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Abstract

Most approaches to circumventing Internet censorship
and monitoring use conventional proxies which are ac-
cessed directly by their IP addresses and so are easily
blocked. Decoy routing is an alternative approach that
deploys a proxy in association with a router, called a de-
coy router, that is only accessible indirectly when traffic
traverses the router. In this work, we design MultiFlow,
a new decoy routing protocol that re-uses the TLS pro-
tocol’s session resumption mechanism to enable the de-
coy router itself to resume a client’s session. As a con-
sequence, MultiFlow is able to (1) authenticate a client
without blocking traffic inline on the decoy router, and
(2) use information provided by the client to bootstrap
the establishment of additional secure connections for
covert communication. The client and decoy router then
use a message board-like tunnel to communicate across
multiple connections in a way that mitigates probing and
traffic analysis attacks.

1 Introduction

Nation-state censorship and monitoring of user traffic on
the Internet is widespread, affecting the majority of peo-
ple in the world [8]. In some countries, a user may be
prevented from accessing certain websites, or redirected
unwittingly to an alternate version of a website. Most
approaches to circumventing such Internet censorship
and monitoring, like Tor [12], use conventional proxies
which are accessed directly by their IP addresses and so
are easily blocked. Decoy routing [16, 19, 24] is an al-
ternative approach in which a proxy or monitoring point
is deployed in association with a router, called a decoy
router. The proxy is then only accessible indirectly when
traffic is routed though the decoy router.

As in Figure 1, in decoy routing, a client typically
opens a TLS [5] connection to any unblocked website,
called the decoy host. If that connection traverses a de-
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Figure 1: Decoy routing overview. The client is located
in a network controlled by an adversary. The adversary
can monitor, filter, modify, or block any traffic entering
or leaving its network. While the adversary can see client
to decoy host traffic that is sourced inside its network,
and can probe the decoy host, the adversary cannot ob-
serve the actual packets that arrive at the decoy host, nor
monitor the internal activity of the client. The adversary
also cannot see all traffic sent to or from the decoy router,
decoy host, or blocked host. The decoy host and blocked
host are oblivious to the use of decoy routing.

coy router on its way to the decoy host, the decoy router
can connect to a blocked host on the client’s behalf. The
decoy router then tunnels traffic from the blocked host
back to the client via the client-decoy host traffic. To an
adversary, the client appears to be communicating only
with the decoy host. To block the operation of decoy
routing, an adversary must block most or all websites on
the Internet: for instance, in 2012 it was shown that 30
autonomous systems with decoy routers will be on the
paths of about 90% of client-decoy host paths [11].

The deployment of decoy routers, however, requires
the cooperation of ISPs, who are unwilling to add any
in-path or blocking elements to their routers. Thus, tap-
based implementations of decoy routers are desired, in
which the proxy associated with the router observes the
packets passing through the router but does not delay or
modify them. Instead, the proxy can additionally cre-



ate and inject new packets as needed. Indeed, the first
decoy routing protocol deployed in an ISP [14] was Tap-
Dance [23], the first tap-based protocol. However, be-
cause Internet routes are typically asymmetric, most de-
coy routing protocols assume that only the forward direc-
tion of traffic can be observed by the decoy router. Tap-
Dance also makes this assumption and as a consequence
is unable to verify client liveness [23].

In this work, we design a tap-based decoy routing pro-
tocol, MultiFlow, which uses the TLS session resump-
tion mechanism to enable the following key features.

1. Client authentication with a tap-based decoy router:
The decoy router opens its own connection to the
decoy host, by resuming the client’s session. If
the decoy host is willing to resume the session, the
client is considered a valid decoy routing client.

2. Asynchronous and out-of-band communication.
The tunnel operates as a virtual message board.
The decoy router connects to a host accessible to
the client and uploads covert data. The client then
downloads the covert data using its own connection
to the same host. Thus, the client and decoy never
communicate within the same connection, mitigat-
ing probing and traffic analysis attacks.

3. Cross-connection and cross-server decoy routing.
A decoy routing session can be created across mul-
tiple connections and decoy hosts. To do so, the
client exfiltrates to the decoy router the TLS ses-
sion resumption information for a second, different
connection. This (1) amortizes the cost of setting
up a new decoy routing connection and (2) protects
against an adversary that terminates a TLS connec-
tion after one exchange of application data.

