicates that
none were visited. How many bits were leaked? Two
bits were transmitted: that some URLs were visited in
the 10,000, and that no URLSs in the first 5,000 were vis-
ited. However, we have learned the visit status of 5,000
URLs. This is only possible because the attacker can as-
sume the majority of URLSs are not visited.

We believe that Fermata’s guarantees still constitute a

USENIX Association

25th USENIX Security Symposium 471

valuable defense against using timing side channels for
history sniffing. First, not all history sniffing side chan-
nels have allowed checking the visit status of batches of
URLs. In these cases Fermata limits learning the visit
status of each URL individually. Second, if the attacker
wishes to learn specific URLs from the browsing history
(ex: to launch a targeted phishing attack), rather than just
learn a rough fingerprint, they will still need to examine
each individual URL regardless of how the side channel
can operate.

Fermata cannot provably prevent a timing side chan-
nel from operating; it can only constrain the rate of bits
transmitted across the channel. For any side channel it
is important to consider the attacker’s goals along with
how the side channel operates to understand what level
of mitigation Fermata will provide. There are multiple
reasons (compression, prior knowledge, etc.) that might
lead to a side channel exhibiting behavior like described
above. In all of these cases Fermata provides the same
guarantee about channel bandwidth.

4.5 Isolating JavaScript from the world

A potential solution for JavaScript is to remove all
run-to-completion violations, effectively ensuring that
JavaScript cannot observe any state changes to the DOM
or otherwise during a single execution. This necessarily
includes all realtime clock accesses, as well as any
other discovered exitless clocks. Since JavaScript will
always have access to a fine grained minor clock (the
for loop), it is critical that all exitless major clocks be
removed. In the case of performance.now, this will
result in the feature becoming an exiting clock, requiring
that JavaScript stop execution before the available clock
value changes.

The catch of the latter method is in how to remove all
potential exitless clocks. If the upcoming SharedArray-
Buffer API becomes available, this presents a highly ac-
curate exitless clock that Fermata cannot mitigate with-
out returning it to a message passing interface. Remov-
ing all of these potential exitless clocks requires an ex-
amination of all interfaces the JavaScript runtime has.

With all exitless clocks removed, the design need only
focus on degrading exiting clocks to meet the target max-
imum channel bandwidth.

4.6 Degrading explicit clocks

Explicit clocks (ex: performance.now, Date, etc.)
are degraded to some granularity g and update unpre-
dictably. As in Hu [10], we accomplish this by perform-
ing updates to the clock value (at the granularity g) at
randomized intervals. g is a multiple of the native OS
time grain g, (generally lns). Each randomized inter-
val is a “tick,” during which the available explicit clocks
do not change. At the beginning of each tick, we up-

date the Fermata clock to the rounded-down wallclock.
Since the tick duration is not the same as g, the Fermata
clocks will not always change in value every tick. This
design guarantees that the available explicit clocks are
only ever behind and are behind by a bounded amount of
time, g — g, + (g/2). Note that a clock’s granularity does
not alone define the accuracy to which it can be used to
time some event, as seen with section 2.

Tick duration is not constant but is instead drawn from
a uniform distribution with a mean of g/2. If intervals
were constant and thus clock updates occurred exactly
on the grain, the attacker could use the same clock-edge
technique as in section 2.

4.7 Delaying events

The randomized update intervals (ticks) are further di-
vided into alternating upticks and downticks for the pur-
poses of delaying events and I/O. This mimics their usage
in Hu [10]. Downticks cause outbound queued events to
be flushed, and upticks cause inbound events to be deliv-
ered.

4.8 Tuning Fermata

Since the defensive guarantee provided by Fermata is
only a maximum channel bandwidth, a few users may
want to change the tradeoff between responsiveness and
privacy. Fermata will provide this option via a tunable
privacy setting that allows setting the acceptable leaking
channel bandwidth. In turn, this will modify the aver-
age tick duration and the explicit time granularity, both
of which affect usability. We expect that only developers
(including of browser forks like Tor Browser) or users
with specific privacy needs would interact with these set-
tings.

5 Fuzzyfox prototype implementation

In this section we describe Fuzzyfox*, a prototype imple-
menting many of the principles of the Fermata design in
Mozilla Firefox. Fuzzyfox is not a complete Fermata so-
lution but does show that the removal of exitless clocks
and the delaying of events is a feasible design strategy
for a browser.

Fuzzyfox attempts to mitigate the clocks of sections 2
and 3 by using the ideas in Fermata. Web browsers have
an interest in degrading clocks available to JavaScript to
reduce the impact of both known and unknown timing
channel attacks. Fuzzyfox is a concrete demonstration
of techniques that will make a browser more resistant to
such timing attacks. As in Fermata, Fuzzyfox has a clock
grain setting (g) and an average tick duration (¢, = g/2).
All explicit clocks in Fuzzyfox report multiples of g.

