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Abstract
We present new biases in RC4, break the Wi-Fi Protected
Access Temporal Key Integrity Protocol (WPA-TKIP),
and design a practical plaintext recovery attack against
the Transport Layer Security (TLS) protocol. To empir-
ically find new biases in the RC4 keystream we use sta-
tistical hypothesis tests. This reveals many new biases in
the initial keystream bytes, as well as several new long-
term biases. Our fixed-plaintext recovery algorithms are
capable of using multiple types of biases, and return a
list of plaintext candidates in decreasing likelihood.

To break WPA-TKIP we introduce a method to gen-
erate a large number of identical packets. This packet is
decrypted by generating its plaintext candidate list, and
using redundant packet structure to prune bad candidates.
From the decrypted packet we derive the TKIP MIC key,
which can be used to inject and decrypt packets. In prac-
tice the attack can be executed within an hour. We also
attack TLS as used by HTTPS, where we show how to
decrypt a secure cookie with a success rate of 94% using
9 ·227 ciphertexts. This is done by injecting known data
around the cookie, abusing this using Mantin’s ABSAB
bias, and brute-forcing the cookie by traversing the plain-
text candidates. Using our traffic generation technique,
we are able to execute the attack in merely 75 hours.

1 Introduction

RC4 is (still) one of the most widely used stream ciphers.
Arguably its most well known usage is in SSL and WEP,
and in their successors TLS [8] and WPA-TKIP [19]. In
particular it was heavily used after attacks against CBC-
mode encryption schemes in TLS were published, such
as BEAST [9], Lucky 13 [1], and the padding oracle at-
tack [7]. As a mitigation RC4 was recommended. Hence,
at one point around 50% of all TLS connections were us-
ing RC4 [2], with the current estimate around 30% [18].
This motivated the search for new attacks, relevant ex-
amples being [2, 20, 31, 15, 30]. Of special interest is

the attack proposed by AlFardan et al., where roughly
13 · 230 ciphertexts are required to decrypt a cookie sent
over HTTPS [2]. This corresponds to about 2000 hours
of data in their setup, hence the attack is considered close
to being practical. Our goal is to see how far these attacks
can be pushed by exploring three areas. First, we search
for new biases in the keystream. Second, we improve
fixed-plaintext recovery algorithms. Third, we demon-
strate techniques to perform our attacks in practice.

First we empirically search for biases in the keystream.
This is done by generating a large amount of keystream,
and storing statistics about them in several datasets. The
resulting datasets are then analysed using statistical hy-
pothesis tests. Our null hypothesis is that a keystream
byte is uniformly distributed, or that two bytes are in-
dependent. Rejecting the null hypothesis is equivalent
to detecting a bias. Compared to manually inspecting
graphs, this allows for a more large-scale analysis. With
this approach we found many new biases in the initial
keystream bytes, as well as several new long-term biases.

We break WPA-TKIP by decrypting a complete packet
using RC4 biases and deriving the TKIP MIC key. This
key can be used to inject and decrypt packets [48]. In par-
ticular we modify the plaintext recovery attack of Pater-
son et al. [31, 30] to return a list of candidates in decreas-
ing likelihood. Bad candidates are detected and pruned
based on the (decrypted) CRC of the packet. This in-
creases the success rate of simultaneously decrypting all
unknown bytes. We achieve practicality using a novel
method to rapidly inject identical packets into a network.
In practice the attack can be executed within an hour.

We also attack RC4 as used in TLS and HTTPS, where
we decrypt a secure cookie in realistic conditions. This is
done by combining the ABSAB and Fluhrer-McGrew bi-
ases using variants of the of Isobe et al. and AlFardan et
al. attack [20, 2]. Our technique can easily be extended to
include other biases as well. To abuse Mantin’s ABSAB
bias we inject known plaintext around the cookie, and ex-
ploit this to calculate Bayesian plaintext likelihoods over
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the unknown cookie. We then generate a list of (cookie)
candidates in decreasing likelihood, and use this to brute-
force the cookie in negligible time. The algorithm to gen-
erate candidates differs from the WPA-TKIP one due to
the reliance on double-byte instead of single-byte likeli-
hoods. All combined, we need 9 · 227 encryptions of a
cookie to decrypt it with a success rate of 94%. Finally
we show how to make a victim generate this amount
within only 75 hours, and execute the attack in practice.

To summarize, our main contributions are:

• We use statistical tests to empirically detect biases
in the keystream, revealing large sets of new biases.

• We design plaintext recovery algorithms capable of
using multiple types of biases, which return a list of
plaintext candidates in decreasing likelihood.

• We demonstrate practical exploitation techniques to
break RC4 in both WPA-TKIP and TLS.

The remainder of this paper is organized as follows.
Section 2 gives a background on RC4, TKIP, and TLS.
In Sect. 3 we introduce hypothesis tests and report new
biases. Plaintext recovery techniques are given in Sect. 4.
Practical attacks on TKIP and TLS are presented in
Sect. 5 and Sect. 6, respectively. Finally, we summarize
related work in Sect. 7 and conclude in Sect. 8.

2 Background

We introduce RC4 and its usage in TLS and WPA-TKIP.

2.1 The RC4 Algorithm
The RC4 algorithm is intriguingly short and known to
be very fast in software. It consists of a Key Scheduling
Algorithm (KSA) and a Pseudo Random Generation Al-
gorithm (PRGA), which are both shown in Fig. 1. The
state consists of a permutation S of the set {0, . . . ,255},
a public counter i, and a private index j. The KSA takes
as input a variable-length key and initializes S . At each
round r = 1,2, . . . of the PRGA, the yield statement out-
puts a keystream byte Zr. All additions are performed
modulo 256. A plaintext byte Pr is encrypted to cipher-
text byte Cr using Cr = Pr ⊕Zr.

2.1.1 Short-Term Biases

Several biases have been found in the initial RC4 key-
stream bytes. We call these short-term biases. The most
significant one was found by Mantin and Shamir. They
showed that the second keystream byte is twice as likely
to be zero compared to uniform [25]. Or more formally
that Pr[Z2 = 0]≈ 2 ·2−8, where the probability is over the

Listing (1) RC4 Key Scheduling (KSA).

1 j, S = 0, range(256)

2 for i in range(256):

3 j += S[i] + key[i % len(key)]

4 swap(S[i], S[j])

5 return S

Listing (2) RC4 Keystream Generation (PRGA).

1 S, i, j = KSA(key), 0, 0

2 while True:

3 i += 1

4 j += S[i]

5 swap(S[i], S[j])

6 yield S[S[i] + S[j]]

Figure 1: Implementation of RC4 in Python-like pseudo-
code. All additions are performed modulo 256.

random choice of the key. Because zero occurs more of-
ten than expected, we call this a positive bias. Similarly,
a value occurring less often than expected is called a neg-
ative bias. This result was extended by Maitra et al. [23]
and further refined by Sen Gupta et al. [38] to show that
there is a bias towards zero for most initial keystream
bytes. Sen Gupta et al. also found key-length dependent
biases: if � is the key length, keystream byte Z� has a pos-
itive bias towards 256− � [38]. AlFardan et al. showed
that all initial 256 keystream bytes are biased by empiri-
cally estimating their probabilities when 16-byte keys are
used [2]. While doing this they found additional strong
biases, an example being the bias towards value r for all
positions 1 ≤ r ≤ 256. This bias was also independently
discovered by Isobe et al. [20].

The bias Pr[Z1 = Z2] = 2−8(1 − 2−8) was found by
Paul and Preneel [33]. Isobe et al. refined this result
for the value zero to Pr[Z1 = Z2 = 0] ≈ 3 · 2−16 [20].
In [20] the authors searched for biases of similar strength
between initial bytes, but did not find additional ones.
However, we did manage to find new ones (see Sect. 3.3).