2 Related Work

Fig. 2 summarizes the characteristics of the different de-
coy routing protocols, which we describe in detail next.
1st generation decoy routing protocols. These pro-
tocols [24, 19, 16] primarily differ with respect to (1)
whether they support the much more likely case of asym-
metric Internet routes [15, 22, 18], and (2) how the client
signals its wish to use decoy routing and the subsequent
handshaking between the client and decoy router.

Telex [24] operates over symmetric routes while Cir-
ripede [16] and Curveball [19] operate over asymmetric
routes. But in all three protocols, the decoy router uses
a TCP RST to reset the client to decoy host connection
once the handshake completes. The decoy router then
forges responses from the decoy host. Consequently all
three protocols are vulnerable to connection probing at-
tacks when probes bypass the decoy router on their way

to the decoy host. To securely reset the client connection
with the decoy host, the decoy router must block traffic
inline. Otherwise client traffic risks reaching the decoy
host after the connection has been reset, with the decoy
host subsequently sending its own TCP RST back to the
client, visible to an adversary. Cirripede and Curveball,
by operating over asymmetric routes, must also ensure
the decoy router correctly fingerprints the network stack
of the decoy host when forging traffic.

Decoy routing is typically implemented within the
TLS protocol [5], leveraging the security properties of
TLS. In both Telex and Curveball, the client signals its
wish to use decoy routing via the TLS ClientRandom,
which cannot be modified by an adversary without break-
ing the TLS protocol itself. Cirripede instead combines
the TCP initial sequence numbers (ISNs) of multiple
connections to obtain the client signal. ISNs are more
easily modified than the ClientRandom but also let Cirri-
pede use a later different TLS connection to tunnel covert
data back to the client. Attacks replaying client hand-
shake traffic can be mitigated by limiting how long a sig-
nal is valid, but only Telex can definitively check client
liveness since it operates over symmetric routes.

2nd generation decoy routing protocols. These pro-
tocols [23, 13] improve the security and deployability
of decoy routing with respect to two issues: (1) termi-
nation of the client-decoy host connection which intro-
duces connection probing attacks and (2) inline blocking
of traffic at the decoy router which hinders deployability.

Like Telex [24] and Curveball [19], TapDance [23]
and Rebound [13] operate over asymmetric routes, and
use the ClientRandom field to signal the client’s wish to
use decoy routing. Unlike 1st generation protocols, Tap-
Dance and Rebound do not terminate the client-decoy
host connection. Instead, the decoy router rewrites or
injects traffic on this connection, which requires knowl-
edge of the TLS keys. Some of the information needed
to compute these keys is generated by the decoy host
but is never seen by the decoy router since routes are
assumed asymmetric. Thus, TapDance and Rebound
each design techniques by which the client exfiltrates
the needed information to the decoy router, respectively
called chosen ciphertext steganography and stencil cod-
ing. In both techniques the client chooses plaintext mes-
sages in such a way that when encrypted the resulting ci-
phertext steganographically hides, or stencils, the infor-
mation to be exfiltrated in bits of ciphertext. By working
through the encryption backwards, TapDance is more ef-
ficient than Rebound in finding the right plaintext.

TapDance also implements the first non-blocking (tap-
based) decoy router. In TapDance, the client hides covert
data in incomplete HTTP requests: while the decoy host
waits for the HTTP request to complete, the decoy router
forges decoy host responses. While TapDance does not
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Figure 2: Comparison of decoy routing protocols (extension of the table found in [10]). Filled black circles indicate
features that a protocol supports or attacks a protocol defeats. More filled circles is considered more positive.