We will refer to Firefox when discussing default be-
havior and Fuzzyfox when discussing the changes made.

472 25th USENIX Security Symposium

USENIX Association

5.1 Why Fuzzyfox?

We built Fuzzyfox for three reasons:

Building a new web browser is a monumental task.

. We did not know if a Fermata-style design would re-
sult in a usable experience. It was entirely possible
that the delays induced would render any Fermata-
style designs unusable.

3. We want to deploy the insights of channel bandwidth

mitigation to real systems like Tor Browser.

N =

Fuzzyfox does not have the complete auditability ad-
vantages that Fermata would. However, we believe that
our insights about principled fuzzying of explicit clocks
can be directly applied to Tor Browser as an improve-
ment to their ongoing efforts.

5.2 PauseTask

The core of the Fuzzyfox implementation is the
PauseTask, arecurring event on the main thread event
queue. The PauseTask provides two primary func-
tions: it implicitly divides the execution of the event
queue into discrete intervals, and it serves as the arbiter
of uptick and downtick events.

Once Firefox has begun queuing events on the event
queue, Fuzzyfox ensures that the first PauseTask gets
added to the queue. From this point on, there will always
be exactly one PauseTask on the event queue.

PauseTask does the following on each execution:
determines remaining duration, generates retroactive
ticks, sleeps remaining duration, updates clocks, flushes
queues, and queues the next PauseTask.

Determine remaining duration

The PauseTask checks the current OS realtime clock
(T1) with microsecond accuracy using gettimeofday.
Comparing this against the expected time between ticks
(D.) and the end of the last PauseTask (73) gives the
actual duration (D,). If D, < D,, PauseTask skips di-
rectly to sleeping away the remaining duration, D, — D,,.

Optional: Retroactive ticks

Otherwise, PauseTask must retroactively generate the
upticks and downticks that should have occurred. This
ensures that even by being long running JavaScript can-
not force a 0 sleep duration PauseTask.

Sleep remaining duration

PauseTask finishes out the remaining duration via
usleep. usleep is not perfectly accurate, and has a
fixed overhead cost. In our testing, usleep error varies
based on the duration but is never enough to be an issue
for Fuzzyfox.

Update all system clocks and flush queues

PauseTask now generates the new canonical system
time. This is accomplished by taking the OS realtime
clock and rounding down to the Fuzzyfox clock grain
setting.

There are two underlying explicit time sources
available to JavaScript, Time and performance.
PauseTask directly updates the canonical TimeStamp
time, which is used by performance, and delivers a
message to the JavaScript runtimes to update Time’s
canonical time. Our review found that all of the other
time sources we knew of used TimeStamp.

In our prototype, the only I/O queue that needs to
be flushed is the DelayChannelQueue (see section 5.3.)
This only occurs if the currently executing PauseTask
is a downtick.

Queue next PauseTask event

Finally, PauseTask queues the next PauseTask on
the event queue. This sets the start time (77), marks
the new PauseTask as either uptick or downtick, as
well as drawing a random duration from the uniformly
random distribution between 1 to 2 X t,. PauseTasks
are queued exclusively on the main thread to ensure they
block JavaScript execution as well as all DOM manipu-
lation events.

5.3 Queuing

All events visible to JavaScript must be queued in Fuzzy-
fox. Unfortunately, there is not a singular place or even
explicit queues available for all events in Firefox. We
use PauseTask to create implicit queues for all main
thread events (including JavaScript callbacks, all DOM
manipulations, all animations, and others) and construct
our own queuing for network connections.

Timer events (including CSS animations,
setTimeout, etc.) do not need to be explicitly
modified from Firefox behavior, as they run in a separate
thread that checks when timers should fire based on
TimeStamp. As Fuzzyfox ensures all TimeStamps are
set to our canonical Fuzzyfox time, this is not a problem.

DelayChannelQueue
We implemented a simple arbitrary length
queue for outgoing network connections called

DelayChannelQueue. This queue contains any
channels that have started to open and stops them from
connecting to their external resource. In the Fuzzyfox
prototype, we only queue outgoing HTTP requests,
although it could easily be extended to more channel
types. Upon receiving a downtick notification from
PauseTask, the queue is locked and all currently
queued channel connections are completed and flushed
from the queue.

USENIX Association

25th USENIX Security Symposium 473

6 Fuzzyfox evaluation

We evaluated our prototype Fuzzyfox in both effective-
ness (how it degrades clocks) and performance.

All evaluations are compared against a clean Firefox
build without the Fuzzyfox patches. Firefox trunk® was
used as the basis and built with default build settings.
Fuzzyfox patches are then applied on top of this com-
mit and built with the same configuration. All tests were
performed on an updated Ubuntu 14.04 machine with an
Intel i5-4460 and 14GB of RAM. The only applications
running during testing were the XFCE window manager
and Fuzzyfox. Fuzzyfox and Firefox were both tested
using the experimental e10s Firefox architecture. NSPR
logging was enabled to capture data about Fuzzyfox in-
ternals.