2.1.2 Long-Term Biases

In contrast to short-term biases, which occur only in
the initial keystream bytes, there are also biases that
keep occurring throughout the whole keystream. We call
these long-term biases. For example, Fluhrer and Mc-
Grew (FM) found that the probability of certain digraphs,
i.e., consecutive keystream bytes (Zr,Zr+1), deviate from
uniform throughout the whole keystream [13]. These bi-
ases depend on the public counter i of the PRGA, and are
listed in Table 1 (ignoring the condition on r for now). In
their analysis, Fluhrer and McGrew assumed that the in-
ternal state of the RC4 algorithm was uniformly random.
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Digraph Condition Probability
(0,0) i = 1 2−16(1+2−7)
(0,0) i �= 1,255 2−16(1+2−8)
(0,1) i �= 0,1 2−16(1+2−8)
(0,i+1) i �= 0,255 2−16(1−2−8)

(i+1,255) i �= 254∧ r �= 1 2−16(1+2−8)
(129,129) i = 2,r �= 2 2−16(1+2−8)
(255,i+1) i �= 1,254 2−16(1+2−8)
(255,i+2) i ∈ [1,252]∧ r �= 2 2−16(1+2−8)
(255,0) i = 254 2−16(1+2−8)
(255,1) i = 255 2−16(1+2−8)
(255,2) i = 0,1 2−16(1+2−8)
(255,255) i �= 254∧ r �= 5 2−16(1−2−8)

Table 1: Generalized Fluhrer-McGrew (FM) biases.
Here i is the public counter in the PRGA and r the posi-
tion of the first byte of the digraph. Probabilities for long-
term biases are shown (for short-term biases see Fig. 4).

This assumption is only true after a few rounds of the
PRGA [13, 26, 38]. Consequently these biases were gen-
erally not expected to be present in the initial keystream
bytes. However, in Sect. 3.3.1 we show that most of these
biases do occur in the initial keystream bytes, albeit with
different probabilities than their long-term variants.

Another long-term bias was found by Mantin [24]. He
discovered a bias towards the pattern ABSAB, where A
and B represent byte values, and S a short sequence of
bytes called the gap. With the length of the gap S de-
noted by g, the bias can be written as:

Pr[(Zr,Zr+1) = (Zr+g+2,Zr+g+3)] = 2−16(1+2−8e
−4−8g

256 )
(1)

Hence the bigger the gap, the weaker the bias. Finally,
Sen Gupta et al. found the long-term bias [38]

Pr[(Zw256,Zw256+2) = (0,0)] = 2−16(1+2−8)

where w ≥ 1. We discovered that a bias towards (128,0)
is also present at these positions (see Sect. 3.4).

2.2 TKIP Cryptographic Encapsulation

The design goal of WPA-TKIP was for it to be a tem-
porary replacement of WEP [19, §11.4.2]. While it is
being phased out by the WiFi Alliance, a recent study
shows its usage is still widespread [48]. Out of 6803 net-
works, they found that 71% of protected networks still
allow TKIP, with 19% exclusively supporting TKIP.

Our attack on TKIP relies on two elements of the pro-
tocol: its weak Message Integrity Check (MIC) [44, 48],
and its faulty per-packet key construction [2, 15, 31, 30].
We briefly introduce both aspects, assuming a 512-bit

header TSC SNAP IP TCP MIC ICV

encrypted

payload

Figure 2: Simplified TKIP frame with a TCP payload.

Pairwise Transient Key (PTK) has already been nego-
tiated between the Access Point (AP) and client. From
this PTK a 128-bit temporal encryption key (TK) and
two 64-bit Message Integrity Check (MIC) keys are de-
rived. The first MIC key is used for AP-to-client commu-
nication, and the second for the reverse direction. Some
works claim that the PTK, and its derived keys, are re-
newed after a user-defined interval, commonly set to 1
hour [44, 48]. However, we found that generally only
the Groupwise Transient Key (GTK) is periodically re-
newed. Interestingly, our attack can be executed within
an hour, so even networks which renew the PTK every
hour can be attacked.

When the client wants to transmit a payload, it first
calculates a MIC value using the appropriate MIC key
and the Micheal algorithm (see Fig. Figure 2). Unfortu-
nately Micheal is straightforward to invert: given plain-
text data and its MIC value, we can efficiently derive the
MIC key [44]. After appending the MIC value, a CRC
checksum called the Integrity Check Value (ICV) is also
appended. The resulting packet, including MAC header
and example TCP payload, is shown in Figure 2. The
payload, MIC, and ICV are encrypted using RC4 with
a per-packet key. This key is calculated by a mixing
function that takes as input the TK, the TKIP sequence
counter (TSC), and the transmitter MAC address (TA).
We write this as K = KM(TA,TK,TSC). The TSC is
a 6-byte counter that is incremented after transmitting a
packet, and is included unencrypted in the MAC header.
In practice the output of KM can be modelled as uni-
formly random [2, 31]. In an attempt to avoid weak-key
attacks that broke WEP [12], the first three bytes of K are
set to [19, §11.4.2.1.1]:

K0 = TSC1 K1 = (TSC1 | 0x20)& 0x7f K2 = TSC0

Here, TSC0 and TSC1 are the two least significant bytes
of the TSC. Since the TSC is public, so are the first three
bytes of K. Both formally and using simulations, it has
been shown this actually weakens security [2, 15, 31, 30].

2.3 The TLS Record Protocol
We focus on the TLS record protocol when RC4 is se-
lected as the symmetric cipher [8]. In particular we as-
sume the handshake phase is completed, and a 48-byte
TLS master secret has been negotiated.
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type version length payload HMAC

header RC4 encrypted

Figure 3: TLS Record structure when using RC4.

To send an encrypted payload, a TLS record of type
application data is created. It contains the protocol ver-
sion, length of the encrypted content, the payload itself,
and finally an HMAC. The resulting layout is shown in
Fig. 3. The HMAC is computed over the header, a se-
quence number incremented for each transmitted record,
and the plaintext payload. Both the payload and HMAC
are encrypted. At the start of a connection, RC4 is ini-
tialized with a key derived from the TLS master secret.
This key can be modelled as being uniformly random [2].
None of the initial keystream bytes are discarded.

In the context of HTTPS, one TLS connection can be
used to handle multiple HTTP requests. This is called a
persistent connection. Slightly simplified, a server indi-
cates support for this by setting the HTTP Connection

header to keep-alive. This implies RC4 is initialized
only once to send all HTTP requests, allowing the usage
of long-term biases in attacks. Finally, cookies can be
marked as being secure, assuring they are transmitted
only over a TLS connection.

3 Empirically Finding New Biases

In this section we explain how to empirically yet soundly
detect biases. While we discovered many biases, we will
not use them in our attacks. This simplifies the descrip-
tion of the attacks. And, while using the new biases may
improve our attacks, using existing ones already sufficed
to significantly improve upon existing attacks. Hence our
focus will mainly be on the most intriguing new biases.

3.1 Soundly Detecting Biases

In order to empirically detect new biases, we rely on hy-
pothesis tests. That is, we generate keystream statistics
over random RC4 keys, and use statistical tests to un-
cover deviations from uniform. This allows for a large-
scale and automated analysis. To detect single-byte bi-
ases, our null hypothesis is that the keystream byte values
are uniformly distributed. To detect biases between two
bytes, one may be tempted to use as null hypothesis that
the pair is uniformly distributed. However, this falls short
if there are already single-byte biases present. In this
case single-byte biases imply that the pair is also biased,
while both bytes may in fact be independent. Hence, to
detect double-byte biases, our null hypothesis is that they
are independent. With this test, we even detected pairs

that are actually more uniform than expected. Rejecting
the null hypothesis is now the same as detecting a bias.

To test whether values are uniformly distributed, we
use a chi-squared goodness-of-fit test. A naive approach
to test whether two bytes are independent, is using a chi-
squared independence test. Although this would work, it
is not ideal when only a few biases (outliers) are present.
Moreover, based on previous work we expect that only
a few values between keystream bytes show a clear de-
pendency on each other [13, 24, 20, 38, 4]. Taking the
Fluhrer-McGrew biases as an example, at any position
at most 8 out of a total 65536 value pairs show a clear
bias [13]. When expecting only a few outliers, the M-test
of Fuchs and Kenett can be asymptotically more power-
ful than the chi-squared test [14]. Hence we used the
M-test to detect dependencies between keystream bytes.
To determine which values are biased between dependent
bytes, we perform proportion tests over all value pairs.

