GhostPost: Seamless Restoration of Censored Social Media Posts

Frederick Douglas
University of lllinois Urbana-Champaign

Abstract

The control of voices within a country is as important
to a censor as blocking information from outside. This
control must extend to social media. Screening every
post prior to publication is not practical; instead, censors
find and delete objectionable content after it has been
posted. This paper presents GhostPost, a distributed sys-
tem that conveniently and safely restores deleted posts
on any social media platform, with an implementation
for Sina Weibo. Our simulations show that even if the
censor deletes most posts within two hours (roughly the
capability of Sina Weibo’s censor), it cannot prevent a
well established GhostPost deployment from preserving
a majority of the posts our users would want to see.

1 Introduction

Governments have always sought some degree of con-
trol over what their citizens say, regardless of the means
of communication involved. Censorship has followed
civilization onto the Internet, with governments block-
ing traffic to undesirable web sites and services based in
freer countries. China, the country this paper focuses on,
is perhaps the most notable example; its Internet censor-
ship is well enough known to have gained a nickname in
common parlance: “The Great Firewall.”

China’s Internet censorship includes simple tech-
niques such as disruption of DNS resolutions of banned
domain names[6] and blocking of flows to blacklisted
IP addresses, as well as more sophisticated techniques,
such as killing flows when deep packet inspection de-
tects a banned keyword[1], and identifying Tor connec-
tions with traffic pattern fingerprinting[7, 8]. Since sites
and services hosted within the censored country could
generally be compelled to remove the offending content,
this form of censorship is, broadly speaking, an attempt
to prevent the inward flow of unwanted ideas from other
countries.

Matthew Caesar
University of lllinois Urbana-Champaign

The other main goal of censorship is to prevent peo-
ple from expressing their own ideas. Social media repre-
sents a unique challenge to a censor aiming for this goal.
At a traditional newspaper, a handful of known employ-
ees write articles that can be carefully monitored, per-
haps even requiring explicit approval from the censor to
publish. With social media, a significant fraction of the
country’s entire population is speaking its mind, spon-
taneously and constantly. Punishing everyone who says
anything in any way “wrong” is infeasible, and requiring
posts to be pre-approved by the censor would be practi-
cally equivalent to shutting the platform down. Censored
social media platforms will therefore always allow dis-
sent to be (temporarily) expressed.

Conventional wisdom has come to view social media
as particularly well suited to facilitating social unrest.
Accordingly, the Chinese government is very careful in
its control of social media sites, such as Sina Weibo. A
study[9] of how long controversial posts survive before
deletion estimated a lower bound of 4,200 full-time hu-
man employees monitoring Sina Weibo. Whatever the
exact number, the Chinese censor clearly devotes a sig-
nificant amount of resources to policing social media.

Although this army of censors keeps a lid on objec-
tionable content in the long run, each undesirable post
does manage to be visible for a short time. Over 90%
of posts fated to be deleted survive less than 24 hours,
but the median deletion time is over two hours[9]. These
short periods of availability turn out to be sufficient for
thwarting censorship.

This paper describes GhostPost, a functioning system
for effectively, conveniently, and safely preserving and
disseminating posts deleted from Sina Weibo. Ghost-
Post relies on a community of Weibo users who wish to
circumvent Weibo’s censorship. These users record all
Weibo posts they see, and report those they see deleted to
the rest of the GhostPost system. Deleted posts are auto-
matically inserted back into weibo.com’s HTML during
users’ ordinary Weibo use.

GhostPost differs from similar projects[2, 3] in its use
of distributed monitoring. In addition to the ability to
scale to more accounts, by monitoring the accounts that
its users follow, GhostPost’s attention is focused exactly
where it should be. A centralized monitoring approach
must accept limitations; e.g., Weiboscope [2] only mon-
itors accounts with at least 1,000 followers. Fundamen-
tally, GhostPost’s differences from these projects are the
result of differing goals. Its purpose is to restore deleted
posts back into the feeds of users who were supposed
to see them, which requires distributed monitoring (and
selection of accounts to be monitored). The previous sys-
tems are intended for archival of censored posts and anal-
ysis of the censor’s behavior, for which a centralized ap-
proach is sufficient.

