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Abstract

Satellite is a methodology, tool chain, and data-set for
understanding global trends in website deployment and
accessibility using only a single or small number of stan-
dard measurement nodes. Satellite collects information
on DNS resolution and resource availability around the
Internet by probing the IPv4 address space. These mea-
surements are valuable in their breadth and sustainability
- they do not require the use of a distributed measurement
infrastructure, and therefore can be run at low cost and
by multiple organizations. We demonstrate a clustering
procedure which accurately captures the IP footprints of
CDN deployments, and then show how this technique
allows for more accurate determination of correct and in-
correct IP resolutions. Satellite has multiple applications.
It reveals the prevalence of CDNs by showing that 20% of
the top 10,000 Alexa domains are hosted on shared infras-
tructure, and that CloudFlare alone accounts for nearly
10% of these sites. The same data-set detects 4,819 in-
stances of ISP level DNS hijacking in 117 countries.

1 Introduction

After several generations of elaborate measurement plat-
forms, it remains difficult to characterize how web con-
tent is distributed and the extent to which it is open and
unfettered. This lack of understanding is reflected in
the questions we cannot easily answer: Which countries
have servers operated by Google or Microsoft, and what
is the footprint of various content distribution networks
(CDN5s)? Which websites have degraded availability due
to network interference? Which sites are powered by vari-
ous CDNss such as CloudFlare or Fastly? Which ISPs run
caching proxies or other stateful middle-boxes? And so
on.

Measurements that characterize web access is of value
for publishers and end users alike. For publishers, it al-
lows for informed choice about how to locate their content
— which CDNss to use, and appropriate trade-offs between
security and connectivity. Website optimization is depen-
dent on the expected latency of user connections, which
is difficult for publishers to predict in advance of choos-
ing hosting or providers. For users, these measurements
provide insight into whether operators comply with local
regulations, and which sites will be able to warehouse

data within their jurisdiction. Transparency in network
censorship (what sites are being blocked, and how) is
also critical to regulatory oversight and informing public
debate. These lists are almost always kept secret, and
even when available, it is difficult for watchdogs to verify
that they reflect reality. This opacity makes it difficult for
users to advocate for changes in policy or trust existing
systems.

While we have some understanding of what measure-
ments can address these questions, there is no existing
data set or measurement platform that holds the answers.
In fact, there are many challenges both in collecting the
measurement data and analyzing it to characterize the
current state of web content distribution.

First, we need measurements from globally distributed
vantage points in order to characterize global website
accessibility. Understanding both the Internet-wide ex-
pansions of CDNs and the interference practices around
the world requires data from a diverse set of ISPs. Such a
measurement platform does not exist yet in a public and
transparent manner that supports reproducibility of re-
sults. Distributed collection platforms also face concerns
of retribution towards those hosting the measurements.

Second, since deployment and accessibility character-
istics can change rapidly, collection must be fine-grained
and timely. Many documents of interference choose a
single fixed point in time, or provide yearly updates. To
be effective, we need to provide alerts that policies have
changed quickly, which raises questions regarding how
many domains can be monitored and what granularity is
sufficient.

Third, the analysis of how websites employ CDNs
and the identification of network interference must be
tackled jointly. For example, when ISPs block websites
by redirecting them to a block page, those servers are
easily misconstrued as a CDN node for that geographical
region. Consider the example of twitter.com. As shown
in Table 1, the domain resolves to different IPs in the
US, Russia, and China. A naive CDN mapping would
conclude that there are likely points of presence in all
three countries, while a naive interference measurement
might conclude interference in both China or Russia, or
might give up due to the diversity of IPs returned. In
reality, the Russian IP maps to a Twitter CDN node, while
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Resolver Response Behavior
USA (8.8.8.8) 199.59.149.198 | Twitter
Russia (77.88.8.8) 199.16.156.102 | Twitter
China (180.76.76.76) | 159.106.121.75 | Failure

Table 1: Resolutions of Twitter.com by different resolvers

the Chinese resolution is due to interference.

In the remainder of this paper, we demonstrate Satel-
lite, an automatic framework that is able to identify CDN
infrastructure in tandem with anomalies. Through the
use of Internet scanning and reflecting queries on public
infrastructure we avoid the pitfalls that come with dis-
tributed infrastructure. By clustering sites based on DNS
resolution, and by finding responses which do not fit those
clusters, we are able to identify interference without mis-
classifying CDNs. This analysis is able to both monitor
the growth of shared hosting platforms, and which sites
are blocked by network-level interference.

We address the need for a distributed measurement
platform by using a single end-host to collect DNS reso-
lutions from a large number of globally-distributed and
open DNS resolvers. Instead of pursuing crowd-sourced
deployments or analyzing limited snapshots of data ob-
tained from operators in privileged positions, we instead
focus on what is possible from active measurements con-
ducted by a single end-host. Doing so both reduces the
barrier to entry for organizations to run their own inde-
pendent measurements, and removes the complex work
of coordinating a distributed testbed and verifying the
untrusted dataset collected from it. While results from a
single machine may be biased, the validation steps are the
same as those of distributed infrastructure; it continues to
be the case that you can’t definitively claim interference
from a single instance of connection failure, and instead
extract evidence from aggregate trends.

We choose DNS as our main platform of measurement
because it has developed as a narrow waist that is used
both by CDNss for routing traffic and for the interposition
of block pages by ISPs and nations. CDNs use the DNS
resolution process for load balancing and routing because
it is the first step in a web page access; making a good
decision at the DNS level ensures fast connections for
the rest of the loading process. Network interference also
often occurs at the DNS layer, because while a single IP
may host content for many sites, DNS requests have an
easily parseable format and allow restriction of specific
domains. The existence of shared infrastructure that hosts
many sites (CDNs) is exactly why interference continues
to be commonly implemented at a resolution level.

We address the need for timely global measurements by
designing a system that can measure the global connectiv-
ity of tens of thousands of domains with weekly precision.
By focusing on coverage rather than a specific event or
geographic region, Satellite acts as a database supporting

higher level analysis of policy changes as they occur. By
measuring the Alexa top 10,000 global domains, we are
able to detect evidence of interference in many countries
and automatically detect most popular shared infrastruc-
ture without manual targeting of measurement.