terminate the client-decoy host connection, the forging of
packets leaves TapDance vulnerable to connection prob-
ing since the decoy host’s TCP state will not match the
client’s view. TapDance is also unable to validate client
liveness, a consequence in part of the tap-based design.
While not tap-based, Rebound also does not forge
responses. Instead, Rebound takes advantage of mal-
formed URLs in GET requests triggering error mes-
sages from the decoy host which can include the offend-
ing URL. The decoy router then blocks client traffic in-
line: the URL in the client’s GET request is immediately
rewritten, either with random data that the client detects
as chaff, or covert data to send to the client. Rebound
is vulnerable to traffic analysis attacks, in part because
of the large amount of chaff traffic that is generated. Re-
bound relies on the decoy host to check client liveness on
its behalf: if the client is live the decoy host sends the er-
ror message back to the client, otherwise the decoy host
sends a TCP RST. The decoy router itself never knows
whether the client is live, but still behaves appropriately.
3rd generation decoy routing protocols. These pro-
tocols [9, 20, 10] focus on (1) resisting attacks that
route traffic around decoy routers [21] or (2) addressing
vulnerabilities from operating over asymmetric routes.
None of these protocols is tap-based. The routing around
decoys attack (RAD) [21] shows that a powerful ad-
versary can make routing decisions that bypass decoy
routers. Further analysis shows that, in addition to the
high costs of launching such an attack, more strategic
placement of decoy routers can mitigate the attack [17].
Slitheen [9] operates over symmetric routes, so the
decoy router can easily obtain the TLS keys and check
client liveness. Slitheen mitigates traffic analysis by
having the decoy router only replace leaf content from
the decoy host, like images, with covert data. Water-

fall [20] operates over asymmetric routes and protects
against RAD attacks by having the decoy router rewrite
traffic on the reverse rather than forward path. The client
leverages Rebound’s error channel [13] to communicate
covert data to the decoy router. By seeing traffic from the
decoy host, Waterfall is able to check client liveness.

Recent work [10] proposes collaboration among de-
coy routers, enabling asymmetric protocols to gain the
security properties of operating over symmetric routes,
as well as mitigating RAD attacks. This work also intro-
duces a TLS re-encryption attack that occurs when an ad-
versary sees re-encrypted traffic both entering and leav-
ing a decoy router as in the Rebound [13] and Slitheen [9]
protocols (a capability that decoy routing protocols typi-
cally assume the adversary does not have).

This work. MultiFlow makes three contributions: (1)
checking client liveness with a tap-based decoy router
by having the decoy router resume the client’s session,
(2) mitigating traffic analysis and connection probing at-
tacks by never having client-decoy router communica-
tion in the same connection, and (3) amortizing setup
cost and mitigating TLS termination attacks via cross-
connection and cross-server decoy routing. By TLS ter-
mination attacks we mean attacks that terminate a con-
nection after one client-decoy host data exchange, block-
ing decoy routing while still enabling normal users to use
TLS. The current MultiFlow tunnel, however, does re-
quire the client to share private information, like a user-
name/password or email address, with the decoy router.

3 MultiFlow Protocol

We overview the MultiFlow protocol in Fig. 3 and Fig. 4.
In the MultiFlow handshake in Fig. 3, the decoy router



passively observes TLS traffic for a colluding client on
a possibly asymmetric route. Once the client exfiltrates
the necessary information in TLS traffic, the decoy router
opens its own TLS connection to the decoy host and re-
sumes the client’s session. The goal of this resumption
is to check client liveness. In the MultiFlow funnel in
Fig. 4, the client and decoy router communicate via a vir-
tual message board. The client uses its original connec-
tion to the decoy host, which traverses the decoy router,
to communicate requests to the decoy router. The de-
coy router uses its own connection to the decoy host to
post data for the client to later download. The decoy
router does this by uploading data to a location speci-
fied by the client such as by replaying a client’s HTTP
POST observed on the client-decoy host connection, or
alternatively, by sending a message, with an appropri-
ately tagged subject line, to an email address specified
by the client.

Client-decoy router communication is thus asyn-
chronous and does not occur within a single connection.
Instead, the client and decoy router post and read infor-
mation independently from each other on separate con-
nections to the same or different decoy hosts. The dif-
ferent connections are made part of a decoy routing ses-
sion by having the client share not just the TLS session
keys with the decoy router but also the associated TLS
session resumption information (e.g., pre-shared key or
ticket). In a decoy routing session, once a client has au-
thenticated with a decoy router on one connection, that
authentication can be bootstrapped to establish another
connection to a possibly different decoy host. This dif-
fers from the use of “quilting” in Curveball [19] and
Rebound [13] which completes handshakes on multiple
connections and then uses those connections in parallel
to allow the client to more quickly download data.