2 GhostPost

We assume the censor is a branch of a large national gov-
ernment. Some level of day-to-day censorship might be
carried out by the company that operates the platform, to
avoid the government taking more direct control.

We assume that for a sufficiently popular GhostPost
deployment, the censor will attempt to block its opera-
tion, and/or dissuade citizens from using it. In particular,
the censor will attempt to identify and punish GhostPost
users. We assume the censor can see every post posted on
Weibo, and, as will become important in our evaluation
of GhostPost’s safety, can track which Weibo users ever
observed a given post. The censor can join GhostPost,
and see which posts it resurrects.

GhostPost’s purpose is to resurrect social media posts
deleted by a censor. This goal of resurrecting deleted
posts requires GhostPost to be able to carry out two fun-
damental tasks: 1) observing posts being deleted, and
2) disseminating stored resurrected posts. If considera-
tion is not given to how deleted posts will be collected
and disseminated, users could claim to have seen any ac-
count post any message. Therefore, 3) users must be able
to verify the source of a resurrected post. Finally, these
goals must be balanced against safety: a censor might
seek to punish GhostPost users, in order to deter use of
the system. If all resurrected posts are visible to all users,
a censor could obtain information indicating that some
Weibo users were more probably GhostPost users than
others. Therefore, 4) users must be able to control who
receives the posts they resurrect.

2.1 Design

1) Observe posts being deleted: Sina Weibo is a huge
social media platform, with hundreds of millions of users
posting on the order of 70,000 posts per minute[9]. Any
of these posts could be deleted at any time. We do not

want to miss any deleted posts, but Weibo’s scale makes
it inevitable. A more reasonable goal is to preserve just
the posts that GhostPost users are likely to be interested
in, as indicated by the lists of Weibo accounts that our
GhostPost users follow. Having GhostPost users them-
selves watch for deleted posts is then a natural choice.

2) Disseminate resurrected posts: After resurrect-
ing a deleted post, the GhostPost system must be able
to distribute it to users. All users learn of resurrected
posts from the central server. Clients’ interactions with
the server take place via RESTful HTTPS. These queries
do not require anything approaching high performance:
with only metadata and handfuls of censored text trans-
ferred, they are not bandwidth intensive, and because
the client queries do not block the weibo.com page load,
they are not latency sensitive. Therefore, practically any
means of communication, including low-performance
covert channels, are adequate.

3) Verify resurrected posts: Resurrected posts are
claims that someone posted something that is no longer
visible. Users can hopefully apply common sense to fight
misinformation, but the best way to trust a resurrected
post is to know that it comes from a trusted friend. The
central server knows which users reported which resur-
rected posts, and can provide that information to a re-
trieving user (provided the sources are willing to let that
user know they use GhostPost). Adding a web of trust
approach, to expand post verification beyond immediate
friends, might be a good direction for future work.

To guard against a malicious central server, users sign
posts they resurrect. The GhostPost extension generates
a key pair. Users can retrieve their friends’ public keys
from the server for convenience, but are encouraged to
verify them separately.

4) Limit recipients of resurrected posts: As we dis-
cuss in §5, a censor tracking which accounts viewed
which posts, and which posts GhostPost resurrected, can
gain information about how likely various Weibo users
are to be GhostPost users. A user A who is worried about
this possibility can protect themselves by choosing to al-
low posts they resurrect to be viewed only by users they
trust. If A makes this choice, a user B that A does not
trust will not receive a post resurrected by A until some
other user—one who either trusts B, or has not enacted
this restriction—has also resurrected that post.

3 Implementation

GhostPost is implemented on the client side as a Google
Chrome extension, and on the server side as a straightfor-
ward REST service. The implementation must not reveal
to an observer (such as weibo.com, or the user’s ISP) that
the user runs GhostPost.

3.1 Usability

Because the Chrome Web Store is blocked in China, we
must distribute the extension ourselves. This means that
rather than clicking an “install this extension” link, users
must instead drag and drop the extension package from
their file system onto Chrome’s extension management
page. Our download page includes detailed instructions
about this process.

Once the extension has been installed, GhostPost re-
quires the user to register in the system by proving
ownership of their Weibo account. They are prompted
to do so by a pop-up message box the first time they
visit weibo.com with GhostPost installed. The proof-of-
ownership process is simple: the user must correctly pre-
dict the account’s next post.