We address the need for joint understanding of infras-
tructure and interference through our algorithmic inter-
pretation of Satellite data. We correlate the addresses
of domains across ISPs and learn the customer pools of
CDNs. Looking at the pools of IPs, we can learn the
points of presence of CDNs and which CDNs have busi-
ness relationships with which ISPs. By looking at which
locations resolve to which points of presence we can un-
derstand the geographic areas served by different points
of presence. By tracing the patterns of divergence from
clusters, we are able to separate the effects of network
interference from confounding site distribution factors.

Satellite has limitations in the view of Internet infras-
tructure it reveals. Some shared services explicitly par-
tition incoming requests across disjoint sets of servers.
Dedicated IP addresses are used to support SSL for some
old browsers, to reduce dynamic generation of certificates,
and as part of fault isolation strategies. Akamai is an ex-
ample of such a shared infrastructure. Satellite does not
report these platforms as single entities, but rather as mul-
tiple smaller shards, defining the more specific subsets of
IPs assigned to each customer (i.e., domain).

Satellite is a fully open project consisting of the code
for data collection and analysis, a growing year-long
repository of collected data, and derived views of site
structure and interference. Satellite is built for trans-
parency, minimizing the trust that needs to be placed
in the system or its operators. We are working with sev-
eral independent organizations to independently collect
and corroborate data. We hope this structure enables fu-
ture researchers to trust collected data without the need to
replicate collection work. Building Satellite to run on a
single machine is aimed to maximize the sustainability of
the project, and our ability to amass a longitudinal data
set of changing Internet behavior.

The major contributions of Satellite are:

e A single-node measurement system for monitoring
global trends in network interference and CDN deploy-
ment.

e An algorithm for the joint analysis of network anoma-
lies and determination of shared infrastructure from
point measurements of domain resolution.

e Data on the distribution and accessibility of 10,000
popular domains over the last two years.

In the remainder of this paper we will elaborate on the
design and operation of Satellite, and present some of the
site behavior we have discovered through these measure-
ments.
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2 System Design

Satellite is motivated by a number of explicit design goals
differentiating it from existing platforms and systems.

e External Data Collection: We want the system to
function without requiring in-situ resources. This
avoids the need to recruit volunteers, and focuses on
safety and coverage across networks.

e Continuous Measurement: We want the system to be
able to quickly notice changes in CDN deployments
and network access policies.

e Transparent and Ethical Measurements: We want
the system to be transparent, so that others can eas-
ily trust and make use of collected data. We aim for
high ethical standards to minimize harm to DNS server
operators from collected data.

e Joint analysis of CDN deployments and Network
Interference: We want a system which simultaneously
measures shared infrastructure and interference of web
access, since the two are tightly intertwined.

2.1 System Overview

The Satellite system is arranged as a pipeline which col-
lects and analyzes data. It is run as a weekly cron job,
which schedules data collection, and performs initial ag-
gregation, analysis and archiving of each data set. The
implementation details of the pipeline are described in
more detail in Section 3. At a high level, Satellite is
structured into the following discrete tasks:

Identifying DNS resolvers by scanning the Internet. We
detect active, open, long-lived DNS resolvers through
active probing.

Assembling a target domain list by expanding a list of
popular domains to ensure CDN coverage.

Performing active DNS measurements where candidate
domains are measured against discovered resolvers.

Collection of supplemental data where organization
metadata and geolocation hints are gathered.

Aggregation of DNS resolutions by combining records
at the AS level to allow for efficient processing in subse-
quent analysis.

Joint analysis of CDNs and network interference
through the calculation of fixed-points in clusters of do-
mains believed to use shared infrastructure.

Export of measurement results by publishing visualiza-
tions and data sets with footprints of CDNs and significant
observed anomalies.

2.2 Identifying DNS resolvers

Our measurements are based on gathering data on how
domains behave for different clients around the world.
There are several options available for this type of col-
lection. Traditionally, researchers have used cooperating
hosts in a variety of networks [24, 30]. More recently, the
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Figure 1: DNS servers discovered in each Country. We find
169 countries hosting DNS resolvers in more than 20 class-c
networks.

EDNS extension has allowed clients to indicate that they
are asking for a response that will be used by someone
in a different geographic area to approximate multiple
vantage points [35, 6]. Very few domain name servers
support EDNS, but we can take advantage of the same
behavior the mechanism is designed to fix. By making
requests to many resolvers, we can learn the different
points of presence for target domains. For instance, the
8.8. 8.8 resolver is operated by Google and provides
a US-centric view of the world, while 180.76.76.76,
“BaiduDNS”, provides a Chinese centric view.

We enumerate the IPs acting as DNS resolvers by prob-
ing the IPv4 Address space with zmap [12]. Compared
to 32 million open DNS servers monitored by the Open
Resolver Project [28] (a service measuring the potential
for reflected denial of service attacks through DNS, it
does not share the IPs of discovered servers), we inde-
pendently discover 12 million servers which respond to
requests with a well-formed response. Of these, 7 million
servers across 1.5 million class-c (/24) networks offer
recursive resolution and give a correct IP address when
asked to resolve our measurement server. These servers
provide coverage of 20,000 ASes (Autonomous Systems,
typically representing an ISP), and cover 169 countries
with at least 20 class-c networks, as shown in Figure 1.

2.3 Ethics of Collection

Our measurements prompt machines in remote networks
to resolve domains on our behalf. This traffic to remote
networks may result in unintended consequences to these
relays, and as such we do our best to minimize harm in
keeping with best practices [11].

Open DNS resolvers are a well known phenomenon,
and lists of active resolvers can be downloaded without
the overhead we incur in scanning. We find that the act of
scanning the IPv4 address space to find active resolvers
does generate abuse complaints from network operators.
By maintaining a blacklist of networks which have re-
quested de-listing (less than 0.5% of the address space),
we have not received any complaints related to our scan-
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ning or subsequent resolutions in the last quarter. Some
operators have asked us to keep their network spaces pri-
vate, which prevents us from releasing this list publicly.
Others running the system should expect to recreate a
similar list. We have never received a complaint from
overloading a DNS resolver with queries for our tracked
domains.