MultiFlow is designed to work within the TLS 1.3 pro-
tocol [6], specifically Internet-Draft draft-ietf-tls-tls13-
28. Much of the design extends to session tickets and
session IDs as used in TLS 1.2 [5]. There are, however,
a number of differences between TLS 1.3 and TLS 1.2
that impact decoy routing. First, TLS 1.3 incorporates
forward secrecy via a Diffie-Hellman key exchange in
which the ClientHello and SeverHello use the key_share
field to derive a shared secret that is used as the Hand-
shake Secret. Second, all handshake traffic after the
ClientHello and ServerHello is encrypted using hand-
shake traffic keys. Third, rather than using primarily the
ClientRandom, ServerRandom, and Premaster Secret to
derive keys, as in TLS 1.1 and 1.2, in TLS 1.3, hashes of
all messages exchanged are incorporated.

We next overview the MultiFlow protocol. Our nota-
tion is based on that of Rebound [13]. We use C to refer
to the MultiFlow client, DH to refer to the decoy host,
and DR to refer to the decoy router.

e S(m) — R denotes that message m is sent by sender
S to receiver R.

o S(m) observer, R denotes that message m is sent by
sender S to receiver R, and observed by observer.

. E,’(’ (m) denotes message m is encrypted with key k
established between endpoints i and j.

3.1 MultiFlow Handshake

Fig. 3 overviews the MultiFlow handshake and details
the changes to the TLS protocol. In Step 1, a Clien-
tHello is sent. Like in Rebound [13], the client and de-
coy router share a secret key from which sentinel val-
ues are generated periodically. Each sentinel must be at
least 112 bytes and is split into a number of sub-strings.
The first 32 bytes, i.e., Sentinel|0 : 31], are used as the
ClientRandom to signal the client’s presence to the de-
coy router and authenticate the client. When the decoy
router observes an appropriate ClientRandom, the decoy
router starts passively recording traffic on that connec-
tion. Sentinel[32 : 63] is used as the public part of the
client’s key_share, corresponding to the client’s Diffie-
Hellman public key value while Sentinel[64:95] corre-
sponds to the client’s Diffie-Hellman private key value.
Thus, by seeing the ClientRandom, the decoy router im-
mediately obtains the client’s Diffie-Hellman public and
private keys. Sentinel[96:111] is a shared symmetric
key, KgZZR between the client and decoy router.

In Step 2 of Fig. 3, the decoy host responds to the
ClientHello with its own ServerHello. As the decoy
router does not see traffic from the decoy host, the client
uses stencil coding [13] or chosen-ciphertext steganog-
raphy [23] to covertly exfiltrate the 98 bytes of informa-
tion the client receives in Steps 2-7 and needed by the
decoy router for key computation and session resump-
tion. In Step 8, from StencilMessage(98 bytes), the
decoy router obtains the 2 byte ciphersuite and 32 byte
key_share selected by the decoy host, the 32 byte hash,
Hash(ClientHello...ServerHello), and the 32 byte hash,
Hash(ClientHello...ServerFinish). From this informa-
tion and the already known Client Diffie-Hellman keys,
the decoy router computes the HandshakeSecret and the
handshake traffic keys, and then the MasterSecret and ap-
plication traffic keys.

In the TLS 1.3 draft [6] the record size limit is 2%
bytes. Using stencil coding [13] we expect to be able
to hide 1 byte in every 16-byte block of the TLS record,
thus hiding 98 bytes requires a 1568 byte record. We ob-
serve that for many websites, the initial GET request is
small, unless large cookies or data are uploaded, with ini-
tial TLS 1.3 application record sizes often less than 100
bytes. To thwart traffic analysis, it may thus be necessary
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. ClientHello: C(Sentinel[0 : 31], Sentinel[32 : 63], ciphersuites, groups, signature_algorithms, psk_modes) DR, pH

. ServerHello: DH (random, key_share, ciphersuite, group,signature_algorithm) — C

(Signature(Hash(ClientHello...Certificate)))) — C
(MAC(Hash(ClientHello...CertificateVerify)))) — C