After registration, GhostPost functions without any
user interaction. Other than an icon in the ex-
tensions section of the Chrome browser, the user’s
browser is completely unchanged, including while visit-
ing weibo.com—unless GhostPost has a resurrected post
that belongs on the page that the user is currently view-
ing. Resurrected posts are printed in red, and include the
time when they were detected deleted, as well as whether
they have been verified by someone the user trusts.

With Weibo’s 140 Unicode character limit, a user
whose followed accounts posted 1,000 posts per day
would require a (loose) upper bound of 273KiB per day,
or 97.5MiB per year, to save them all. Ideally we should
save posts forever, but users could forget posts older than
a few weeks without doing much damage: recall that
over 90% of posts are deleted within 24 hours.

Saving every image encountered on Weibo may be
too much of a storage burden for many users; to be
safe, our initial implementation does not store images.
However, while ugly, extreme JPEG compression can
reduce typical photographs to 10-20KiB, while keeping
important features basically discernible. 75% of deleted
posts have pictures attached (or are reblogs of posts with
pictures)[9]; the censor clearly cares about the content of
images. Images might therefore be a good future addi-
tion to the system.

3.2 Implementation Safety

The use of the GhostPost extension must be completely
invisible to the censor, both in terms of its behavior when
interacting with weibo.com, and in terms of Internet ac-
tivity. Google Chrome extensions are built to be com-
pletely isolated from the web pages the browser loads,
unless the extension explicitly designs in hooks for the
page to attach to. Therefore, GhostPost’s presence is in-
visible to weibo.com. On the other hand, communication
with the central server would be easily detectable. How-

ever, beyond detectability, we assume the central server
will be blocked, and so GhostPost users must employ
some form of traditional censorship circumvention to be-
gin with.

Because the censor has control over the content of
weibo.com, it could complete this registration process on
behalf of any user. If we returned an error when some-
one tried to register an already registered account, the
censor could easily test whether a given Weibo user was
a GhostPost user. Therefore, we allow multiple regis-
trations; each new registration simply adds to the list of
credentials that should be accepted for that account. The
fact that the censor can “take control” of someone’s ac-
count in this manner is unfortunate, but not particularly
damaging: all the censor could do would be to issue res-
urrected posts under the user’s name, but with a differ-
ent key from the user’s real key, which the users’ friends
would detect.

4 Evaluation

GhostPost has two quantifiable aspects, which are some-
what in conflict: coverage and safety. We want to min-
imize the fraction of deleted posts that we fail to resur-
rect. At the same time, we must prevent the censor from
finding GhostPost users. We now analyze GhostPost’s
performance in these two areas.

4.1 Coverage Metric

To evaluate of GhostPost’s ability to catch deleted posts,
we must decide on the quantity to be measured. We only
care about posts authored by users followed by Ghost-
Post users. For coverage analysis, we lose no information
by pretending that Weibo consists only of the GhostPost
user base, plus the Weibo users they follow.

Having identified the users and posts that we are inter-
ested in, the natural quantity to study would seem to be
the quantity of posts deleted by the censor before Ghost-
Post could witness them. However, this measure is not
always particularly meaningful. Imagine a set of 1,000
deleted posts, among which 990 were posted by a user
with a single follower, and 10 were posted by a user with
10,000 followers. If GhostPost managed to resurrect all
of the 990 and none of the 10, this measure would tell us
that GhostPost had 99% coverage. We must find a more
meaningful measure.

Rather than considering all posts equally valuable, we
will consider a post posted by a user with n followers
to be worth n postviews. One postview represents a sin-
gle user getting the opportunity to read a single deleted
post that they are interested in. By this metric, we would
say that in the previous example, 990 out of a possible
100,990 postviews were preserved, or about 0.98%.

. 1

2

2

z 08

o)

2,

B

g 06

o

5

5 04

Gy

S)

g 02

'§ 1 hour —
= 0 0.5 hours ---

0 0.005 0.01 0.015

Fraction of GhostPost users

Figure 1: GhostPost’s coverage against censors who
manage to delete posts with various average speeds.