6.1 Limitations

Fuzzyfox is not a complete Fermata implementation and
is unable to guarantee a maximum channel bandwidth.
Since we did not isolate the JavaScript engine from the
DOM or all I/O operations, we did not interpose on all
interfaces as would be required in a Fermata implemen-
tation. This is purely a practical decision, as accomplish-
ing this in Firefox would require manually auditing the
entire codebase. We do not, for example, interpose on
synchronous IPC calls from JavaScript. See section 6.2.3
for an example of how this can break the Fermata guar-
antees.

Unfortunately, since our PauseTasks can be delayed
by long running JavaScript on the main thread, we can
no longer bound the difference between the OS realtime
clock and the available explicit clocks. We do still guar-
antee that all explicit clocks are only ever behind real-
time.

While we experimented with a number of different
grain settings, the settings providing very high privacy
guarantees (100s of milliseconds) have severe usability
impact. We believe that a clean Fermata implementation
may not incur such a strong usability impact at similar
grain settings.

6.2 Effectiveness

Effectiveness is measured as the available resolution for
a given clock. In the ideal case, all clocks in Fuzzyfox
should be degraded provide a resolution no less than g.
We measure the observed properties of the clocks de-
scribed in section 3 between Firefox and Fuzzyfox. We
set the explicit time granularity (g) to 100ms and the av-
erage PauseTask interval (#,) to 50ms for these tests.
We chose g = 100ms because a large g value most clearly
illustrates the difference between Fuzzyfox and Firefox.
See section 6.3 for an evaluation of the impact of high g
values on performance.

The following figures show scatter plots for several

500

Fuzzy performance.now+clockedge
Grain performance.now+clockedge

T

. _: ”il!l!

X »I 11
|.|5 :
Q 100 200 300 400 500
Actual target duration (ms)

~
=]
S

w
<]
o

[N]
o
=]

Clock technique measurement (ms)

o
o
(=]

Figure 12: performance.now measurements with
clock-edge on Fuzzyfox (exiting) and Firefox (exitless,
100ms grain)

500

Fuzzy frame data
Frame data+clockedge

2
S
S

w
(=3
o
L
'
-‘-7
=
—
_
5T -
- —
.&
¥e =
e 8 |

Clock technique measurement (ms)

™~
=]
S
= -
-
x
x
: AR oo
o xg
%% xom
0 x
=

100 i i 1] S 4 ¥
il
Igll! ; fxig £
olif ¥ ¥ ‘ ‘
0 100 200 300 400 500

Actual target duration (ms)

Figure 13: Frame data clock measurements on Firefox
and Fuzzyfox

clock techniques as they operate in Firefox and in Fuzzy-
fox. In each, a perfectly accurate clock would follow the
dashed grey line on x = y. Note that these figures show
actual duration and clock technique duration, rather than
target duration and error as in section 3.3. This is due
to Fuzzyfox being unable to dependably schedule targets
less than g (100ms) in duration. Thus, while the same
testing code was used in Fuzzyfox and in Firefox, the
actual durations of events are much longer in Fuzzyfox.
Finally, there are no exitless clocks that we know of in
Fuzzyfox to test, which would have been a closer com-
parison.

6.2.1 performance.now

Since time no longer moves forward during JavaScript
execution, performance.now iS now an exiting

474 25th USENIX Security Symposium

USENIX Association

500

Fuzzy WebVTT+clockedge

WebVTT+clockedge
= 400 e 0 ememome e ow o
£ 1]
- SN x
£ g ¥
g il
£ LER
2 300 @ zmem ——
@ 3
(1] l‘
L)
: il
o o |
3)
g 200 . "
£ T
g x o at
= %
v ®
& 10 ’;(" :
o B 2 -

X ~§l'
< (i
oLi"‘
0 100 200 300 400 500

Actual target duration (ms)

Figure 14: WebVTT clock measurements on Firefox and
Fuzzyfox

clock. Figure 12 shows the results of using the
clock-edge technique on performance . now for both
Fuzzyfox and Firefox with a grain set to 100ms. Notably,
clock-edge no longer improves the accuracy of the mea-
surements! This demonstrates that the Fuzzyfox model
successfully degrades explicit clocks.

6.2.2 Video frame data

Unexpectedly, Fuzzyfox transforms the video frame data
clock from exitless to exiting. This is probably because
the frame extracted for canvas is determined using the
current explicit clock values (TimeStamp.) Since time
does not move forward during JavaScript execution,
frame data is now an exiting clock. In general, we expect
that run-to-completion violations (and by extension
most exitless clocks) would not be properly degraded by
Fuzzyfox. Figure 13 shows the exiting frame data clock
on Fuzzyfox and Firefox.