We reject the null hypothesis only if the p-value is
lower than 10−4. Holm’s method is used to control the
family-wise error rate when performing multiple hypoth-
esis tests. This controls the probability of even a single
false positive over all hypothesis tests. We always use
the two-sided variant of an hypothesis test, since a bias
can be either positive or negative.

Simply giving or plotting the probability of two depen-
dent bytes is not ideal. After all, this probability includes
the single-byte biases, while we only want to report the
strength of the dependency between both bytes. To solve
this, we report the absolute relative bias compared to the
expected single-byte based probability. More precisely,
say that by multiplying the two single-byte probabilities
of a pair, we would expect it to occur with probability p.
Given that this pair actually occurs with probability s, we
then plot the value |q| from the formula s = p ·(1+q). In
a sense the relative bias indicates how much information
is gained by not just considering the single-byte biases,
but using the real byte-pair probability.

3.2 Generating Datasets

In order to generate detailed statistics of keystream bytes,
we created a distributed setup. We used roughly 80 stan-
dard desktop computers and three powerful servers as
workers. The generation of the statistics is done in C.
Python was used to manage the generated datasets and
control all workers. On start-up each worker generates
a cryptographically random AES key. Random 128-bit
RC4 keys are derived from this key using AES in counter
mode. Finally, we used R for all statistical analysis [34].

Our main results are based on two datasets, called
first16 and consec512. The first16 dataset esti-
mates Pr[Za = x∧Zb = y] for 1 ≤ a ≤ 16, 1 ≤ b ≤ 256,
and 0 ≤ x,y < 256 using 244 keys. Its generation took
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Figure 4: Absolute relative bias of several Fluhrer-
McGrew digraphs in the initial keystream bytes, com-
pared to their expected single-byte based probability.

roughly 9 CPU years. This allows detecting biases be-
tween the first 16 bytes and the other initial 256 bytes.
The consec512 dataset estimates Pr[Zr = x∧Zr+1 = y]
for 1 ≤ r ≤ 512 and 0 ≤ x,y < 256 using 245 keys, which
took 16 CPU years to generate. It allows a detailed study
of consecutive keystream bytes up to position 512.

We optimized the generation of both datasets. The
first optimization is that one run of a worker generates
at most 230 keystreams. This allows usage of 16-bit inte-
gers for all counters collecting the statistics, even in the
presence of significant biases. Only when combining the
results of workers are larger integers required. This low-
ers memory usage, reducing cache misses. To further re-
duce cache misses we generate several keystreams before
updating the counters. In independent work, Paterson
et al. used similar optimizations [30]. For the first16

dataset we used an additional optimization. Here we first
generate several keystreams, and then update the coun-
ters in a sorted manner based on the value of Za. This
optimization caused the most significant speed-up for the
first16 dataset.

3.3 New Short-Term Biases
By analysing the generated datasets we discovered many
new short-term biases. We classify them into several sets.

3.3.1 Biases in (Non-)Consecutive Bytes

By analysing the consec512 dataset we discovered nu-
merous biases between consecutive keystream bytes.
Our first observation is that the Fluhrer-McGrew biases
are also present in the initial keystream bytes. Excep-
tions occur at positions 1, 2 and 5, and are listed in Ta-

First byte Second byte Probability

Consecutive biases:
Z15 = 240 Z16 = 240 2−15.94786(1−2−4.894)
Z31 = 224 Z32 = 224 2−15.96486(1−2−5.427)
Z47 = 208 Z48 = 208 2−15.97595(1−2−5.963)
Z63 = 192 Z64 = 192 2−15.98363(1−2−6.469)
Z79 = 176 Z80 = 176 2−15.99020(1−2−7.150)
Z95 = 160 Z96 = 160 2−15.99405(1−2−7.740)

Z111 = 144 Z112 = 144 2−15.99668(1−2−8.331)

Non-consecutive biases:
Z3 = 4 Z5 = 4 2−16.00243(1+2−7.912)
Z3 = 131 Z131 = 3 2−15.99543(1+2−8.700)
Z3 = 131 Z131 = 131 2−15.99347(1−2−9.511)
Z4 = 5 Z6 = 255 2−15.99918(1+2−8.208)

Z14 = 0 Z16 = 14 2−15.99349(1+2−9.941)
Z15 = 47 Z17 = 16 2−16.00191(1+2−11.279)
Z15 = 112 Z32 = 224 2−15.96637(1−2−10.904)
Z15 = 159 Z32 = 224 2−15.96574(1+2−9.493)
Z16 = 240 Z31 = 63 2−15.95021(1+2−8.996)
Z16 = 240 Z32 = 16 2−15.94976(1+2−9.261)
Z16 = 240 Z33 = 16 2−15.94960(1+2−10.516)
Z16 = 240 Z40 = 32 2−15.94976(1+2−10.933)
Z16 = 240 Z48 = 16 2−15.94989(1+2−10.832)
Z16 = 240 Z48 = 208 2−15.92619(1−2−10.965)
Z16 = 240 Z64 = 192 2−15.93357(1−2−11.229)

Table 2: Biases between (non-consecutive) bytes.

ble 1 (note the extra conditions on the position r). This
is surprising, as the Fluhrer-McGrew biases were gener-
ally not expected to be present in the initial keystream
bytes [13]. However, these biases are present, albeit with
different probabilities. Figure 4 shows the absolute rela-
tive bias of most Fluhrer-McGrew digraphs, compared
to their expected single-byte based probability (recall
Sect. 3.1). For all digraphs, the sign of the relative bias q
is the same as its long-term variant as listed in Table 1.
We observe that the relative biases converge to their long-
term values, especially after position 257. The vertical
lines around position 1 and 256 are caused by digraphs
which do not hold (or hold more strongly) around these
positions.

A second set of strong biases have the form:

Pr[Zw16−1 = Zw16 = 256−w16] (2)

with 1 ≤ w ≤ 7. In Table 2 we list their probabilities.
Since 16 equals our key length, these are likely key-
length dependent biases.

Another set of biases have the form Pr[Zr = Zr+1 = x].
Depending on the value x, these biases are either nega-
tive or positive. Hence summing over all x and calcu-
lating Pr[Zr = Zr+1] would lose some statistical informa-
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Figure 5: Biases induced by the first two bytes. The num-
ber of the biases correspond to those in Sect. 3.3.2.

tion. In principle, these biases also include the Fluhrer-
McGrew pairs (0,0) and (255,255). However, as the
bias for both these pairs is much higher than for other
values, we don’t include them here. Our new bias, in the
form of Pr[Zr = Zr+1], was detected up to position 512.

We also detected biases between non-consecutive
bytes that do not fall in any obvious categories. An
overview of these is given in Table 2. We remark that the
biases induced by Z16 = 240 generally have a position,
or value, that is a multiple of 16. This is an indication
that these are likely key-length dependent biases.

3.3.2 Influence of Z1 and Z2

Arguably our most intriguing finding is the amount of
information the first two keystream bytes leak. In partic-
ular, Z1 and Z2 influence all initial 256 keystream bytes.
We detected the following six sets of biases:

1) Z1 = 257− i∧Zi = 0 4) Z1 = i−1∧Zi = 1
2) Z1 = 257− i∧Zi = i 5) Z2 = 0∧Zi = 0
3) Z1 = 257− i∧Zi = 257− i 6) Z2 = 0∧Zi = i

Their absolute relative bias, compared to the single-byte
biases, is shown in Fig. 5. The relative bias of pairs 5
and 6, i.e., those involving Z2, are generally negative.
Pairs involving Z1 are generally positive, except pair 3,
which always has a negative relative bias. We also de-
tected dependencies between Z1 and Z2 other than the
Pr[Z1 = Z2] bias of Paul and Preneel [33]. That is, the
following pairs are strongly biased:

A) Z1 = 0∧Z2 = x C) Z1 = x∧Z2 = 0
B) Z1 = x∧Z2 = 258− x D) Z1 = x∧Z2 = 1

Bias A and C are negative for all x �= 0, and both ap-
pear to be mainly caused by the strong positive bias

Keystream byte value

0.00390577

0.00390589

0.00390601

0.00390613

0.00390625

0.00390637

0.00390649

0 32 64 96 128 160 192 224 256

Pr
ob

ab
ilit

y

Position 272
Position 304
Position 336
Position 368

Figure 6: Single-byte biases beyond position 256.