4.2 Coverage Simulation

We evaluated GhostPost’s coverage using an event-based
simulation framework[5] with a scale-free topology of
1,000,000 users. The events are 1) a user posts a new
post, 2) a GhostPost user saves all visible posts from a
random followed account, and 3) censor deletes a post.
The simulation ends when all posts have been deleted
by the censor!. We measure the fraction of postviews
restored out of the total postviews in the system.

Three factors affect GhostPost’s coverage: the time it
takes the censor to delete a post, the fraction of Weibo
users who use GhostPost, and the interval at which
GhostPost users save an account’s current posts. Our im-
plementation only has control over the last of those three.
We have fixed this frequency at an average of 5 per hour,
as a compromise between frequent coverage, and avoid-
ing making the user’s activity look suspicious.

A study[9] of the time it takes for Weibo posts to be
deleted found that post deletion times are not very evenly
distributed. First, the distribution of deletion times is
long tailed; while they observed the majority of posts
being deleted within 24 hours, a non-negligible fraction
lived for days or weeks. More interestingly, grouping
post lifetimes by the time of day they were posted at (in
24 1-hour bins) yields two clusters. Namely, fated-for-
deletion posts that are posted during the hours between 3
and 9 A .M. have median lifetimes of 8 or 9 hours, while
posts posted from 10 A.M. until midnight have medians
around 2 hours. The study’s authors hypothesize that
the censor’s post-examining workforce is greatly reduced

IPosts that are never deleted do not need to be restored, and so are
irrelevant to GhostPost’s degree of coverage. For purposes of evaluat-
ing coverage, we can focus only on posts that are fated to be deleted.

late at night, causing a backlog to build up, which is not
cleared until late morning.

Because identifiable classes of posts are being mon-
itored by censors of different capacity, we evaluated
GhostPost against different censors: posts have an ex-
pected lifetime of {0.5, 1, 2, 5, 10, 24} hours. The 2 and
10 hour censors roughly correspond to the median per-
formance of the real world daytime and nighttime cen-
sors. The 24 hour censor is an upper bound for over 90%
of real world posts[9].

Because the censor is a group of employees process-
ing a queue of posts, we model deletion time with the ex-
ponential distribution. The exponential distribution lacks

0.02 real post deletion times’ heavy tail, but this makes the ex-

ponential distribution a conservative choice: our results
indicate that even the tiniest GhostPost deployment is ex-
tremely likely to resurrect posts that live multiple days.

When simulating GhostPost, we varied the fraction of
GhostPost users in the system from 0.05% to 2%. The
results of these simulations are plotted in figure 1. En-
couragingly, GhostPost reaches nearly its full potential
very quickly; steep gains are made until about 0.5% of
Weibo users are using GhostPost.

Whether a post can be resurrected is ultimately a race
between the censor’s agents and the poster’s GhostPost
followers: whichever side examines the post first wins.
For a given author, GhostPost can run this race faster by
either having more of its users following that author, or
by having its users checking current Weibo posts more
frequently. The censor can reach posts faster by hir-
ing more employees to examine posts. However, even
a highly aggressive and capable censor, one that deletes
posts on average within 30 minutes after they are posted,
fails to hide the majority of postviews from a GhostPost
system with around 1.5% Weibo users. Sina Weibo’s
nighttime censor would allow a 1% GhostPost deploy-
ment to resurrect nearly 90% of postviews; the daytime
censorship would allow over 70%.

4.3 Per-user Coverage

The previous analysis shows how likely a deleted post
of interest to a GhostPost user is to be saved. In addi-
tion to that evaluation of GhostPost’s ability to serve post
consumers, we should also consider how well GhostPost
serves post producers. A user with more followers is
more likely to have more GhostPost followers, providing
better coverage. We therefore examined the distribution
of preserved posts for users with varying follower counts,
shown in figure 2.

With 1% GhostPost users and a 10-hour censor, nearly
90% of all postviews are resurrected (see figure 1). Most
of those resurrected postviews come from users with
huge amounts of followers. Users with typical numbers

User’s fraction of posts resurrected

0 2000

User’s Weibo followers

4000 6000 8000

Figure 2: Each point is a user. The censor deletes posts
after an average of 10 hours, and 1% of Weibo users are
GhostPost users.

of followers (low hundreds) have over half of their cen-
sored posts missed by GhostPost.