6.2.3 WebSpeech API

Fuzzyfox degrades the WebSpeech API only because
the elapsedTime field is drawn using the explicit
clocks in Fuzzyfox. The starting and stopping of the
speech is still synchronous, so it is possible some
other piece of information passed back by the speech
synthesis provider could provide a more accurate clock.
WebSpeech should not be considered properly isolated
by Fuzzyfox. Only if the starting and stopping of speech
synthesis were queued like other events would Fuzzyfox
correctly handle WebSpeech.

6.2.4 setTimeout

As setTimeout events are fired from the timer thread
based on the degraded explicit clocks, they are no longer
able to fire more often than the explicit time grain g of
100ms.

5000

4000 |

3000 +

2000 -

95th percentile loading time (ms)

1000 -

e — G G

e
0 1 2
Number of sequential loads (spread 2

wE

Figure 15: Page load times with variable depth for all
Fuzzyfox configurations at a spread of 2

var njs=document.createElement (' script’)

njs.setAttribute (' type’,’ text/javascript’)

njs.setAttribute (' src’,’layer2.js’)

document .getElementsByTagName (' head’) [0] .
appendChild(njs)

Figure 16: Iterative page load JavaScript

6.2.5 CSS Animations

As with setTimeout, CSS animation events are fired
from the timer thread based on the degraded explicit
clocks. Thus, they too are not able to be used as a clock
of finer grain than the explicit time grain g.

6.2.6 XMLHTTPRequests

XMLHTTPRequests are properly degraded by Fuzzyfox.
Since the callbacks for onprogress are queued on the
main event queue and then gated by PauseTask, they
are no longer timely when processed.

6.2.7 WebVTT subtitles

We examined the WebVTT subtitle implicit exiting clock
in detail, as it performed among the best with the clock-
edge technique on vanilla Firefox. Figure 14 shows the
results for the same WebVTT clock techniques as de-
scribed in section 3.2.2 on both Fuzzyfox and Firefox.
Note that the clockedge code provided no benefits to the
Fuzzyfox case.

6.3 Performance

Performance impact is difficult to measure, as most per-
formance tools for browsers rely on accurate time mea-
surements via JavaScript.

We performed a series of page load time tests, which
show predictable results. We measure the impact of both
depth of page loads and the spread of initial requests.

USENIX Association

25th USENIX Security Symposium 475

5000

4500

N
o
o
<]

95th percentile loading time (ms)
w w
(=] w
o o
o o

2500

+ ¥

2000 . ‘
1 2 3 4

Number of initial concurrent requests

Figure 17: Page load times with variable spread and

depth for g = 100ms

Our testing setup consisted of 20 test pages and 5 dif-
ferent fuzzyfox/Firefox configurations. The depth of
the test pages represents how many sequential requests
are made. Each request consists of inserting a script
file of the form in figure 16. Each one has the loaded
script be the next “layer” down, with layer O being an
empty script. Thus, a test page that is 3 deep makes
4 sequential requests: page.html, layer2.]s,
layerl. js, layer0. js. Spread is achieved by the
base page.html performing several duplicate initial
requests to the top layer. Thus, a spread of 2 and a depth
of 2 results in requests for: page .html, layerl. js,
layerl.js, layer0.]s, layer0. js. After the fi-
nal page load completes, the total time from initial page
navigation until completion is stored, and this process is
repeated 1000 times per page test. We generate 20 test
pages by combining up to 5 layers of depth with a spread
from 1 to 5. We served the test pages via a basic nginx
configuration running on the same host as the browser.

Figures 15 and 17 show two different views of some
of the results, with the 95th percentile of load times be-
ing shown for g = 100ms. As expected, increasing the
spread for a given depth (as shown in figure 17) results
in almost no change to load times. All other browser
configurations (see figure 18 for g = 5ms) had nearly
identical results, with differing y-intercepts based on g.
This occurs because outgoing HTTP requests in Fuzzy-
fox are batched, so queuing multiple requests at once
does not incur any g-scaled penalties. However, as figure
15 shows, increasing the depth incurs a linear overhead
with the slope and intercept scaled by the value of g. The
worst case for Fuzzyfox are pages that do large numbers
of sequential loads, each requiring JavaScript to run be-
fore the next load can be queued. Unfortunately, many
modern webpages end up performing repeated loads of

Depth 4
Depth 3
Depth 2

Depth 1 ||
Depth 0

N
o
o

—
@
o

95th percentile loading time (ms)

-
o
o
T
E3
A

-
=
o

N J—————

M M

2 3 4
Number of initial concurrent requests

120
1

Figure 18: Page load times with variable spread and
depth for g = 5ms

various libraries and partial content. One potential solu-
tion would be more widespread use of HTTP2’s Server
Push which would alleviate the repeated g scaled penal-
ties for resource requests.