Pr[Z1 = Z2 = 0] found by Isobe et al. Bias B and D are
positive. We also discovered the following three biases:

Pr[Z1 = Z3] = 2−8(1−2−9.617) (3)

Pr[Z1 = Z4] = 2−8(1+2−8.590) (4)

Pr[Z2 = Z4] = 2−8(1−2−9.622) (5)

Note that all either involve an equality with Z1 or Z2.

3.3.3 Single-Byte Biases

We analysed single-byte biases by aggregating the
consec512 dataset, and by generating additional statis-
tics specifically from single-byte probabilities. The ag-
gregation corresponds to calculating

Pr[Zr = k] =
255

∑
y=0

Pr[Zr = k∧Zr+1 = y] (6)

We ended up with 247 keys used to estimate single-byte
probabilities. For all initial 513 bytes we could reject the
hypothesis that they are uniformly distributed. In other
words, all initial 513 bytes are biased. Figure 6 shows
the probability distribution for some positions. Manual
inspection of the distributions revealed a significant bias
towards Z256+k·16 = k ·32 for 1 ≤ k ≤ 7. These are likely
key-length dependent biases. Following [26] we conjec-
ture there are single-byte biases even beyond these posi-
tions, albeit less strong.

3.4 New Long-Term Biases
To search for new long-term biases we created a variant
of the first16 dataset. It estimates

Pr[Z256w+a = x∧Z256w+b = y] (7)

for 0 ≤ a ≤ 16, 0 ≤ b < 256, 0 ≤ x,y < 256, and w ≥ 4.
It is generated using 212 RC4 keys, where each key was
used to generate 240 keystream bytes. This took roughly
8 CPU years. The condition on w means we always

6
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dropped the initial 1023 keystream bytes. Using this
dataset we can detect biases whose periodicity is a proper
divisor of 256 (e.g., it detected all Fluhrer-McGrew bi-
ases). Our new short-term biases were not present in this
dataset, indicating they indeed only occur in the initial
keystream bytes, at least with the probabilities we listed.
We did find the new long-term bias

Pr[(Zw256,Zw256+2) = (128,0)] = 2−16(1+2−8) (8)

for w ≥ 1. Surprisingly this was not discovered earlier,
since a bias towards (0,0) at these positions was already
known [38]. We also specifically searched for biases of
the form Pr[Zr = Zr′ ] by aggregating our dataset. This
revealed that many bytes are dependent on each other.
That is, we detected several long-term biases of the form

Pr[Z256w+a = Z256w+b]≈ 2−8(2±2−16) (9)

Due to the small relative bias of 2−16, these are difficult
to reliably detect. That is, the pattern where these biases
occur, and when their relative bias is positive or nega-
tive, is not yet clear. We consider it an interesting future
research direction to (precisely and reliably) detect all
keystream bytes which are dependent in this manner.

4 Plaintext Recovery

We will design plaintext recovery techniques for usage in
two areas: decrypting TKIP packets and HTTPS cookies.
In other scenarios, variants of our methods can be used.

4.1 Calculating Likelihood Estimates
Our goal is to convert a sequence of ciphertexts C into
predictions about the plaintext. This is done by exploit-
ing biases in the keystream distributions pk = Pr[Zr = k].
These can be obtained by following the steps in Sect. 3.2.
All biases in pk are used to calculate the likelihood that
a plaintext byte equals a certain value µ . To accom-
plish this, we rely on the likelihood calculations of Al-
Fardan et al. [2]. Their idea is to calculate, for each
plaintext value µ , the (induced) keystream distributions
required to witness the captured ciphertexts. The closer
this matches the real keystream distributions pk, the more
likely we have the correct plaintext byte. Assuming a
fixed position r for simplicity, the induced keystream dis-
tributions are defined by the vector Nµ = (Nµ

0 , . . . ,N
µ
255).

Each Nµ
k represents the number of times the keystream

byte was equal to k, assuming the plaintext byte was µ:

Nµ
k = |{C ∈ C |C = k⊕µ}| (10)

Note that the vectors Nµ and Nµ ′
are permutations of

each other. Based on the real keystream probabilities pk

we calculate the likelihood that this induced distribution
would occur in practice. This is modelled using a multi-
nomial distribution with the number of trails equal to |C|,
and the categories being the 256 possible keystream byte
values. Since we want the probability of this sequence of
keystream bytes we get [30]:

Pr[C | P = µ] = ∏
k∈{0,...,255}

(pk)
Nµ

k (11)

Using Bayes’ theorem we can convert this into the like-
lihood λµ that the plaintext byte is µ:

λµ = Pr[P = µ | C]∼ Pr[C | P = µ] (12)

For our purposes we can treat this as an equality [2]. The
most likely plaintext byte µ is the one that maximises λµ .
This was extended to a pair of dependent keystream bytes
in the obvious way:

λµ1,µ2 = ∏
k1,k2∈{0,...,255}

(pk1,k2)
N

µ1,µ2
k1,k2 (13)

We found this formula can be optimized if most key-
stream values k1 and k2 are independent and uniform.
More precisely, let us assume that all keystream value
pairs in the set I are independent and uniform:

∀(k1,k2) ∈ I : pk1,k2 = pk1 · pk2 = u (14)

where u represents the probability of an unbiased double-
byte keystream value. Then we rewrite formula 13 to:

λµ1,µ2 = (u)Mµ1,µ2 · ∏
k1,k2∈Ic

(pk1,k2)
N

µ1,µ2
k1,k2 (15)

where

Mµ1,µ2 = ∑
k1,k2∈I

Nµ1,µ2
k1,k2

= |C|− ∑
k1,k2∈Ic

Nµ1,µ2
k1,k2

(16)

and with Ic the set of dependent keystream values. If the
set Ic is small, this results in a lower time-complexity.
For example, when applied to the long-term keystream
setting over Fluhrer-McGrew biases, roughly 219 opera-
tions are required to calculate all likelihood estimates, in-
stead of 232. A similar (though less drastic) optimization
can also be made when single-byte biases are present.

4.2 Likelihoods From Mantin’s Bias
We now show how to compute a double-byte plaintext
likelihood using Mantin’s ABSAB bias. More formally,
we want to compute the likelihood λµ1,µ2 that the plain-
text bytes at fixed positions r and r + 1 are µ1 and µ2,
respectively. To accomplish this we abuse surrounding
known plaintext. Our main idea is to first calculate the

7
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likelihood of the differential between the known and un-
known plaintext. We define the differential Ẑg

r as:

Ẑg
r = (Zr ⊕Zr+2+g,Zr+1 ⊕Zr+3+g) (17)

Similarly we use Ĉg
r and P̂g

r to denote the differential over
ciphertext and plaintext bytes, respectively. The ABSAB
bias can then be written as:

Pr[Ẑg
r = (0,0)] = 2−16(1+2−8e

−4−8g
256 ) = α(g) (18)

When XORing both sides of Ẑg
r = (0,0) with P̂g

r we get

Pr[Ĉg
r = P̂g

r ] = α(g) (19)

Hence Mantin’s bias implies that the ciphertext differen-
tial is biased towards the plaintext differential. We use
this to calculate the likelihood λµ̂ of a differential µ̂ . For
ease of notation we assume a fixed position r and a fixed
ABSAB gap of g. Let Ĉ be the sequence of captured ci-
phertext differentials, and µ ′