We abide by the 7 harm mitigation principles for
conducing Internet-wide scanning outlined by the zmap
project [12]. In particular, we (a) coordinated with the
network administrators at our university in handling com-
plaints, (b) ensured we do not overload the outbound
network, (c) host a web page explaining the measure-
ments with an opt-out procedure, and have clear reverse
DNS entries assigned to the measurement machine, (d)
clearly communicate the purpose of measurements in all
communications, (e) honor any opt-out requests we re-
ceive, (f) make queries no more than once per minute, and
spread network activity out to accomplish needed data
collection over a full one-week period, and (g) spread the
traffic over both time and source addresses allocated to
our measurement machine.

To get a better sense of the impact our queries have on
resolvers, we operated an open DNS resolver. In a 1 week
period after running for 1 month, the resolver answered
over one million queries, including 800,000 queries for
domains in the Alexa top 10,000 list. Satellite made only
1,000 of these requests.

We have additionally adopted a policy of only probing
DNS servers seen running for more than one month to re-
duce the potential of sending queries to transient resolvers.
This reduces our resolver list by 16%'. Measurements in
IP churn indicate that the bulk of dynamic IPs turn over
to subsequent users on the order of hours to days, mak-
ing it unlikely that our measurements target residential
users [38].

2.4 Mapping CDNs and Network Interference

We know that for many CDNs it is common to resolve do-
mains to different IP addresses based on where the client
is. While the diversity of IPs makes it more difficult to
understand what an ‘unexpected’ deviation is, the primary
insight we can use is that in many cases these CDN in-
frastructures are shared by many sites. The set of sites on
a shared infrastructure is often independent of the set of
sites which are targeted by network interference.
Consider the case of thepiratebay. se, a domain
hosted with strawpoll.me on Cloudflare. In a US
location, like the DNS resolver operated within UC
Berkeley (AS25), both domains resolve to IPs in the
141.101.118/24 subnet. However, across many net-
works in Iran (for instance AS50810), the first resolves in-

I'Specifically comparing the live resolvers discovered between March
20th and April 20th, 2015.

domains < the set of all domains
ips <— the set of resolved IPs
function EDGE(domain, ip)
return |[ASes where domain resolved to ip|
end function
function IPTRUST(domain, ip)
>0 — 1 value representing how likely an IP is a server for
a domain.

dedomains

return

EDGE(d,ip)xDOMAINSIMILARITY (domain,d)

> ~ EDGE(d,ip)
. dedomains
end function

function WEIGHT(domain, ip)
> EDGE weighted by IPTRUST.
return EDGE(domain, ip) * IPTRUST(domain, ip)
end function
function DOMAINSIMILARITY(dom, , domy)
> 0 — 1 value representing how likely two domains are
hosted on the same servers.
return

Y ipcips WEIGHT(doma, ip) * WEIGHT(domy, ip)

\/Zipeips EDGE(domy, ip)? * \/Zipa.ps EDGE(domy, ip)?
end function

Figure 2: Pseudocode of CDN and interference detection joint
analysis algorithm. The two functions DomainSimilarity
and IPTrust depend on each other, and are iteratively com-
puted until a fixed point is approximated. The result of these two
functions allows direct determination of both the IPs hosting
clusters of domains, and the resolutions which are anomalous.

steadto 10.10.34 .36, an internal LAN address, while
the second continues to resolve to Cloudflare owned IPs.

To automate this form of detection, we automatically
find cliques of domains hosted on the same infrastructure,
and use the combined resolutions of those domains to
map the IPs of the underlying infrastructure. Using mul-
tiple domains will help us to overcome the randomness
present in individual domain resolutions, and to notice
when one domain behaves strangely in a specific geo-
graphic region. We are not using IP metadata to map
provider infrastructure, but rather the sets of IPs (poten-
tially across providers) that form the footprints of popular
domains.

To process the data, we perform a joint analysis using
the algorithm in Figure 2 (also described in text below).
Then, we use the stable values from that computation to
extract cliques and deviations, which represent shared
infrastructure and interference respectively.

2.4.1 Joint Analysis Algorithm

Given a bipartite graph linking IP addresses and domains,
our goal is to separate the graph into two components:
‘real infrastructure‘, and ‘interference‘. An intuition of
how to think of this separation is shown in Figure 3.
To find this separation, we compute two quantities: A
similarity metric DomainSimilarity, for how close
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Figure 3: The relationship between Domains and IPs. Each
edge corresponds to a resolution, labeled by the autonomous
system of the resolver. In this example, we see a.com resolve
to 5.5.5.5 in UC Berkeley, AS 25. In (A) we see a clique of
domains supported by the same infrastructure, while (B) shows
otherwise unrelated domains resolving to the same IP within AS
50810.

two domains are, and a trust metric IPTrust, for how
likely an IP is to be an authentic resolution for a given
domain. In Figure 3a, we would hope that a.com and
b.com have a high DomainSimilarity, since they re-
solve to the same IPs. In Figure 3b, we would hope the
IP210.211.21.90 has alow IPTrust score, since
many otherwise unrelated domains resolve to it. This
process is similar to the HITS algorithm for finding “au-
thoritative” sources for pages [23].

The DomainSimilarity metric specifically repre-
sents the fraction of the time that two domains resolve to
the same IPs. We use the different IPs as independent di-
mensions in which the resolutions of each domain can be
represented as a vector. The distance between Domains
is then the cosine distance between the two resolution
vectors.

The IPTrust metric calculates the confidence for
whether any given IP address resolution of a domain is
correct. To calculate our confidence in a resolution, we
say the probability a domain resolves to an IP is equal to
the average similarity between that domain and the other
domains which have resolved to that IP. To score whether

we believe that thepiratebay.se resolves to 10.

10.34.36, we would look at other domains which
have resolved to 10.10.34.36 and consider their
DomainSimilarity with thepiratebay.se.