. ClientFinish: C(ES2" (MAC(Hash(ClientHello...CertificateVerify)))) 22 DH

7. NewSessionTicket: DH (EC’DH(ticket,li fetime,ticket _nonce,ticket, psk_identity, extensions)) — C

App

8. ApplicationRecord: C(E[%DPH(StencilMessage(98 bytes))) DR pH

9. ApplicationRecord: DH (EC’DH(HTTPReq(EC"DR(NewSessionTicket)))) —-C

App Sym

Authentication: DR resumes client session

10. ClientHello: DR(random, key_share, psk_identity, psk_binder, ciphersuites) — DH

11. ServerHello: DH (random,key_share, selected_psk_identity, ciphersuite) — DR

12. ServerFinish: DH (ng’DH

(MAC(Hash(ClientHello...ServerHello)))) — DR

13. ClientFinish: DR(Eg?*DH (MAC(Hash(ClientHello...ServerHello)))) — DH

Figure 3: MultiFlow handshake using TLS 1.3 Internet-Draft draft-ietf-tls-tls13-28 [6]. E and E,’ refer to en-
cryption using the handshake and application keys respectively, with superscripts indicating the two endpoints that
established the keys. ESCy’ZR refers to encryption using the symmetric key shared between the client and decoy router.
Hash(Msg...Msgy) indicates a hash taken over all messages exchanged starting with Msg; and ending with Msgy.
Bold-face underlined fields correspond to covert data exfiltrated by the client or decoy router. C denotes the client,
DH denotes the decoy host, and DR denotes the decoy router.

to stencil across multiple application records (or attempt
more efficient stenciling, as in TapDance [23]).

To resume a session, the decoy router requires the 219
byte NewSessionTicket, sent by the decoy host in Step
7. In Step 9, the client exfiltrates these 219 bytes as
application data encrypted with KgﬁR and hidden in an
HTTP request. Using the application traffic keys, the de-
coy router decrypts the records in Steps 8-9 to get the
NewSessionTicket, which comprises 219 bytes in to-
tal: a 4 byte ticket_ lifetime, a 4 byte ticket_age_add, a
1 byte ticket_nonce, a 208 byte ticket (aka psk_identity),
and a 2 byte extensions. In Step 10, the decoy router
resumes the session using the psk_identity and the
psk_binder (which corresponds to Hash(ClientHello')
where ClientHello' is the ClientHello excluding the list
of binders). The pre_shared_key used in cryptographic
operations for the resumed session is computed from
the ResumptionMasterSecret, which is computed from
the previous connection’s MasterSecret, and from the
ticket _nonce in the NewSessionTicket.

Decoy router authentication of client. The
Sentinel[0 : 31] sent in Step 1 of Fig. 3 is used to authen-
ticate the client, while the session resumption in Steps
10-13 is used to check client liveness. If the decoy host
accepts the resumed session as valid rather than falling

back to a new handshake, then the decoy router considers
the client to be a live client. Now instead of an adversary
probing a connection to determine whether decoy rout-
ing is being used, instead, the decoy router is probing the
connection to determine client liveness.

Suppose an adversary replays client traffic to the decoy
host and the decoy router is still able to resume the ses-
sion. Then the decoy router will still consider the client
to be valid. However, the adversary will not be able to
detect the presence of a decoy router on the path to the
decoy host, because the decoy router does not modify,
delay, or inject traffic on the client-decoy host connec-
tion. Suppose instead an adversary replays client traffic
to a different host under adversary control. If the ad-
versary observes the decoy router attempting to resume
the client’s connection to this new host then the adver-
sary can infer that decoy routing is in use. We can miti-
gate this attack by having the client exfiltrate the destina-
tion server to which to resume the connection somewhere
within the encrypted data.

Client authentication of decoy router. Since the de-
coy router never directly communicates with the client,
the client only becomes aware of the presence of a decoy
router when the client is able to later download covert
data that the decoy router has posted using the tunnel.