1 and µ ′
2 the known plaintext

bytes at positions r + 2+ g and r + 3+ g, respectively.
Similar to our previous likelihood estimates, we calcu-
late the probability of witnessing the ciphertext differen-
tials Ĉ assuming the plaintext differential is µ̂:

Pr[Ĉ | P̂ = µ̂] = ∏
k̂∈{0,...,255}2

Pr[Ẑ = k̂]N
µ̂
k̂ (20)

where
N µ̂

k̂
=
∣∣∣
{

Ĉ ∈ Ĉ | Ĉ = k̂⊕ µ̂
}∣∣∣ (21)

Using this notation we see that this is indeed identical to
an ordinary likelihood estimation. Using Bayes’ theorem
we get λµ̂ = Pr[Ĉ | P̂ = µ̂]. Since only one differential
pair is biased, we can apply and simplify formula 15:

λµ̂ = (1−α(g))|C|−|û| ·α(g)|µ̂| (22)

where we slightly abuse notation by defining |µ̂| as

|µ̂|=
∣∣∣
{

Ĉ ∈ Ĉ | Ĉ = µ̂
}∣∣∣ (23)

Finally we apply our knowledge of the known plaintext
bytes to get our desired likelihood estimate:

λµ1,µ2 = λµ̂⊕(µ ′
1,µ

′
2)

(24)

To estimate at which gap size the ABSAB bias is still
detectable, we generated 248 blocks of 512 keystream
bytes. Based on this we empirically confirmed Mantin’s
ABSAB bias up to gap sizes of at least 135 bytes. The
theoretical estimate in formula 1 slightly underestimates
the true empirical bias. In our attacks we use a maximum
gap size of 128.
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Figure 7: Average success rate of decrypting two bytes
using: (1) one ABSAB bias; (2) Fluhrer-McGrew (FM)
biases; and (3) combination of FM biases with 258
ABSAB biases. Results based on 2048 simulations each.

4.3 Combining Likelihood Estimates
Our goal is to combine multiple types of biases in a likeli-
hood calculation. Unfortunately, if the biases cover over-
lapping positions, it quickly becomes infeasible to per-
form a single likelihood estimation over all bytes. In the
worst case, the calculation cannot be optimized by rely-
ing on independent biases. Hence, a likelihood estimate
over n keystream positions would have a time complex-
ity of O(22·8·n). To overcome this problem, we perform
and combine multiple separate likelihood estimates.

We will combine multiple types of biases by multi-
plying their individual likelihood estimates. For exam-
ple, let λ ′

µ1,µ2
be the likelihood of plaintext bytes µ1

and µ2 based on the Fluhrer-McGrew biases. Similarly,
let λ ′

g,µ1,µ2
be likelihoods derived from ABSAB biases of

gap g. Then their combination is straightforward:

λµ1,µ2 = λ ′
µ1,µ2

·∏
g

λ ′
g,µ1,µ2

(25)

While this method may not be optimal when combining
likelihoods of dependent bytes, it does appear to be a
general and powerful method. An open problem is de-
termining which biases can be combined under a single
likelihood calculation, while keeping computational re-
quirements acceptable. Likelihoods based on other bi-
ases, e.g., Sen Gupta’s and our new long-term biases, can
be added as another factor (though some care is needed
so positions properly overlap).

To verify the effectiveness of this approach, we per-
formed simulations where we attempt to decrypt two
bytes using one double-byte likelihood estimate. First
this is done using only the Fluhrer-McGrew biases, and
using only one ABSAB bias. Then we combine 2 · 129
ABSAB biases and the Fluhrer-McGrew biases, where
we use the method from Sect. 4.2 to derive likelihoods
from ABSAB biases. We assume the unknown bytes are
surrounded at both sides by known plaintext, and use a

8
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maximum ABSAB gap of 128 bytes. Figure 7 shows the
results of this experiment. Notice that a single ABSAB
bias is weaker than using all Fluhrer-McGrew biases at
a specific position. However, combining several ABSAB
biases clearly results in a major improvement. We con-
clude that our approach to combine biases significantly
reduces the required number of ciphertexts.

4.4 List of Plaintext Candidates

In practice it is useful to have a list of plaintext candi-
dates in decreasing likelihood. For example, by travers-
ing this list we could attempt to brute-force keys, pass-
words, cookies, etc. (see Sect. 6). In other situations the
plaintext may have a rigid structure allowing the removal
of candidates (see Sect. 5). We will generate a list of
plaintext candidates in decreasing likelihood, when given
either single-byte or double-byte likelihood estimates.

First we show how to construct a candidate list when
given single-byte plaintext likelihoods. While it is trivial
to generate the two most likely candidates, beyond this
point the computation becomes more tedious. Our solu-
tion is to incrementally compute the N most likely can-
didates based on their length. That is, we first compute
the N most likely candidates of length 1, then of length 2,
and so on. Algorithm 1 gives a high-level implemen-
tation of this idea. Variable Pr[i] denotes the i-th most
likely plaintext of length r, having a likelihood of Er[i].
The two min operations are needed because in the initial
loops we are not yet be able to generate N candidates,
i.e., there only exist 256r plaintexts of length r. Picking
the µ ′ which maximizes pr(µ ′) can be done efficiently
using a priority queue. In practice, only the latest two
versions of lists E and P need to be stored. To better
maintain numeric stability, and to make the computation
more efficient, we perform calculations using the loga-
rithm of the likelihoods. We implemented Algorithm 1
and report on its performance in Sect. 5, where we use it
to attack a wireless network protected by WPA-TKIP.

To generate a list of candidates from double-byte like-
lihoods, we first show how to model the likelihoods as a
hidden Markov model (HMM). This allows us to present
a more intuitive version of our algorithm, and refer to
the extensive research in this area if more efficient im-
plementations are needed. The algorithm we present can
be seen as a combination of the classical Viterbi algo-
rithm, and Algorithm 1. Even though it is not the most
optimal one, it still proved sufficient to significantly im-
prove plaintext recovery (see Sect. 6). For an introduc-
tion to HMMs we refer the reader to [35]. Essentially
an HMM models a system where the internal states are
not observable, and after each state transition, output is
(probabilistically) produced dependent on its new state.

We model the plaintext likelihood estimates as a first-

Algorithm 1: Generate plaintext candidates in de-
creasing likelihood using single-byte estimates.

Input: L : Length of the unknown plaintext
λ1≤r≤L, 0≤µ≤255: single-byte likelihoods
N: Number of candidates to generate

Returns: List of candidates in decreasing likelihood

P0[1]← ε
E0[1]← 0

for r = 1 to L do
for µ = 0 to 255 do

pos(µ)← 1
pr(µ)← Er−1[1]+ log(λr,µ)

for i = 1 to min(N,256r) do
µ ← µ ′ which maximizes pr(µ ′)
Pr[i]← Pr−1[pos(µ)]‖µ
Er[i]← Er−1[pos(µ)]+ log(λr,µ)

pos(µ)← pos(µ)+1
pr(µ)← Er−1[pos(µ)]+ log(λr,µ)

if pos(µ)> min(N,256r−1) then
pr(µ)←−∞

return PN

order time-inhomogeneous HMM. The state space S of
the HMM is defined by the set of possible plaintext val-
ues {0, . . . ,255}. The byte positions are modelled using
the time-dependent (i.e., inhomogeneous) state transition
probabilities. Intuitively, the “current time” in the HMM
corresponds to the current plaintext position. This means
the transition probabilities for moving from one state to
another, which normally depend on the current time, will
now depend on the position of the byte. More formally:

Pr[St+1 = µ2 | St = µ1]∼ λt,µ1,µ2 (26)

where t represents the time. For our purposes we can
treat this as an equality. In an HMM it is assumed that
its current state is not observable. This corresponds to
the fact that we do not know the value of any plaintext
bytes. In an HMM there is also some form of output
which depends on the current state. In our setting a par-
ticular plaintext value leaks no observable (side-channel)
information. This is modelled by always letting every
state produce the same null output with probability one.