We now discuss cases where a provider allocates non-
disjoint but partially overlapping sets of IPs to different
domains. For example, if a domain a . com resolves to
IPs A,B, and C, while b . com resolves to C, D, and E.
If the different IPs are in the same class-c network, then
our analysis will see both a.com and b . com as resolv-
ing to the class-c network that corresponds to A, B, C,
D, and E, thus attributing a high IPTrust value to the
class-c network for the two domains. Class-c is chosen as
the most specific public announcement of IP ownership,
limiting accidental grouping of different providers. If

108 |

—— lIteration 1
.% 105 ¢ Iteration 3
o N
c — lteration 6
g
£ 10t}
a
1000 7| N N N 1 N N 1 N N 1 N N N 1 N
0.0 0.2 04 0.6 0.8

DomainSimilarity

Figure 4: DomainSimilarity distribution after iterative
calculation. After the first iteration, 25,000 edges with similarity
above 95% are found. After 5 iterations there are 75,000 strong
similarities, fewer ‘uncertain’ similarities, and less than 1000
similarities that changed by more than 5%.

the IPs are in different class-c networks, the IPTrust
can still be high if the DomainSimilarity is high. In
cases where there is only a small fraction of IP space over-
lap, metadata is not present, and DomainSimilarity
is low, Satellite will consider the two domains to be in
separate clusters. This will attribute a low IPTrust to
C.

For intuition behind these metrics, consider the repre-
sentative case of the Fastly CDN. Taking one IP range,
23.235.47.0/24, we find that across the 72 domains
Satellite clusters as Fastly the IPTrust metric ranges
between 0.75 and 0.98. Across all other domains, this
IP range was seen as a resolution for 22 other domains,
across which its average ITPTrust was 0.20 and max-
imum was 0.30. The range of IPTrust in the Fastly
cluster shows that the strongly connected cluster boosted
scores for IPs that were infrequently resolved for some
domains.

To derive an initial estimate of DomainSimilarity,
we set IPTrust to 1.0. We then iteratively calculate
these two quantities until a fixed point is approximated,
generally in 5-6 iterations. Figure 4 shows the effect of
iteration on the distribution of domain similarities. With-
out iterating to the fixed point, many domain pairs have a
similarity coefficient close to 0.5. Subsequent iterations
concentrate the emergent clusters to more clearly define
shared infrastructure (close to 1.0) as well as block-pages
(close to 0.0).

2.4.2 Cliques and Deviations

DomainSimilarity and IPTrust form the core
metrics we need to determine both CDN footprints (the
cliques of similar domains and associated set of IP ad-
dresses they’re served from), and network anomalies (sets
of domains sent to IPs with low trust in isolated ASNs).

CDN cliques: To find clusters of domains with
similar resolutions in the matrix of calculated
DomainSimilarity values, we use a greedy
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Domain Alexa Rank
www.ebay.com | 18
cntv.cn 79

indiatimes.com | 110
dailymail.co.uk | 114

etsy.com 149
cnet.com 151
deviantart.com 168
forbes.com 175

Table 2: The highest ranked domains identified in the largest
‘Akamai’ cluster.

CDN Size | Representative Domain
CloudFlare 726 | reddit.com
Amazon AWS | 647 | amazon.com
Akamai 410 | ebay.com
Google 141 | google.com
Dyn 112 | webmd.com
Rackspace 77 wikihow.com
Fastly 72 imgur.com
Edgecast 68 soundcloud.com
Incapsula 55 wix.com
AliCloud 54 163.com

Table 3: Largest CDN clusters. The top 10 CDNs account for
20% of monitored domains.

algorithm of first making arbitrary clusters, and then
finding the best ‘swaps’ possible until a local maxima is
found [13]. This clustering technique has been found to
perform close to human labeling.

Table 2 shows an example of the highest popularity
sites that were clustered into the clique representing the
Akamai infrastructure. The largest clusters are shown in
Table 3. We count the 10 largest shared hosting platforms
hosting 1967 domains, making up almost 20% of those
measured.

At a global level, strongly connected components rep-
resent domains hosted by the same servers. This may
be domains resolving to one IP everywhere, or domains
with the same CDN configuration which consistently re-
solve to the same IPs from different vantage points. If we
narrow our consideration to the ASes based in a single
country, blocking can also appear as a cluster with the
block page IP clustered with all of the blocked domains.
These clusters are only found in the ASes of individual
countries, and the difference between detected clusters
globally and nationally is a strong signal for this behav-
ior. On the other hand, this is only one of many ways
to interfere with DNS. Some forms, like the response of
random IPs used by some Chinese ISPs [5], will reduce
IPTrust without creating these obvious clusters.

It should be at first surprising that Akamai, one of the
largest CDN providers, is represented by a low number
of domains. We find that while Akamai transfers a large
amount of traffic, we count many of their domains as
independent entities for two reasons. First, Akamai of-

ten delivers home pages as a relatively small set of IP
addresses that are dedicated to HTTPS for the specific
customer. Second, Akamai is located in over 1000 dif-
ferent ISPs, with most IPs assigned to servers advertised
and using those IPS’s AS numbers as their origins. These
two factors cause many Akamai customers to be treated
as independent entities by Satellite, and not seen as part
of their shared serving infrastructure.

We can compare the relationship Akamai has with cus-
tomers to that of Cloudflare, which also provides ‘white-
label’ services for large customers to customize their
presence through custom DNS name servers and SSL
deployed for older clients unable to perform server name
identification. Cloudflare partitions its customers across
several distinct IP spaces. Some of these IPs have reverse
PTR and whois information identifying them as Cloud-
flare, while others do not. The use of IP addresses within
Cloudflare ASes and Cloudflare associated WHOIS in-
formation allow satellite to cluster these services as one
entity with more certainty than the less obviously related
Akamai customers.

Network interference: The question of “who is blocking
what?” can be answered by finding ASes where a major-
ity of resolutions have low IPTrust for a given domain.
There are actually several ways in which an AS can devi-
ate, which correspond to different forms of interference.
For example, Iran regularly sends thepiratebay. se
t010.10.34.36,and we see IPTrust of 6.6 x 10~°
for those resolutions, since the IP is also seen for a number
of other blocked domains which don’t otherwise overlap.

To extract instances of interference that are reflected in
the IPTrust metric, we look at the distribution of values
for resolutions at the AS level. When the distribution for
an AS is depressed in a statistically significant manner
(we currently look for a mean 4 standard deviations below
the overall distribution) we consider the AS-domain pair
to be ‘suspicious’.