However, this imbalance only applies to authors who
do not care about it. Any Weibo user who wants to en-
sure that their posts will be preserved in GhostPost can
simply become a GhostPost user, and preserve their own
posts. This option is reflected in figure 2: points with
resurrected fraction 1 are GhostPost users.

Users whose posts are deleted unusually quickly are
also less covered. Users who have already had many
posts deleted have lower median post lifespans than users
who have only had a few deleted. The median post life-
time was about twice as long for users with fewer than
10 deleted posts than for users with 100 or more[9]. In
this case as well, users who want their posts to reach the
GhostPost audience should become GhostPost users.

5 Safety

We must hide GhostPost users’ identities from the cen-
sor. GhostPost is not directly visible to weibo.com or
the user’s ISP, but observing which posts are (not) resur-
rected might yield information about who uses Ghost-
Post. For this analysis, we assume that all GhostPost
users allow all other users to see the posts they resur-
rect. The following vulnerability is eliminated if Ghost-
Post users restrict their resurrected posts to their friends.

Imagine a Weibo account A with only two followers,
Fi and F5, both of whom are also GhostPost users. Fj
is a legitimate user, but F, is an agent of the censor. If
the censor deletes one of A’s posts, and then F, receives
a resurrected copy of that post, it can be sure that Fj is

a GhostPost user. Realistically, the censor will not im-
mediately pinpoint a GhostPost user with a single post in
this manner; real, active Weibo users have more than one
follower.

The censor must monitor two classes of information:
whether a deleted post was resurrected, and which users
saw a post before its deletion. Let & be the set of all
posts that the censor has deleted, and P C Z be the
subset of resurrected posts. For each d € 2, we will de-
fine O(d) to be the set of users who observed d, i.e., all
those users who loaded a Weibo page including d before
it was deleted. Although the censor is only interested in
O(d) for d € 9, it must track O(p) for the entire lifetime

100000f all posts: it does not know whether p € 2 until it has

decided to delete p.

To maintain Zg, for every post d € & the censor
deletes, it must determine whether GhostPost can res-
urrect d. This requires the censor to monitor GhostPost
from within: the censor must make a Weibo account, fol-
low all accounts whose posts will be deleted, and register
with GhostPost. Although a single GhostPost user claim-
ing to follow every account would look suspicious, the
censor could easily spread across multiple accounts.

Based its on observations (2 and %g), the censor
tracks the likelihood that each Weibo user is a GhostPost
user: Pr[GP,]. The censor does not know which users are
GhostPost users: that is what it is trying to learn. There-
fore, when a post 7 is resurrected, the censor must assume
that each user u € O(r) is equally likely to be responsible
for resurrecting the post. Then for every new post r to be
added to Zg, for each user u € O(r)

o) —1

|0(I‘)| (I_Pr[GPM‘-@R])

Pr {GPu | @RU{r}} =1-
Additionally, for every deleted post d € I\ Dk, i.e.
not resurrected, every user u € O(d) has

Pr [Gpu\@U{d}} =0

As posts are deleted and not resurrected, the censor
will establish with certainty that more and more users
are not GhostPost users (at the times of the deletions, at
least). A non-GhostPost user remains under suspicion as
long as every deleted post they observe is also observed
by a GhostPost user. In other words, if a user has noth-
ing to offer GhostPost, it is impossible to conclude from
resurrected posts that they do not use GhostPost. Be-
cause almost all of GhostPost’s coverage comes from the
first 1 or 2% of its users, more widespread GhostPost use
would allow the censor to rule out fewer non-GhostPost
users. Furthermore, if some GhostPost users (perhaps
those with a history of attention from the Weibo censor)
are restricting their resurrections to trusted friends only,
then “ruled out” users will include false negatives.

5.1 Post Alteration

Despite the previous point, a censor could still rule out
many users in a smaller GhostPost deployment. Another
countermeasure is possible. The censor must track the
users who see each Weibo post (O(p)), and then observe
whether GhostPost resurrects p once it has been deleted
(ZR). However, if the censor cannot reliably track Zg,
then it cannot be sure that O(p) are not GhostPost users
for p ¢ Zg.