Using the above HMM model, finding the most likely
plaintext reduces to finding the most likely state se-
quence. This is solved using the well-known Viterbi al-
gorithm. Indeed, the algorithm presented by AlFardan et
al. closely resembles the Viterbi algorithm [2]. Similarly,
finding the N most likely plaintexts is the same as find-
ing the N most likely state sequences. Hence any N-best
variant of the Viterbi algorithm (also called list Viterbi

9
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Algorithm 2: Generate plaintext candidates in de-
creasing likelihood using double-byte estimates.

Input: L : Length of the unknown plaintext plus two
m1 and mL: known first and last byte
λ1≤r<L, 0≤µ1,µ2≤255: double-byte likelihoods
N: Number of candidates to generate

Returns: List of candidates in decreasing likelihood

for µ2 = 0 to 255 do
E2[µ2,1]← log(λ1,m1,µ2)
P2[µ2,1]← m1 ‖µ2

for r = 3 to L do
for µ2 = 0 to 255 do

for µ1 = 0 to 255 do
pos(µ1)← 1
pr(µ1)← Er−1[µ1,1]+ log(λr,µ1,µ2)

for i = 1 to min(N,256r−1) do
µ1 ← µ which maximizes pr(µ)
Pr[µ2, i]← Pr−1[µ1, pos(µ1)]‖µ2
Er[µ2, i]← Er−1[µ1, pos(µ1)]+ log(λr,µ1,µ2)

pos(µ1)← pos(µ1)+1
pr(µ1)← Er−1[µ1, pos(µ1)]+ log(λr,µ1,µ2)

if pos(µ1)> min(N,256r−2) then
pr(µ1)←−∞

return PN [mL, :]

algorithm) can be used, examples being [42, 36, 40, 28].
The simplest form of such an algorithm keeps track of
the N best candidates ending in a particular value µ , and
is shown in Algorithm 2. Similar to [2, 30] we assume
the first byte m1 and last byte mL of the plaintext are
known. During the last round of the outer for-loop, the
loop over µ2 has to be executed only for the value mL. In
Sect. 6 we use this algorithm to generate a list of cookies.

Algorithm 2 uses considerably more memory than Al-
gorithm 1. This is because it has to store the N most
likely candidates for each possible ending value µ . We
remind the reader that our goal is not to present the most
optimal algorithm. Instead, by showing how to model the
problem as an HMM, we can rely on related work in this
area for more efficient algorithms [42, 36, 40, 28]. Since
an HMM can be modelled as a graph, all k-shortest path
algorithms are also applicable [10]. Finally, we remark
that even our simple variant sufficed to significantly im-
prove plaintext recovery rates (see Sect. 6).

5 Attacking WPA-TKIP

We use our plaintext recovery techniques to decrypt a full
packet. From this decrypted packet the MIC key can be

derived, allowing an attacker to inject and decrypt pack-
ets. The attack takes only an hour to execute in practice.

5.1 Calculating Plaintext Likelihoods
We rely on the attack of Paterson et al. to compute plain-
text likelihood estimates [31, 30]. They noticed that the
first three bytes of the per-packet RC4 key are public.
As explained in Sect. 2.2, the first three bytes are fully
determined by the TKIP Sequence Counter (TSC). It
was observed that this dependency causes strong TSC-
dependent biases in the keystream [31, 15, 30], which
can be used to improve the plaintext likelihood estimates.
For each TSC value they calculated plaintext likelihoods
based on empirical, per-TSC, keystream distributions.
The resulting 2562 likelihoods are combined by multi-
plying them over all TSC pairs. In a sense this is sim-
ilar to combining multiple types of biases as done in
Sect. 4.3, though here the different types of biases are
known to be independent. We use the single-byte vari-
ant of the attack [30, §4.1] to obtain likelihoods λr,µ for
every unknown byte r.

The downside of this attack is that it requires detailed
per-TSC keystream statistics. Paterson at al. generated
statistics for the first 512 bytes, which took 30 CPU
years [30]. However, in our attack we only need these
statistics for the first few keystream bytes. We used 232

keys per TSC value to estimate the keystream distribu-
tion for the first 128 bytes. Using our distributed setup
the generation of these statistics took 10 CPU years.

With our per-TSC keystream distributions we obtained
similar results to that of Paterson et al. [31, 30]. By run-
ning simulations we confirmed that the odd byte posi-
tions [30], instead of the even ones [31], can be recov-
ered with a higher probability than others. Similarly, the
bytes at positions 49-51 and 63-67 are generally recov-
ered with higher probability as well. Both observations
will be used to optimize the attack in practice.

5.2 Injecting Identical Packets
We show how to fulfil the first requirement of a success-
ful attack: the generation of identical packets. If the
IP of the victim is know, and incoming connections to-
wards it are not blocked, we can simply send identical
packets to the victim. Otherwise we induce the victim
into opening a TCP connection to an attacker-controlled
server. This connection is then used to transmit identical
packets to the victim. A straightforward way to accom-
plish this is by social engineering the victim into visit-
ing a website hosted by the attacker. The browser will
open a TCP connection with the server in order to load
the website. However, we can also employ more sophis-
ticated methods that have a broader target range. One
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such method is abusing the inclusion of (insecure) third-
party resources on popular websites [27]. For example,
an attacker can register a mistyped domain, accidentally
used in a resource address (e.g., an image URL) on a
popular website. Whenever the victim visits this website
and loads the resource, a TCP connection is made to the
server of the attacker. In [27] these types of vulnerabil-
ities were found to be present on several popular web-
sites. Additionally, any type of web vulnerability that
can be abused to make a victim execute JavaScript can be
utilised. In this sense, our requirements are more relaxed
than those of the recent attacks on SSL and TLS, which
require the ability to run JavaScript code in the victim’s
browser [9, 1, 2]. Another method is to hijack an exist-
ing TCP connection of the victim, which under certain
conditions is possible without a man-in-the-middle posi-
tion [17]. We conclude that, while there is no universal
method to accomplish this, we can assume control over
a TCP connection with the victim. Using this connection
we inject identical packets by repeatedly retransmitting
identical TCP packets, even if the victim is behind a fire-
wall. Since retransmissions are valid TCP behaviour, this
will work even if the victim is behind a firewall.

We now determine the optimal structure of the injected
packet. A naive approach would be to use the shortest
possible packet, meaning no TCP payload is included.
Since the total size of the LLC/SNAP, IP, and TCP header
is 48 bytes, the MIC and ICV would be located at posi-
tion 49 up to and including 60 (see Fig. 2). At these
locations 7 bytes are strongly biased. In contrast, if we
use a TCP payload of 7 bytes, the MIC and ICV are lo-
cated at position 56 up to and including 60. In this range
8 bytes are strongly biased, resulting in better plaintext
likelihood estimates. Through simulations we confirmed
that using a 7 byte payload increases the probability of
successfully decrypting the MIC and ICV. In practice,
adding 7 bytes of payload also makes the length of our
injected packet unique. As a result we can easily identify
and capture such packets. Given both these advantages,
we use a TCP data packet containing 7 bytes of payload.

5.3 Decrypting a Complete Packet

Our goal is to decrypt the injected TCP packet, including
its MIC and ICV fields. Note that all these TCP pack-
ets will be encrypted with a different RC4 key. For now
we assume all fields in the IP and TCP packet are known,
and will later show why we can safely make this assump-
tion. Hence, only the 8-byte MIC and 4-byte ICV of
the packet remain unknown. We use the per-TSC key-
stream statistics to compute single-byte plaintext likeli-
hoods for all 12 bytes. However, this alone would give
a very low success probability of simultaneously (cor-
rectly) decrypting all bytes. We solve this by realising
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that the TKIP ICV is a simple CRC checksum which we
can easily verify ourselves. Hence we can detect bad
candidates by inspecting their CRC checksum. We now
generate a plaintext candidate list, and traverse it until we
find a packet having a correct CRC. This drastically im-
proves the probability of simultaneously decrypting all
bytes. From the decrypted packet we can derive the TKIP
MIC key [44], which can then be used to inject and de-
crypt arbitrary packets [48].