There are several types of interference which can all
be easily distinguished from normal behavior, but which
require special identification. We handle these through
a decision tree, which provides a conservative estimate
of known forms of interference. Crucially, this approach
benefits from the fact that we are able to point to the
mechanism which triggers each flagging. The categories
we classify as interference are:

1. Too few resolutions or too many unparsable re-
sponses are received.

2. A domain which is otherwise ‘single-homed’ (mean-
ing a single IP address is found regardless of client
location) resolves to non-standard locations.

3. A domain with an otherwise ‘dominant‘ AS resolves
to many ASes.
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4. Resolution deviates from an expected CDN cluster.

Instances of interference are accounted to occur be-
cause of the first of these classes which is applicable. All
of these classes can be inferred from the already computed
resolution data. Our initial AS-level aggregation allows
us to directly find invalid or suppressed resolutions. We
showed in Figure 5 that the majority of the most popular
domains are single-homed, which we use for the third and
fourth decisions. Finally, for domains which appear to
be hosted on shared infrastructure, we use the IPTrust
score computed above. When resolutions deviate from
the expected CDN footprint, we are able to include auto-
matic analysis of the availability of the most high-profile
instances of interference.

3 Implementation

3.1 Assembly of domain list

To understand how sites behave, we must first know the
sites we are interested in monitoring. It is unrealistic
to monitor all domains on the Internet, since there are
technically an infinite number of registered domains due
to the dynamic nature of sub-domain resolution. Without
a priori knowledge of CDNs and their expected IPs around
the world, we need to monitor a representative set of
domains to organically learn that knowledge.

We accomplish this goal by targeting the top 10,000
worldwide domains as measured by Alexa[2]. All of
these domains receive high amounts of traffic. The least
popular, qualcomm. com, is estimated to receive over
10,000 visitors per day. While not a perfect list, 10,000
domains contains the diversity needed to organically dis-
cover important CDNs. Looking at the smaller Alexa
top 1k domain subset, we find that under a quarter of the
domains we cluster into CDNSs are listed. For services like
CloudFlare, which partition their IP space across different
domains, our clustering algorithm would be overly cau-
tious without access to an appropriately diverse sample
set.

We make HTTP requests to each domain, since we find
that many bare domains (e.g. expedia.com) redirect
to a prefixed domain (e.g. www . expedia.com), which
are served on different infrastructure. When we detect
such redirections, we include both the bare and prefixed
domains in subsequent steps. We observe these redirects
in roughly one fourth of monitored domains.

3.2 Active DNS measurement

Our goal in Satellite is to provide a tool for longitudinal
mapping of the accessibility and distribution of web en-
tities. To quickly detect updates and policy changes, we
must constrain the amount of time we are willing to allow
probing to run. Given the goal of weekly measurements
of 10,000 domains from a single host, we request each

domain from 1/10th (or roughly 150,000) of discovered
DNS vantage points, maintaining geographic diversity
while spreading network load across available hosts. This
results in a measurement period of roughly 48 hours at a
probe rate of 50,000 packets per second. We find our mea-
surement machine to be CPU limited at about 100,000
packets per second. Unlike a typical zmap scan, our reso-
lution probes have a high response rate, which results in
significant CPU processing work.

Our probing is accomplished by extending zmap with
a custom ‘udp_multi’ mode, where hosts are sent one
of several packets. The packet sent is chosen based on
the destination IP address only, resulting in a stable set
of requests across measurement sessions — the same
resolvers will receive the same queries each week. This
approach was chosen for efficiency, multiple scanning
processes and accompanying pcap filters increased CPU
load and resulted in dropped packets. Instead, we found
this extension to be a conceptually simple and efficient
extension to the existing zmap tool.

The result of a 48 hour collection process is a 350GB
directory containing tuples of resolver IPs, queried do-
main, time-stamp, and received UDP response. We record
the full packet responses we receive, under the assump-
tion that in the future we may find other fields of the DNS
responses to be of interest. The raw format of base-64 en-
coded packets is extremely verbose, but since the response
packets for each domain are largely the same, a full run
can be compressed to 20GB. By taking this relatively easy
step of compression, our measurement machine has had
no trouble storing our year of collection results.

3.3 Supplemental data collection

There are several pieces of supplemental data that are
valuable to Satellite in understanding the measurements
we conduct. For IP addresses of interest, we collect in-
formation to improve our ability to map IPs back to their
controlling organizations. For these organizations and the
IPs they control we also use supplemental information
to understand which geographic points of presence are
used. While our measurements do not rely on our ability
to understand these associations, downstream analysis
can benefit from them.

3.3.1 IP Metadata

We retrieve meta-data on resolved addresses to better un-
derstand what organizations they belong to, and whether
two addresses are likely to be equivalent. The two signals
we have found valuable to include in this process are the
reverse PTR records for the addresses, and the WHOIS
organization entry controlling the address. Reverse PTR
records are contained in the ‘in-addr.arpa.‘ pseudo-tld in
the DNS hierarchy. They are maintained by the orga-
nizations controlling the IP address, and often provide
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a canonical name when the IP belongs to a known ser-
vice. The WHOIS database is a database of IP ownership
maintained by TANA and its delegates that contains or-
ganizational responsibility, in the form of technical and
abuse contacts, for addresses.

We perform direct lookups for both the PTR and
WHOIS organizational contacts for all distinct IP
addresses resolved. We then perform a clustering of each
data set: All IPs with the same WHOIS organization
are clustered into a WHOIS cluster, and all IPs with
consistent PTR records are clustered together. To cluster
PTR records, we use a simple heuristic: if all but the final
dot-separated section of the returned records are equal,
we put the IPs in the same cluster. For instance, a west
coast resolution of apple.com has the PTR record
of a23-200-221-15.deploy.static.akamai
technologies.com, while an east coast resolver sees
az23-193-190-30.deploy.static.akamai
technologies.com. Since both cases end with
deploy.static.akamaitechnologies.com,
they are clustered together as part of the same entity.