JavaScript engine tests, such as JetStream, reported
identical scores of 181 for both Firefox and Fuzzyfox.®
Fuzzyfox predictably records a maximum FPS equal to
the average PauseTask fire rate or 20 FPS for g =
100ms, as compared to 60 FPS in the Firefox case.

6.3.1 Tor Browser

We also ran our page load tests on vanilla Tor Browser”.

Rather than access the pages over the localhost interface,
they are accessed over the Tor network. No other changes
to the test setup were made. Due to the major changes in
routing, the load times we observed are far more variable
than in the Firefox or Fuzzyfox case and show no signif-
icant trends on the whole. If we compare the range of
page load times between Fuzzyfox (g = 100ms) and Tor
Browser in figures 19 and 20, we see that Tor Browser
imposes a significantly higher overhead most of the time
in both initial page load and in page load completion.
Other spread levels show similar behavior. As in pre-
vious figures we show the 95th percentile load comple-
tion times but we additionally show the range from the
minimum completion (onload fires) time as a shaded
region.

6.3.2 Real world page loads

Table 3 shows a rough macro-benchmark of real-world
page load times for Firefox, Fuzzyfox (various grains),
and Tor Browser. In each case, the same Google search
results page was loaded. These tests were manually per-
formed and the reported page load time comes from the
Firefox developer tools. Each load requested between

476 25th USENIX Security Symposium

USENIX Association

3500 T T

3000 |

2500 |

2000
1500 |
1000 q

S00F Tor Browser
100ms Fuzzyfox

0 L
1 2 3 4
Number of initial concurrent requests

95th percentile loading time (ms)

Figure 19: Range of page load completion times with
variable depth at a spread of O for Tor Browser and
Fuzzyfox g = 100ms

Reported load time(s)

Browser or Grain(ms) Reload Force Reload

Firefox 0.82 0.86
0.5 0.84 0.79
1 0.85 0.85
5 0.94 0.94
10 1.03 1.04
50 2.09 1.71
100 2.86 2.60
Tor 3.78 7.18

Table 3: Average page load times for https://www.g
oogle.com/?gws_rd=sslfg=test+search with
10 reloads and 10 force reloads (no caching) on Firefox,
Fuzzyfox, and Tor Browser

9 and 12 resources. The “force reload” column corre-
sponds to a cache-less reload of the page, whereas the
“reload” column indicates the load time with caching al-
lowed. Minor differences between the reload and force
reload results for a given browser are not statistically sig-
nificant as we only have 10 samples.

While a larger study of more real-world pages would
be valuable, such a study is larger in scope than this paper
can cover. To perform such a measurement, we would
need to individually determine a “load complete” point
for each test page and re-instrument Fuzzyfox to enable
measurements at these exact points. Google search re-
sults were chosen specifically because they do not con-
tinue to load resources indefinitely as many major web-
sites do. (Ex: nyt imes.com, youtube.com, etc.) We
therefore leave a more detailed real-world page load time
and user experience impact study to future work.

These metrics are incomplete, as they do not measure

8000 T T

7000 -

o
=]
=]
S

3000 F 4
1000 - Tor Browser
100ms Fuzzyfox

0 1
1 2 3 4
Number of initial concurrent requests

95th percentile loading time (ms)

[N]
o
o
o

Figure 20: Range of page load completion times with
variable depth at a spread of 4 for Tor Browser and
Fuzzyfox g = 100ms

interactivity of the pages, which can suffer in the Fuzzy-
fox case more than in Tor Browser. We leave further
analysis of various performance impacts to future work.

While higher g settings cause significant page load
time increases, these overheads are acceptable to some
privacy conscious users and developers as demonstrated
by Tor Browser. We do not have metrics for the impact of
using both Tor Browser and our Fuzzyfox patch set, but
we expect the overheads to be additive in the worst case.
One option for integration with Tor Browser specifically
would be to tune the value of g based on the setting of
the “security slider” [20].

In light of these metrics, a g setting of g < Sms is likely
tolerable for average use cases, while higher settings (up
to and including g = 100ms) would likely be tolerated
by users of Tor Browser. Ideally the clock fuzzing and
other features as appropriate will be deployed in Firefox,
and can be configured for a higher g in Tor Browser. If
a more complete version of Fermata is developed, it will
be worthwhile to run user studies before deploying g set-
tings.

7 Related work

Popek and Kline [21] were the first to observe that the
presence of clocks opens covert channels. They sug-
gested that virtual machines be presented only with vir-
tual clocks, not “a real time measure.” Lipner [16] re-
sponded that keeping virtual machines from correlating
virtual time to real time is a “difficult problem,” since
time is “the one system-wide resource [...] that can be
observed in at least a coarse way by every user and ev-
ery program.” Lipner suggested “randomizing the rela-
tion of virtual and real time” to add noise to the channel.
Lipner also reported private communication from Saltzer

USENIX Association

25th USENIX Security Symposium 477

that timing channels had been demonstrated in Multics
by mid-1975.