Tunnel 1: On its own connection to DH, DR uploads covert data to URI specified by client

EC.DH

14. ApplicationRecord: C(E, s

(HTTPpost(URI = X, Eg0¢ (CovertRequest)))) =% DH

DR,.DH
E

15. ApplicationRecord: DR( App

(HTTPposr(URI = X, E

CDR

Sym

(CovertResponse)))) — DH

EC-DH

16. ApplicationRecord: C( App

EC-DH

14. ApplicationRecord: C(E, jis

(HTTPgrr(URI = X)) 2% D

Tunnel 2: DR sends covert data as body of email to email address specified by client

(HTTPeq(EG;m (EmailAddress = X, CovertRequest)))) > DH

15. ApplicationRecord: DR(E DRES

Email

(EmailAddress = X, EmailBody = Eg’

C.DR

Sym (CovertResponse))) — ES

16. ApplicationRecord: C(E C.ES

Email

(Download emails for EmailAddress = X)) — ES

Figure 4: Possible MultiFlow tunnels. We use the same notation as Fig. 3. ES denotes an email server.

3.2 MultiFlow Tunnel

Decoy routing protocols typically require the decoy
router to interfere with the client-decoy host connec-
tion in some way: either by blocking connection traffic
and re-writing packets, or by passively watching traffic
and forging and injecting new packets impersonating the
decoy host. This can introduce traffic analysis attacks
(or probing attacks on the decoy host when forging is
used). Instead, the MultiFlow tunnel uses a message-
board based approach. This enables the client and de-
coy router to communicate with each other on different
connections to the same or different decoy hosts, and re-
moves the need for tight time coupling when tunneling
data back to the client. Fig. 4 overviews two possible
MultiFlow tunnels.

Client to decoy router communication. In both tun-
nels in Fig. 4, the client sends EgyﬂR(CovertRequest)
to the decoy router via the client’s connection with the
decoy host. This covert data can be hidden inefficiently
in traffic via the use of stencil coding [13] or chosen-
ciphertext steganography [23]. Covert data can be more
efficiently exfiltrated by hiding the data in application
data encrypted within a TLS record such as via a mal-
formed GET request URI [13, 20] or a cookie field.

Decoy router to client communication. The decoy
router sends data to the client by uploading the requested
covert data to a location from which the client can later
access and download. Because the adversary does not
have the TLS keys or the client’s username and pass-
word, the adversary cannot decrypt, identify, or access
the resource being modified on the decoy host. Because
the decoy router never rewrites or modifies traffic on
the connection between the client and decoy host, traffic
analysis attacks are mitigated. There are several options
for how covert data can be uploaded, described next.

HTTP POST based tunnel. In Step 14 of Tunnel 1 in
Fig. 4, the client sends an HTTP POST to the decoy host.

In Step 15, the decoy router replays this HTTP POST on
its own connection to the decoy router, but now modi-

ed to upload ditferent data, ) overtResponse).
fied to upload different data, ES:°R (CovertR

Sym

In Step 16, the client re-downloads the URI associated
with the HTTP POST in Step 14 and obtains the covert
data that the decoy router posted. For some websites, the
client may also need to exfiltrate its login credentials and
specific URIs to which the decoy router should post.

Email-based tunnel. In Step 14 of Tunnel 2 in Fig. 4,
the client exfiltrates to the decoy router an email address
to which covert data should be sent. In Step 15, the de-
coy router sends an email to the email address specified
by the client, with EC’DR(CovertResponse) as the email

Sym
body while the email subject line is appropriately tagged
with a sequence number and other identifying informa-
tion. Even though tunneling data via email gives higher
delay, it allows for much higher throughput than, for in-
stance, an error-based channel.

Cloud-based tunnels. The decoy router uploads covert
data to Dropbox or another cloud service via a command
line interface. Cloud service command line interfaces
are implemented as an application that makes API calls
to the cloud server. The client thus needs a cloud ser-
vice account, permission for the cloud service command
line interface to access its account, and an authentication
token which the client must then exfiltrate to the decoy
router. The decoy router must then navigate the interface,
which may be hard to automate using a tool such as Sele-
nium [4] because the decoy router may potentially need
to visit a URL on a web browser to obtain a token.

3.3 Extensions

Virtual symmetric routes. Since MultiFlow communica-
tion between the client and decoy router is asynchronous,
there is no strict timing requirement. Thus, it might be
acceptable for the decoy router to incur the delays nec-
essary to coordinate with other decoy routers and de-



tect the reverse traffic going from the decoy host back
to the client. The idea of virtual symmetric routes is sim-
ilar to the collaboration among decoy routers done in re-
cent work [10] which enables symmetric operation over
asymmetric routes. The ability to see both directions of
traffic simplifies the work that the decoy router must do
to authenticate the client and tunnel covert data back to
the client, and lets the decoy router more easily obtain
the information needed to resume a client’s session and
compute the handshake and application traffic keys.