The challenge, then, is to distribute to our users some
version of the post that the censor cannot easily recog-
nize. Weibo users evade keyword bans by using homo-
phones, puns, characters whose components include the
intended characters, and similar linguistic tricks. These
tricks interfere with automated processes, while preserv-
ing the original meaning for an intelligent human reader.
In this way, a user concerned about being identified as
having observed a resurrected post can more safely share
their resurrected posts with users outside of their friends,
benefitting the system’s coverage. We should also add a
random offset to the post’s time, and remove the author.
We could prompt our users to make these modifications.
There is also an automated technique[4] for generating
usable Chinese homophone substitutions.

Although the homophone substitution technique
would interfere with automated processes, we should
also consider a censor that is investigating whether a few
specific Weibo users are GhostPost users. When target-
ing user A, who follows some other user B, such a censor
could have weibo.com display (only to A) a fake post
“written by” B. Then, shortly after the next time A loads
B’s wall, the censor could query the GhostPost system for
any new resurrected posts authored by B. A is a Ghost-
Post user if and only if the fake post is included in the
response. If a human is manually carrying out this at-
tack, then the post alteration technique would not help
much. As with other attacks, sharing resurrected posts
with trusted friends only would keep the user safe.

6 Conclusion

GhostPost preserves deleted Sina Weibo posts and
presents them in their original context: displayed
in between other posts on weibo.com, where they
would be had they never been deleted. The fun-
damental technique would also be applicable to
any similar site, e.g., Twitter. ~ Our implementa-
tion of the GhostPost Chrome extension is available at

https://salmon.cs.illinois.edu/ghostpost.html.

Users monitor for deleted posts, allowing GhostPost’s
coverage of Weibo to scale with the number of Ghost-
Post users, and focuses the monitoring exactly on the
accounts users care about.

We simulated GhostPost against a censor modeled af-
ter observations of the real Weibo censor. GhostPost per-
forms well even when only a tiny fraction of Weibo users
use GhostPost: e.g., with 0.5% of Weibo users, against
the daytime censor, GhostPost users would be able to see
nearly two thirds of the deleted posts of interest to them.

There is tension between coverage and safety. In
smaller GhostPost deployments, the censor could elim-
inate many Weibo users from suspicion of using Ghost-
Post. This attack can be mitigated if some users only
allow their friends to see their resurrections, and can be
completely shut down if all users do so. Automated al-
terations to deleted posts could also help, and would not
hurt coverage. We therefore believe that Weibo users can
be reasonably safe while using GhostPost.

References

[1] Daniel Anderson. Splinternet behind the Great Fire-
wall of China. Queue, 10(11):40, 2012.

[2] King-wa Fu, Chung-hong Chan, and Marie Chau.
Assessing censorship on microblogs in china: Dis-
criminatory keyword analysis and the real-name
registration policy. Internet Computing, IEEE,
17(3):42-50, 2013.

[3] Greatfire.org. https://en.greatfire.org/.

[4] C. Hiruncharoenvate, Z. Lin, and E. Gilbert. Al-
gorithmically bypassing censorship on Sina Weibo
with nondeterministic homophone substitutions. In
9th Intl. AAAI Conf. on Web and Social Media, 2015.

[5] P. L’Ecuyer, L. Meliani, and J. Vaucher. SSIJ:
A framework for stochastic simulation in Java.
In Proceedings of the 2002 Winter Simulation
Conference, pages 234-242. 1IEEE Press, 2002.
http://simul.iro.umontreal.ca/ssj/indexe.html.

[6] Neo, Sparks, Tank, Dozer, and Smith. The collateral
damage of internet censorship by DNS injection. In
SIGCOMM Computer Communication Review (CCR
July 2012), pages 21-27. ACM, 2012.

[71 Andriy Panchenko, Lukas Niessen, Andreas Zinnen,
and Thomas Engel. Website fingerprinting in onion
routing based anonymization networks. In /0th an-
nual WPES, pages 103—114. ACM, 2011.

[8] Philipp Winter and Stefan Lindskog. How the Great
Firewall of China is blocking Tor. Free and Open
Communications on the Internet, 2012.

[9] Tao Zhu, David Phipps, Adam Pridgen, Jedidiah R
Crandall, and Dan S Wallach. The velocity of cen-
sorship: High-fidelity detection of microblog post
deletions. arXiv preprint arXiv:1303.0597, 2013.