Digital’s VAX VMM Security Kernel project(initiated
in 1981 and canceled in 1990 before its evaluation at the
Al level could be completed [12]) was the first system to
attempt to randomize the relationship of virtual and real
time. The VAX VMM Security Kernel team published
three important papers describing their system. The first,
by Karger et al. [11, 12], gave an overview of the system.
The second, by Wray [28], presented a theory of time
(“[w]e view the passage of time as being characterized
by a sequence of events which can be distinguished one
from another by an observer") and of timing channels
and is the source for our view, in this paper, of timing
channels as arising from the comparison of a reference
clock with a modulated clock. Wray noted that a process
that increments a variable in a loop can be used as a
clock. The third, by Hu [9, 10], described the VAX
VMM’s fuzzy time system and is the inspiration for
our paper. (A 2012 retrospective [15], though not the
contemporaneous papers, reveals that the fuzzy time idea
was developed in collaboration with the National Secu-
rity Agency’s Robert Morris.) We describe many of the
details of the fuzzy time system elsewhere in the paper.
The 1992 journal version [9] of Hu’s paper gives a more
complete security analysis than does the 1991 conference
version [10]. In particular, it notes that fuzzy time would
be defeated if the VM could devote a processor thread to
incrementing a counter in memory shared with its other
processor threads. This attack did not affect the Vax
VMM Security Kernel, since it limited virtual machines
to a single processor and did not support shared mem-
ory; it would apply to browsers if the proposed Shared
Memory and Atomics specification [8] is implemented.

Several followup papers examined the security of
fuzzy time. Trostle [25] observed that if scheduler
time quanta coincide with upticks and if the scheduler
employs a simple FIFO policy, then the scheduler can be
used as a covert channel with 50 bps channel capacity.
To send a bit, a high process either takes its entire time
quantum or yields the processor; low processes try to
send messages to each other in each time quantum.
Which and how many messages arrived reveals the
high process’ bit. Gray showed attacks on fuzzy time
that exploit bus contention [7] and calculated a channel
capacity for shared buses under fuzzy time under the
assumption (satisfied in the case of the VAX VMM
Security Kernel) that a low receiver can immediately
notify the high sender when it receives an uptick [5]. A
later tech report combines both papers by Gray [6].

Martin et al. [17] translated fuzzy time to the mi-
croarchitectural setting, proposing and evaluating a new
microarchitecture in which execution is divided into
variable-length “epochs.” The rdt sc instruction delays

execution until the next epoch and returns a cycle count
randomly chosen from the last epoch. Because their fo-
cus is microarchitectural timing channels, Martin et al.
argue that other sources of time, such as interrupt deliv-
ery, are inherently too coarse grained to need fuzzing.
Martin et al. observe that simply rounding rdtsc to
some granularity would be susceptible to clock-edge ef-
fects.

The success of infrastructure-as-a-service cloud
computing brought with it the risk of cross-VM side
channels [22]. Aviram et al. [2] proposed to close timing
channels in cloud computing by enforcing deterministic
execution and experimented with compiling a Linux
kernel and userland not to use high-resolution timers
like rdt sc, observing a drop in throughput. Vattikonda
et al. [26] showed that it is possible to virtualize rdt sc
for Xen guests, reducing its resolution (but allowing
clock-edge attacks). Ford [4] proposed timing infor-
mation flow control, or TIFC, “an extension of DIFC
for reasoning about [...] the propagation of sensitive
information into, out of, or within a software system
via timing channels,” and proposed two mechanisms
for implementing TIFC: deterministic execution and
“pacing queues,” which are an extension of the VAX
VMM Security Kernel’s interrupt queue mechanism.

Li et al. [13, 14] describe StopWatch, a virtual ma-
chine manager designed to defeat timing side channel
attacks. In StopWatch, clocks are virtualized to “a de-
terministic function of the VM’s instructions executed so
far”; multiple replicas of each VM are run in lockstep,
and I/O timing for all of them is determined by the (vir-
tual) time observed by the median replica.

Finally, Wu et Al. [29] present Deterland, a hypervisor
that runs legacy operating systems deterministically. De-
terland splits time into ticks and allows I/O only on tick
boundaries. As in StopWatch, virtual time in Deterland
is a function of the number of instructions executed.

8 Conclusions and future work

Restricting or removing timing side channels is a com-
plex task. Simple degradation of available explicit clocks
is an insufficient solution, allowing clock-edge tech-
niques and implicit clocks to obtain additional timing in-
formation.