Figure 8 shows the success rate of finding a packet
with a good ICV and deriving the correct MIC key. For
comparison, it also includes the success rates had we
only used the two most likely candidates. Figure 9 shows
the median position of the first candidate with a correct
ICV. We plot the median instead of average to lower in-
fluence of outliers, i.e., at times the correct candidate was
unexpectedly far (or early) in the candidate list.

The question that remains how to determine the con-
tents of the unknown fields in the IP and TCP packet.
More precisely, the unknown fields are the internal IP
and port of the client, and the IP time-to-live (TTL) field.
One observation makes this clear: both the IP and TCP
header contain checksums. Therefore, we can apply ex-
actly the same technique (i.e., candidate generation and
pruning) to derive the values of these fields with high
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success rates. This can be done independently of each
other, and independently of decrypting the MIC and ICV.

Another method to obtain the internal IP is to rely on
HTML5 features. If the initial TCP connection is created
by a browser, we can first send JavaScript code to obtain
the internal IP of the victim using WebRTC [37]. We also
noticed that our NAT gateway generally did not modify
the source port used by the victim. Consequently we can
simply read this value at the server. The TTL field can
also be determined without relying on the IP checksum.
Using a traceroute command we count the number of
hops between the server and the client, allowing us to
derive the TTL value at the victim.

5.4 Empirical Evaluation

To test the plaintext recovery phase of our attack we cre-
ated a tool that parses a raw pcap file containing the cap-
tured Wi-Fi packets. It searches for the injected packets,
extracts the ciphertext statistics, calculates plaintext like-
lihoods, and searches for a candidate with a correct ICV.
From this candidate, i.e., decrypted injected packet, we
derive the MIC key.

For the ciphertext generation phase we used an
OpenVZ VPS as malicious server. The incoming TCP
connection from the victim is handled using a custom
tool written in Scapy. It relies on a patched version of
Tcpreplay to rapidly inject the identical TCP packets.
The victim machine is a Latitude E6500 and is connected
to an Asus RT-N10 router running Tomato 1.28. The
victim opens a TCP connection to the malicious server
by visiting a website hosted on it. For the attacker we
used a Compaq 8510p with an AWUS036nha to capture
the wireless traffic. Under this setup we were able to
generate roughly 2500 packets per second. This number
was reached even when the victim was actively brows-
ing YouTube videos. Thanks to the 7-byte payload, we
uniquely detected the injected packet in all experiments
without any false positives.

We ran several test where we generated and captured
traffic for (slightly more) than one hour. This amounted
to, on average, capturing 9.5 ·220 different encryptions of
the packet being injected. Retransmissions were filtered
based on the TSC of the packet. In nearly all cases we
successfully decrypted the packet and derived the MIC
key. Recall from Sect. 2.2 that this MIC key is valid as
long as the victim does not renew its PTK, and that it can
be used to inject and decrypt packets from the AP to the
victim. For one capture our tool found a packet with a
correct ICV, but this candidate did not correspond to the
actual plaintext. While our current evaluation is limited
in the number of captures performed, it shows the attack
is practically feasible, with overall success probabilities
appearing to agree with the simulated results of Fig. 8.

Listing 3: Manipulated HTTP request, with known plain-
text surrounding the cookie at both sides.

1 GET / HTTP/1.1

2 Host: site.com

3 User-Agent: Mozilla/5.0 (X11; Linux i686; rv:32.0)

Gecko/20100101 Firefox/32.0

4 Accept: text/html,application/xhtml+xml,application/

xml;q=0.9,*/*;q=0.8

5 Accept-Language: en-US,en;q=0.5

6 Accept-Encoding: gzip, deflate

7 Cookie: auth=XXXXXXXXXXXXXXXX; injected1=known1;

injected2=knownplaintext2; ...

6 Decrypting HTTPS Cookies

We inject known data around a cookie, enabling use of
the ABSAB biases. We then show that a HTTPS cookie
can be brute-forced using only 75 hours of ciphertext.

6.1 Injecting Known Plaintext
We want to be able to predict the position of the targeted
cookie in the encrypted HTTP requests, and surround it
with known plaintext. To fix ideas, we do this for the se-
cure auth cookie sent to https://site.com. Similar
to previous attacks on SSL and TLS, we assume the at-
tacker is able to execute JavaScript code in the victim’s
browser [9, 1, 2]. In our case, this means an active man-
in-the-middle (MiTM) position is used, where plaintext
HTTP channels can be manipulated. Our first realisa-
tion is that an attacker can predict the length and con-
tent of HTTP headers preceding the Cookie field. By
monitoring plaintext HTTP requests, these headers can
be sniffed. If the targeted auth cookie is the first value
in the Cookie header, this implies we know its position
in the HTTP request. Hence, our goal is to have a layout
as shown in Listing 3. Here the targeted cookie is the first
value in the Cookie header, preceded by known headers,
and followed by attacker injected cookies.

To obtain the layout in Listing 3 we use our MiTM po-
sition to redirect the victim to http://site.com, i.e.,
to the target website over an insecure HTTP channel.
If the target website uses HTTP Strict Transport Secu-
rity (HSTS), but does not use the includeSubDomains

attribute, this is still possible by redirecting the victim to
a (fake) subdomain [6]. Since few websites use HSTS,
and even fewer use it properly [47], this redirection will
likely succeed. Against old browsers HSTS can even be
bypassed completely [6, 5, 41]. Since secure cookies
guarantee only confidentiality but not integrity, the in-
secure HTTP channel can be used to overwrite, remove,
or inject secure cookies [3, 4.1.2.5]. This allows us to
remove all cookies except the auth cookie, pushing it to
the front of the list. After this we can inject cookies that
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will be included after the auth cookie. An example of
a HTTP(S) request manipulated in this manner is shown
in Listing 3. Here the secure auth cookie is surrounded
by known plaintext at both sides. This allows us to use
Mantin’s ABSAB bias when calculating plaintext likeli-
hoods.

6.2 Brute-Forcing The Cookie
In contrast to passwords, many websites do not protect
against brute-forcing cookies. One reason for this is that
the password of an average user has a much lower en-
tropy than a random cookie. Hence it makes sense to
brute-force a password, but not a cookie: the chance of
successfully brute-forcing a (properly generated) cookie
is close to zero. However, if RC4 can be used to con-
nect to the web server, our candidate generation algo-
rithm voids this assumption. We can traverse the plain-
text candidate list in an attempt to brute-force the cookie.

Since we are targeting a cookie, we can exclude cer-
tain plaintext values. As RFC 6265 states, a cookie value
can consists of at most 90 unique characters [3, §4.1.1].
A similar though less general observation was already
made by AlFardan et al. [2]. Our observation allows us
to give a tighter bound on the required number of cipher-
texts to decrypt a cookie, even in the general case. In
practice, executing the attack with a reduced character
set is done by modifying Algorithm 2 so the for-loops
over µ1 and µ2 only loop over allowed characters.

Figure 10 shows the success rate of brute-forcing a 16-
character cookie using at most 223 attempts. For compar-
ison, we also include the probability of decrypting the
cookie if only the most likely plaintext was used. This
also allows for an easier comparison with the work for
AlFardan et al. [2]. Note that they only use the Fluhrer-
McGrew biases, whereas we combine serveral ABSAB
biases together with the Fluhrer-McGrew biases. We
conclude that our brute-force approach, as well as the
inclusion of the ABSAB biases, significantly improves
success rates. Even when using only 223 brute-force at-
tempts, success rates of more than 94% are obtained once
9 ·227 encryptions of the cookie have been captured. We
conjecture that generating more candidates will further
increase success rates.