Cross-server decoy routing. The first decoy host to
which a client connects must be on a path that traverses
a decoy router, so that the decoy router can obtain the
information needed to authenticate the client as well as
resume the client’s session. The decoy host used for tun-
neling covert data from the decoy router to the client,
however, need not go through a decoy router, depend-
ing on the kind of tunnel used. As long as the decoy
router knows the necessary session information, client
login credentials, and posting location (e.g., email ad-
dress or URI), the decoy router to client tunnel tunnel can
use different decoys hosts than does the client to decoy
router tunnel. In fact, once the handshake is completed,
the client and decoy router can choose to discard their
TLS connections to the original decoy host, and instead
obtain covert data from each other via a virtual message
board on yet another decoy host which need not be on
the path of a decoy router. This mitigates the TLS termi-
nation attack described at the end of Section 2.

Use with other decoy routing protocols. The Multi-
Flow handshake could be used with other decoy routing
protocols, particularly those that operate as a tap but do
not authenticate their client such as TapDance [23].

3.4 Implementation Issues

We do not have an implementation of MultiFlow at this
time. Instead, our preliminary experiments have focused
on the feasiblity of MultiFlow using the s_client from
OpenSSL’s 1.1.1-pre2 release [1, 7] which works with
TLS 1.3, and Scapy’s TLS library [2, 3]. We have ver-
ified session resumption using a different source IP ad-
dress is feasible. We next describe some expected imple-
mentation issues.

Information leakage from session resumption. One po-
tential issue is the possibility of single-use tickets as de-
scribed for O-RTT data [6]. The adversary will not, how-
ever, itself be able to resume the session as it would need
to know the NewSessionTicket, which is encrypted by
the decoy host using the handshake traffic keys. Single-
use tickets may actually benefit MultiFlow as they would
alert the decoy router to an adverary’s attempts to resume
the session. If the decoy router is able to resume the
session, the decoy router should then get an additional

single-use session ticket to use.

Replaying HTTP POSTs. The decoy router can iden-
tify which HTTP POSTs to replay by tags inserted by the
client. A harder problem to solve is how the client identi-
fies or generates appropriate HTTP POSTs to replay. The
client could require the user to web browse and perform
actions that are likely to generate an HTTP POSTs, such
as posting comments on a web page. But whether the
HTTP POST is accepted by the decoy host may also de-
pend on whether it contains the appropriate cookies and
other fields set in the header, requiring the decoy router’s
replayed HTTP POST to contain the same fields.

Privacy of HTTP-posted data. An adversary must be
prevented from accessing covert data uploaded by the de-
coy router. Thus, HTTP POSTs must be done using a
private account that requires the client (and consequently
also the decoy router) to login. This will prevent the ad-
versary from simply crawling the entire decoy host site
to identify the posted data or trying to confuse the client
by posting nonsense. The client must thus exfiltrate its
login credentials to the decoy router: for this reason, the
email based tunnel may be preferable for the client, as
the decoy router would not need to login as the client.

Leakage of private information. The proposed Mul-
tiFlow tunnels require some leakage of private informa-
tion to the decoy router, such as a username and pass-
word or an email address. Alternative approaches that
do not require leakage of private information are thus of
interest. For instance, while most message boards are
implemented using identities linked to passwords, this
is not a requirement of such a system. It is possible to
have a capability-based rather than identity-based system
as well as quasi-anonymous boards, such as where the
board provides anonymity but the messages themselves
are keyed with identities.

4 Conclusions

In this work, we design MultiFlow, a new decoy routing
protocol that (1) checks client liveness with a tap-based
decoy router, (2) mitigates traffic analysis and connection
probing attacks, and (3) amortizes decoy routing setup
cost and mitigates TLS termination attacks. MultiFlow
achieves this by leveraging the TLS session resumption
mechanism to enable cross-connection and cross-server
decoy routing.
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