By drawing upon the lessons learned from trusted op-
erating systems literature, we believe that browsers can
be architected to mitigate all possible timing side chan-
nels. We propose Fermata as a design goal for such a
verifiably resistant browser. Our Fuzzyfox patches to
Firefox show that a Fermata-like design can intelligently
make tradeoffs between performance and security, while
not breaking the current interactions with JavaScript.
Fuzzyfox empirically degrades clocks in a way that is

478 25th USENIX Security Symposium

USENIX Association

not susceptible to clock-edge techniques, protecting tim-
ing information.

Fuzzyfox requires a number of engineering improve-
ments before it is ready to deploy to users, but it has
proved that the fuzzy time concept can be applied to
browsers. Notably, more experiments with setting chan-
nel bandwidth and exposing such settings to users need to
be performed. Additionally, Fuzzyfox does not hook in-
bound network events, which a cooperating server could
use to derive the duration of events in Fuzzyfox. Other
interfaces (WebSockets, WebAudio, other media APIs)
should be investigated for behavior that would break the
Fuzzyfox design. We expect that with these changes
Fuzzyfox could be adapted for use in projects like Tor
Browser and protect real users against timing attacks.

Acknowledgements

We thank Kyle Huey, Patrick McManus, Eric Rescorla,
and Martin Thomson at Mozilla for helpful discussions
about this work, and for sharing their insights with us
about Firefox internals. We are also grateful to Keaton
Mowery and Mike Perry for helpful discussions, and
to our anonymous reviewers and to David Wagner, our
shepherd, for their detailed comments.

We additionally thank Nina Chen for assistance with
editing and graph design.

This material is based upon work supported by
the National Science Foundation under Grants No.
1228967 and 1514435, and by a gift from Mozilla.

References

[1] M. Andrysco, D. Kohlbrenner, K. Mowery, R. Jhala,
S. Lerner, and H. Shacham, “On subnormal floating
point and abnormal timing,” in Proceedings of IEEE
Security and Privacy (“Oakland”) 2015, L. Bauer and
V. Shmatikov, Eds. IEEE Computer Society, May 2015.

[2] A. Aviram, S. Hu, B. Ford, and R. Gummadi, “Determi-
nating timing channels in compute clouds,” in Proceed-
ings of CCSW 2010, A. Perrig and R. Sion, Eds. ACM
Press, Oct. 2010.

[3] D. Cock, Q. Ge, T. Murray, and G. Heiser, “The last mile:
An empirical study of timing channels on seL4,” in Pro-
ceedings of CCS 2014, M. Yung and N. Li, Eds. ACM
Press, Nov. 2014, pp. 570-81.

[4] B. Ford, “Plugging side-channel leaks with timing infor-
mation flow control,” in Proceedings of HotCloud 2012,
R. Fonseca and D. Maltz, Eds. USENIX, Jun. 2012.

[5] J. W. Gray, “On analyzing the bus-contention channel un-
der fuzzy time,” in Proceedings of CSFW 1993, C. Mead-
ows, Ed. IEEE Computer Society, Jun. 1993, pp. 3-9.

[6] ——, “Countermeasures and tradeoffs for a class of
covert timing channels,” Hong Kong University of Sci-
ence and Technology, Tech. Rep. HKUST-CS94-18,
1994, online: http://hdl.handle.net/1783.1/25.

[7]

[8]

(91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]

——, “On introducing noise into the bus-contention
channel,” in Proceedings of IEEE Security and Privacy
(“Oakland”) 1993, R. Kemmerer and J. Rushby, Eds.
IEEE Computer Society, May 1993, pp. 90-98.

L. T. Hansen, “ECMAScript shared memory and atom-
ics,” Online: http://tc39.github.io/ecmascript_sharedm
em/shmem.html, Feb. 2016.

W.-M. Hu, “Reducing timing channels with fuzzy time,”
J. Computer Security, vol. 1, no. 3-4, pp. 233-54, 1992.

——, “Reducing timing channels with fuzzy time,” in
Proceedings of IEEE Security and Privacy (“Oakland”)
1991, T. F. Lunt and J. McLean, Eds. IEEE Computer
Society, May 1991, pp. 8-20.

P. A. Karger, M. E. Zurko, D. W. Bonin, A. H. Mason,
and C. E. Kahn, “A VMM security kernel for the VAX ar-
chitecture,” in Proceedings of IEEE Security and Privacy
(“Oakland”) 1990, D. M. Cooper and T. F. Lunt, Eds.
IEEE Computer Society, May 1990, pp. 2-19.

, “A retrospective on the VAX VMM security ker-
nel,” IEEE Trans. Software Engineering, vol. 17, no. 11,
pp. 1147-65, Nov. 1991.

P.Li, D. Gao, and M. K. Reiter, “Mitigating access-driven
timing channels in clouds using StopWatch,” in Proceed-
ings of DSN 2013, G. Candea, Ed. IEEE/IFIP, Jun. 2013.