3.3.2 Geolocation

During our collection and aggregation process we main-
tain a network, rather than geographical, view of the data.
We prefer aggregation at a Class-C address level, which
reduces calculations without losing precision or mixing
IPs owned by different entities. Our other form of aggre-
gation is on the AS level, to represent the aggregations
of IPs which will see a similar view of the rest of the In-
ternet. ASes represent business relationship which exist,
and the AS which ‘owns’ an IP range is responsible for
managing abuse and routing of packets for those IPs. As
such, even when a sub-range is delegated, we assume the
full AS experiences a consistent routing policy. There
are always exceptions to such assumption: the Comcast
AS contains clients on both of the east and west coast
of the US, who will reach different data centers of many
cloud services. Our use of AS aggregation will consider
these results as a single combined data point. Likewise,
the Google and Edgecast systems operate servers in many
countries. When addresses in these ASes are used as re-
solvers, we consider them to be in the closest location to
our measurement machine, the US.

For the visualization of infrastructure locations in the
evaluation of this paper, we have to associate IPs with ge-
ographical locations. For this, we use three data sources:
the country of registration for the whois point of contact
(Used for AS location), the MaxMind [26] country-level
database (Used for IP location), and the list of anycast
prefixes from Cicalese et. al. [8§]. When MaxMind geolo-
cates different IPs within an AS to multiple countries, we
use that list. Otherwise, we use the country of registra-
tion. Since MaxMind cannot handle geographic diversity
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Figure 5: Number of IPs hosting different domains at two thresh-
olds for dominant addresses. For 60% of domains, 1 IP accounts
for 75% of all resolutions, and for 80% of domains, 10 IPs
account for 95% of resolutions.

hidden by anycasting, we explicitly geolocate the points
of presence of anycasting IPs, and use the closest point to
a given resolver.

We find that 1% of distinct IPs resolved in a typical
Satellite data match the anycast prefix list. To estimate the
points of presence of these IPs, we measure latency from
a range of vantage points, as in [22], resolving topology
with [24]. In the future, we hope to learn these latencies
through the DNS requests we already make using the
technique in [17]. We find that since the CDNs we are
identifying are highly distributed, we end up with obser-
vations which are either very small latencies indicating
a point of presence near the vantage point, or are large
enough to not impose additional constraints.

While these geographic heuristics are not infallible,
they are largely accurate at the country level [32, 31]. As
such, they provide a grounding for initial data exploration.
When considering specific interference or deployment
situations, it remains important to identify the relevant
subsets of data. For instance, when we consider Iran in
Figure 12, we manually limit our analysis to ASes of
known ISPs in the country. We hope that a verifiable
geographic database of infrastructure sourced from open
measurements becomes available.

3.4 Aggregation

To support interactive exploration and analysis of col-
lected data, satellite automatically aggregates the ob-
served responses of each weekly collection. This au-
tomatic processing also materializes several views of the
aggregated data which are used in subsequent analysis.
This automatic process attempts to parse each received
packet as a DNS response, validates that it is a well-
formed DNS response, and records the IP addresses re-
turned. We tabulate these values for each resolver AS and
domain. The resulting mapping is roughly 3 GB, and is
used as the basis of subsequent processing. The 100-fold
reduction comes from stripping the formatting and other
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fields of DNS responses, and from aggregating responses
by resolver AS. Scanning this file to calculate basic statis-
tics takes under 5 minutes on a single 2.5GHZ core of
our lab machines, and the format lends itself to parallel
execution when more complex tasks are needed.

In addition to initial aggregation, we automatically
build lookup tables for the set of IPs which have been
resolved for each domain, and the total set of IPs seen as
resolution answers. We also calculate the set of domains
associated with each IP to facilitate reverse lookups of
other domains potentially co-hosted on an IP. On a recent
execution of Satellite, we saw a total of 5,337,315 distinct
IPs resolved, located within 6,742 distinct ASes.

The domain resolutions we have collected already pro-
vide insight into the inner workings of popular websites.
In Figure 5, we show how much diversity we found in
the responses for each domain globally. If almost all
responses return a single IP address, we can make the
inference that the dominant IP is the canonical server for
the domain. In other words, the domain is ‘single homed’.
In our monitored domains, we see this behavior in 60% of
domain, the far left data points in the graph. Slightly fur-
ther right in Figure 5 are domains which use simple load
balancing schemes. We see that roughly 80% of domains
have four or less ‘dominant’ IPs. This figure doesn’t cap-
ture the use of anycast IP addresses, but does indicate
that even for top domains, the majority have a single or
small set of ‘correct’ addresses. The tail to the far right on
the figure indicate domains which use geographically dis-
tributed infrastructure, and which require more complex
analysis to determine whether individual resolutions are
correct. For example, we record over 500 IP ranges for the
google.com cluster, and over two hundred for many
akamai hosted domains like www . latimes. com.

4 Evaluation
4.1 Address Validation

To validate our ranking and clustering algorithms, and
our data collection process more generally, we make web
requests to each resolved IP address as a potential location
of each sampled domain. More specifically, we connect to
each IP which has been seen as a candidate, and request
the ‘/favicon.ico’ file, using the domain as the ‘Host*
header. Slightly under half of the monitored domains
have this file and can be validated in this way. We record
hashes of all returned content, and compare these hashes
against copies of the favicons fetched using local DNS
resolution to determine whether an IP is correctly acting
as a host for a given site.

Over a total of 965,522 completed resolutions, 82%
of resolved IPs are deemed ‘correct’. 5,479 domains
are skipped in this validation, because no authoritative
favicon is present, and validation is performed on the other
4,521. These domains are not used when we evaluate
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Figure 6: For each of the 4,500 domains with favicons, The
fraction of distinct IPs resolved with a ‘correct’ TP Trust score
over 0.5. Our automated classification matches favicon presence
for over 90% of IP-domain pairs.

clustering performance.