6.3 Empirical Evaluation
The main requirement of our attack is being able to col-
lect sufficiently many encryptions of the cookie, i.e., hav-
ing many ciphertexts. We fulfil this requirement by forc-
ing the victim to generate a large number of HTTPS re-
quests. As in previous attacks on TLS [9, 1, 2], we ac-
complish this by assuming the attacker is able to execute
JavaScript in the browser of the victim. For example,

Ciphertext copies times 227

Pr
ob

ab
ilit

y 
su

cc
es

sf
ul

 b
ru

te
−f

or
ce

   
   

   
   

   
 

0%

20%

40%

60%

80%

100%

1 3 5 7 9 11 13 15

223 candidates
1 candidate

Figure 10: Success rate of brute-forcing a 16-byte cookie
using roughly 223 candidates, and only the most likely
candidate, dependent on the number of collected cipher-
texts. Results based on 256 simulations each.

when performing a man-in-the-middle attack, we can in-
ject JavaScript into any plaintext HTTP connection. We
then use XMLHttpRequest objects to issue Cross-Origin
Requests to the targeted website. The browser will auto-
matically add the secure cookie to these (encrypted) re-
quests. Due to the same-origin policy we cannot read the
replies, but this poses no problem, we only require that
the cookie is included in the request. The requests are
sent inside HTML5 WebWorkers. Essentially this means
our JavaScript code will run in the background of the
browser, and any open page(s) stay responsive. We use
GET requests, and carefully craft the values of our in-
jected cookies so the targeted auth cookie is always at
a fixed position in the keystream (modulo 256). Recall
that this alignment is required to make optimal use of the
Fluhrer-McGrew biases. An attacker can learn the re-
quired amount of padding by first letting the client make
a request without padding. Since RC4 is a stream cipher,
and no padding is added by the TLS protocol, an attack
can easily observe the length of this request. Based on
this information it is trivial to derive the required amount
of padding.

To test our attack in practice we implemented a tool
in C which monitors network traffic and collects the nec-
essary ciphertext statistics. This requires reassembling
the TCP and TLS streams, and then detecting the 512-
byte (encrypted) HTTP requests. Similar to optimizing
the generation of datasets as in Sect. 3.2, we cache sev-
eral requests before updating the counters. We also cre-
ated a tool to brute-force the cookie based on the gen-
erated candidate list. It uses persistent connections and
HTTP pipelining [11, §6.3.2]. That is, it uses one con-
nection to send multiple requests without waiting for
each response.

In our experiments the victim uses a 3.1 GHz Intel
Core i5-2400 CPU with 8 GB RAM running Windows 7.
Internet Explorer 11 is used as the browser. For the server
a 3.4 GHz Intel Core i7-3770 CPU with 8 GB RAM is
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used. We use nginx as the web server, and configured
RC4-SHA1 with RSA as the only allowable cipher suite.
This assures that RC4 is used in all tests. Both the server
and client use an Intel 82579LM network card, with the
link speed set to 100 Mbps. With an idle browser this
setup resulted in an average of 4450 requests per second.
When the victim was actively browsing YouTube videos
this decreased to roughly 4100. To achieve such num-
bers, we found it’s essential that the browser uses persis-
tent connections to transmit the HTTP requests. Other-
wise a new TCP and TLS handshake must be performed
for every request, whose round-trip times would signif-
icantly slow down traffic generation. In practice this
means the website must allow a keep-alive connec-
tion. While generating requests the browser remained re-
sponsive at all times. Finally, our custom tool was able to
test more than 20000 cookies per second. To execute the
attack with a success rate of 94% we need roughly 9 ·227

ciphertexts. With 4450 requests per seconds, this means
we require 75 hours of data. Compared to the (more than)
2000 hours required by AlFardan et al. [2, §5.3.3] this is
a significant improvement. We remark that, similar to
the attack of AlFardan et al. [2], our attack also tolerates
changes of the encryption keys. Hence, since cookies
can have a long lifetime, the generation of this traffic can
even be spread out over time. With 20000 brute-force at-
tempts per second, all 223 candidates for the cookie can
be tested in less than 7 minutes.

We have executed the attack in practice, and success-
fully decrypted a 16-byte cookie. In our instance, cap-
turing traffic for 52 hours already proved to be sufficient.
At this point we collected 6.2 ·227 ciphertexts. After pro-
cessing the ciphertexts, the cookie was found at position
46229 in the candidate list. This serves as a good exam-
ple that, if the attacker has some luck, less ciphertexts are
needed than our 9 · 227 estimate. These results push the
attack from being on the verge of practicality, to feasible,
though admittedly somewhat time-consuming.

7 Related Work

Due to its popularity, RC4 has undergone wide crypt-
analysis. Particularly well known are the key recovery
attacks that broke WEP [12, 50, 45, 44, 43]. Several
other key-related biases and improvements of the orig-
inal WEP attack have also been studied [21, 39, 32, 22].

We refer to Sect. 2.1 for an overview of various biases
discovered in the keystream [25, 23, 38, 2, 20, 33, 13,
24, 38, 15, 31, 30]. In addition to these, the long-term
bias Pr[Zr = Zr+1 | 2 ·Zr = ir] = 2−8(1+2−15) was dis-
covered by Basu et al. [4]. While this resembles our new
short-term bias Pr[Zr = Zr+1], in their analysis they as-
sume the internal state S is a random permutation, which
is true only after a few rounds of the PRGA. Isobe et

al. searched for dependencies between initial keystream
bytes by empirically estimating Pr[Zr = y∧Zr−a = x] for
0 ≤ x,y ≤ 255, 2 ≤ r ≤ 256, and 1 ≤ a ≤ 8 [20]. They
did not discover any new biases using their approach.
Mironov modelled RC4 as a Markov chain and recom-
mended to skip the initial 12 ·256 keystream bytes [26].
Paterson et al. generated keystream statistics over con-
secutive keystream bytes when using the TKIP key struc-
ture [30]. However, they did not report which (new) bi-
ases were present. Through empirical analysis, we show
that biases between consecutive bytes are present even
when using RC4 with random 128 bit keys.

The first practical attack on WPA-TKIP was found by
Beck and Tews [44] and was later improved by other re-
searchers [46, 16, 48, 49]. Recently several works stud-
ied the per-packet key construction both analytically [15]
and through simulations [2, 31, 30]. For our attack we
replicated part of the results of Paterson et al. [31, 30],
and are the first to demonstrate this type of attack in prac-
tice. In [2] AlFardan et al. ran experiments where the
two most likely plaintext candidates were generated us-
ing single-byte likelihoods [2]. However, they did not
present an algorithm to return arbitrarily many candi-
dates, nor extended this to double-byte likelihoods.

The SSL and TLS protocols have undergone wide
scrutiny [9, 41, 7, 1, 2, 6]. Our work is based on the
attack of AlFardan et al., who estimated that 13 ·230 ci-
phertexts are needed to recover a 16-byte cookie with
high success rates [2]. We reduce this number to 9 · 227

using several techniques, the most prominent being us-
age of likelihoods based on Mantin’s ABSAB bias [24].
Isobe et al. used Mantin’s ABSAB bias, in combination
with previously decrypted bytes, to decrypt bytes after
position 257 [20]. However, they used a counting tech-
nique instead of Bayesian likelihoods. In [29] a guess-
and-determine algorithm combines ABSAB and Fluhrer-
McGrew biases, requiring roughly 234 ciphertexts to de-
crypt an individual byte with high success rates.

8 Conclusion

While previous attacks against RC4 in TLS and WPA-
TKIP were on the verge of practicality, our work pushes
them towards being practical and feasible. After cap-
turing 9 ·227 encryptions of a cookie sent over HTTPS,
we can brute-force it with high success rates in negligi-
ble time. By running JavaScript code in the browser of
the victim, we were able to execute the attack in practice
within merely 52 hours. Additionally, by abusing RC4
biases, we successfully attacked a WPA-TKIP network
within an hour. We consider it surprising this is possi-
ble using only known biases, and expect these types of
attacks to further improve in the future. Based on these
results, we strongly urge people to stop using RC4.
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