——, “StopWatch: A cloud architecture for timing chan-
nel mitigation,” ACM Trans. Info. & System Security,
vol. 17, no. 2, Nov. 2014.

S. Lipner, T. Jaeger, and M. E. Zurko, “Lessons from
VAX/SVS for high-assurance VM systems,” IEEE Secu-
rity & Privacy, vol. 10, no. 6, pp. 2635, Nov.—Dec. 2012.

S. B. Lipner, “A comment on the confinement problem,”
ACM SIGOPS Operating Systems Review, vol. 9, no. 5,
pp. 192-96, Nov. 1975.

R. Martin, J. Demme, and S. Sethumadhavan, “Time-
Warp: Rethinking timekeeping and performance moni-
toring mechanisms to mitigate side-channel attacks,” in
Proceedings of ISCA 2012, J. Torrellas, Ed. ACM Press,
Jun. 2012, pp. 118-29.

Mozilla, “Javascript concurrency model and event loop,”
2016, online: https://developer.mozilla.org/en-US/docs/
Web/JavaScript/EventLoop#Run-to-completion.

Y. Oren, V. P. Kemerlis, S. Sethumadhavan, and A. D.
Keromytis, “The spy in the sandbox: Practical cache at-
tacks in JavaScript and their implications,” in Proceed-
ings of CCS 2015, C. Kruegel and N. Li, Eds. ACM
Press, Oct. 2015.

M. Perry, “Tor browser 4.5 is released,” Apr. 2015, online:
https://blog.torproject.org/blog/tor-browser-45-released.

USENIX Association

25th USENIX Security Symposium 479

[21]

(22]

(23]

[24]

[25]

[26]

[27]

(28]

G. J. Popek and C. S. Kline, “Verifiable secure operating
system software,” in Proceedings of the May 6-10, 1974,
National Computer Conference and Exposition. ACM,
May 1974, pp. 145-51.

T. Ristenpart, E. Tromer, H. Shacham, and S. Savage,
“Hey, you, get off of my cloud! Exploring information
leakage in third-party compute clouds,” in Proceedings of
CCS 2009, S. Jha and A. Keromytis, Eds. ACM Press,
Nov. 2009, pp. 199-212.

M. Seaborn, “Security: Chrome provides high-res timers
which allow cache side channel attacks,” 2015, on-
line: https://bugs.chromium.org/p/chromium/issues/deta
i1?1d=508166.

P. Stone, “Pixel perfect timing attacks with HTMLS,” Pre-
sented at Black Hat 2013, Jul. 2013, online: http://contex
tis.co.uk/documents/2/Browser_Timing_Attacks.pdf.

J. T. Trostle, “Modelling a fuzzy time system,” in Pro-
ceedings of IEEE Security and Privacy (“Oakland”)
1993, R. Kemmerer and J. Rushby, Eds. IEEE Com-
puter Society, May 1993, pp. 82-89.

B. C. Vattikonda, S. Das, and H. Shacham, “Eliminating
fine grained timers in Xen (short paper),” in Proceedings
of CCSW 2011, T. Ristenpart and C. Cachin, Eds. ACM
Press, Oct. 2011.

G. Wondracek, T. Holz, E. Kirda, and C. Kruegel, “A
practical attack to de-anonymize social network users,”
in Security and Privacy (SP), 2010 IEEE Symposium on.
IEEE, 2010, pp. 223-238.

J. C. Wray, “An analysis of covert timing channels,” in
Proceedings of IEEE Security and Privacy (“Oakland”)

1991, T. F. Lunt and J. McLean, Eds.
Society, May 1991, pp. 2-7.

IEEE Computer

[29] W. Wu, E. Zhai, D. I. Wolinsky, B. Ford, L. Gu, and
D. Jackowitz, “Warding off timing attacks in Deterland,”
in Proceedings of TRIOS 2015, L. Shrira, Ed. = ACM
Press, Oct. 2015.

Notes

'Mttps://bugzillamozilla.org/
show_bug.cgi?id=711043

https://trac.torproject.org/projects/
tor/ticket/1517

3commit Oec3174fe63d8139f842ce9eb6639349759ff4eS

4Fuzzyfox is available as a branch at https://gi
thub.com/dkohlbre/gecko-dev. It should be
treated as an engineering prototype.

SFirefox tests were done with commit
0ec3174fe63d8139f842ce9eb6639349759ff4e5
for clock tests, and
c4afaf3404986¢ccc1d221bc7f4f3f1dcf39b06fc for
the page load tests

®Fuzzyfox ~was modified to report valid

performance.now results for performance test-
ing

"Tor Browser git
b60b8871fa08feaaca24bcfodff43df0cd1c529
fied to report accurate performance.now values

revision:
modi-

480

25th USENIX Security Symposium

USENIX Association