In Figure 6, we show the agreement between this vali-
dation process and the confidence scores for IPs used in
our clustering algorithm. We treat an IPTrust score of
0.5 as trusted, but find similar results for other thresholds
due to the polarization of trust scores by the iterative cal-
culation. While there is noticeable divergence between
the IPs in our scorings and the favicon results, over 95%
of those failures are false-negatives (our algorithm was
overly conservative in creation of clusters, and gives low
scores to IPs the favicon process showed to be correct).
The vast majority of these occur in situations where a sin-
gle partition of IPs is normally resolved for a domain, but
other IPs are also able to respond correctly when queried.
Both Akamai and CloudFlare exhibit this behavior. Par-
tial aggregation of these clusters has a minor effect on
this view, since when domains are fully partitioned onto
separate IPs we only consider our trust of those IPs we’ve
actually seen resolved.

This validation technique is susceptible to manipulation
by an adversary which returns the correct favicon image
on an otherwise malicious server. We are not aware of
any block pages behaving in this way.

In principle, validations like the use of favicons or
signals like reverse DNS lookups can also be used in the
clustering process to further refine which IPs are believed
‘correct’ for domains. To us though, this result shows
that the DNS resolutions themselves are able to produce
largely reliable mappings of CDN IP addresses.

We can also validate our clustering algorithms against
the ground-truth of IP prefixes advertised by some
CDN providers. For this validation, we consider
the Fastly CDN, which uses a compact set of pre-
fixes maintained at https://api.fastly.com/
public—ip-list. We find that all 12 IP prefixes
found by Satellite as the Fastly CDN cluster are included
in the officially advertised list. The Satellite cluster con-
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CDN IP Space | Clustered ASes
CloudFlare | 107008 75
Akamai 264960 489
Google 476416 1036
Cloudfront | 128512 21
Incapsula 12288 17
Fastly 8192 17
Dyn 2304 9
Edgecast 24832 65
Automattic | 3584 5
AliCloud 41728 42

Table 4: IPs in each of the ten largest shared infrastructure
platforms. Variance in size between Dyn, Fastly, Automattic and
the others is due to use of Anycast. Some ASes are significantly
undercounted by clustering, Akamai has points of presence in
over 1,000 ASes.

tains 72/80 domains found using this ground truth list of
IP prefixes. For geolocation, the MaxMind database re-
ports multiple locations, accounting for 5 of the 10 Fastly
countries, including the US, Australia, and three of four
locations in Europe (mistaking Germany for France). The
Australian class-c network prefix is identified as anycast-
ing, which we resolve to 4 of the 5 additional locations —
New Zealand, Japan, Hong Kong, and Singapore — agree-
ing with the results of [8]. These two techniques lead us
to correctly find 8 of the 10 locations, missing Brazil and
mistaking Germany for France.

4.2 Website Points of Presence

While we have shown in this paper that the Satellite tech-
nique is able to accurately map the IPs which are operated
by targeted websites, we have not yet shown the impli-
cations of that data. Here, we attempt to characterize
the dominant content distribution entities in the Internet
today, and provide some insight into where they operate
and the international nature of the Internet today.

In Table 4, we show the IP space we estimate for the
largest CDN clusters. These platform each have unique
network structures, and use a range of technologies in-
cluding rotating IPs and anycast, which make it difficult to
directly compare scale from these numbers. For instance,
most Google IPs resolve to IPs within Google’s own AS,
while IPs from Akamai are largely resolved to IPs located
in the ASes of consumer ISPs.

In Figure 7, we use the geolocation of ASes to count
which countries these providers are located within. One
striking feature of this geolocation exercise is to note
that the 10 largest content distribution networks use IP
addresses allocated to ASes registered in at least 145 coun-
tries. We trust MaxMind for these locations, but attempt
to be conservative, including neither anycast resolution
nor clustering the true extent of partitioned providers like
Akamai. This undercounting is reflected in Table 4, which
indicates the primary cluster we use for Akamai accounts
for under half of the over 1,000 ASes they report [1].

Figure 7: Points of presence of the CDNs from Table 3. Anycast
is not included, indicating conservative counts.
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Figure 8: Number of sites resolved locally in each country.

In Figure 8, we plot how many domains are resolved
within each country. We see at least 18% of all domains
(2325) resolving to an in-country IP address for resolvers
in China, while other countries like Mexico resolves only
5% (559) of domains locally. This view of domain locality
can be used to understand which publishers have complied
with local regulations, and to track how much Internet
traffic will transit international links.

4.3 Interference

Our confidence scoring of how well IPs represent domains
helps us address an ongoing pain point in interference
measurement: how to know if a returned IP address is
‘correct’. The primary issue in this determination tradi-
tionally has been whether an IP that is not the same as
the canonical resolution is a CDN mirror or an incorrect
response. Using CDN footprints along with more simple
heuristics for single-homed domains allow us to identify
instances of inaccessibility with higher confidence.

We measure interference through positive identification
of the four categories in 2.4.2. These categories are con-
servative, but remain valid for not fully clustered CDNs.

Figure 9 shows the number of largely inaccessible do-
mains found in a single snapshot of collected data. We
find at least 5 of the monitored domains to be inaccessible
in at least one Autonomous System in over 78 countries.

We then divide the instances of observed interference
across other factors. Figure 10 shows a comparison of
interference for sites on CDN infrastructure versus those
which are single-homed. While roughly 80% of sites are
single homed, we see as much interference is directed
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Figure 9: Number of domains inaccessible in each country.
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Figure 10: Types of interference by country. Anomalies are
geographic, with some regions like China providing a diversity
of false IP addresses, while others like Libya using a single
block page. There are no occurrences of only ‘CDN Deviation’,
or ‘Single-Homed Deviation.” The relative shades indicate the
mixture of the different categories present in each country.

at distributed sites, perhaps due to their popularity. This
indicates that naive approaches have been missing a sig-
nificant fraction of total interference instances.

It is possible for a censor to mask their interference
from Satellite. Injecting DNS responses using a system of
the type known to be in use by China could be targeted to
miss an external observer, by only responding to requests
originating within the Country or responding correctly
to external queries. While much less visible to Satellite,
these forms of interference would themselves be visible,
and could even be less effective internally. The switch
to other techniques like IP or keyword-based blocking
would also not be visible in the current DNS data set.

4.4 Broader Implications

Our stated purpose in building Satellite and collecting
data on the presence and accessibility of popular sites
was to allow for new insights into the changing structure
of the internet. What are those insights? Many of the
implications are inextricably tied to real world events
and politics, and reflect on the censorship practices and
business environments of nation states. While we aren’t
comfortable claiming to understand these sociopolitical
structures without accompanying real-world evidence, we
can show value in the data in light of the larger trends
occurring in Internet Governance.

In Figure 11 we show the delta of how many more do-
mains are resolved within each country compared to six
months prior, based on location of IPs with trust above 0.5

Figure 11: How many more sites resolve locally (to IPs within
the country) in September 2015 compared to 6 months prior.
This figure is based on a dataset of 8,800 domains which re-
mained in the top 10,000 list at both sample points.
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Figure 12: Number of domains detected to have anomalous
resolutions in Iran since late 2014. An interactive version is at
http://satellite.cs.washington.edu/iran/.

on a per-domain basis. What this shows for each country
is how many new domains are now resolved internally
where previously they would have been resolved to inter-
national servers. This shows the expansion of CDN in-
frastructure, but also an increasing ability of governments
to regulate access within their national territories [10].
In Figure 12 we show the number of domains which
are detected to have anomalous resolution across Iranian
ISPs. We see a spike in the second half of 2015, which
correlates with statements from the authorities there that
they were beginning a second phase of filtering. More
recently, Satellite has recorded additional inaccessible
domains in the lead up to February 2016 elections.

5 Related Work

The active probing techniques used by Satellite build upon
a long history of Internet measurement [24, 7]. The sub-
sequent analysis of connectivity data has been tackled by
previous generations of censorship measurement systems,
though Satellite differs in the breadth of the measurements
it aggregates and the way it handles noisy data.

Active scanning of the Internet has been used to mea-
sure important properties of ISPs, and has been shown to
reasonably map individual CDNs [18, 6]. In particular,
the rate of churn of DHCP reservations within consumer
ISPs [27] has been estimated and the presence of Bluecoat
DPI boxes [25] has been detected using active measure-
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ment techniques. Active probing was used for the Internet
census characterization of scale [3] and more generally
in the web security space to measure the uptake of soft-
ware updates and vulnerabilities [33, 12]. It has not yet
to the best of our knowledge been used to independently
measure the footprints of CDNs or longitudinal ISP-level
interposition on traffic.

What to Measure: Determining domains of interest is
by itself a tough problem. There are many billions of DNS
records in use on the Internet [4, 14], and there are obvious
deficiencies with the coverage or representativeness of
lists of top sites. Previous measurement studies have used
either top domains as reported by a neutral providers like
Alexa [2], or more targeted lists they hand curate [15].
One of the most popular lists for censorship work is the
list of sensitive domains maintained by Citizen Lab [30].
Satellite needs to measure a set of sites which reveal the
shared infrastructure of CDNs, and we choose the Alexa
top 10,000 domains as our base measurement set in order
to achieve that coverage.

How to Measure: Researchers have invested consider-
able effort in the measurement of network interference,
both by using participants within target networks [15,
20, 29] and through purely external mechanisms [9, 34].
DNS has been a measurement focus, largely because it is
a commonly manipulated and unsecured protocol. DNS
reflection against remote open resolvers has also been pro-
posed for censorship measurement [36] as early as 2006.
What we continue to lack is a system which is able to
sustainably measure and act as a data repository for these
measurements across both countries and time. Ripe At-
las [29] offers shared access to its distributed deployments
of probes, but limits the types of measurements and rate-
limits measurements such that regular probing of diverse
domains by the deployment would require ownership of a
significant fraction of the network.

Determining Site Presence: While determining which
sites are of interest is hard, determining whether a given
IP is a valid host for a site can be even harder. In their in-
vestigation of CDNs in 2008, Huang et. al [18] arrive at a
similarly sized list of open resolvers as Satellite (280,000),
and use them to map the Akamai CDN. They create their
list of resolvers starting from DNS servers observed by
Microsoft video clients, rather than direct probing. Spe-
cific CDNs like Google have also been crawled through
the use of EDNS queries to simulate the presence of ge-
ographically diverse clients [6], but this is only possible
for a small subset of deployments which support EDNS
for redirection. Research focusing on censorship, like the
analysis of ONI data [16], have used AS diversity to de-
termine if IPs are valid for a domain, but do not explicitly
consider CDN behavior.

There are also many commercial sites which offer traf-

fic information for web sites. We know that some of this
data is crowd-sourced through browser plugins, while
other portions come from automatic robot crawling. For
instance, the Alexa rankings are based off of a browser
plugin which monitors the browsing habits of a small num-
ber of participating users. Some sites also show which
sites run on identical IP addresses [19]. In practice we
find that these systems appear to do direct lookups of IPs,
since geographical distribution is not surfaced. They also
do not appear to do significant identification of CDN IP
spaces, since CDN’ed sites are not fully aggregated.

Determining Abnormal Behavior: Categorizing re-
sponses as normal or abnormal have typically been per-
formed through the use of heuristics in how the response
may deviate from expected behavior. This is true for both
determining trust in a DNS response, and determining if a
given connection is working as expected. These heuristics
include metadata like the AS and reverse PTR record of
the IP [16], behavior of HTTP queries to the server [21],
and considering the aggregate prevalence of a given re-
sponse [15]. More recent work has explored the use of
aggregate statistical behavior to determine when network
level behavior has changed [37]. These techniques pro-
vide valuable direction for Satellite, though there is not
yet a comprehensive set of best practices for determining
self-consistency and anomalies in our data set.

6 Conclusion

Satellite is already a valuable system for measurement of
both CDNSs and prevalence of interference. Our continued
development efforts are focused on: (1) Improved repro-
ducibility of geographic determination. (2) Developing
an interactive visualization for interacting with data. (3)
Integration of additional probing mechanisms for mea-
surement of transport and IP level connectivity.

In this paper we have presented Satellite, a system for
measuring web infrastructure deployments and availabil-
ity from a single external vantage point. By lowering
the bar for collecting, aggregating, and understanding we
make this data much more accessible. Satellite the grow-
ing predominance of CDNSs in the top Alexa domains.
The same data shows evidence of growing interference of
domain resolutions around the world. Satellite is a fully
open platform, and both the data and code are available
online at satellite.cs.washington.edu.
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