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Abstract 
 
Tools for active remote operating system fingerprinting 
generate many packets and are easily detected by host 
and network defensive devices such as IDS/NIDS.  
Since each additional packet increases the probability 
of detection, it is advantageous to minimize the number 
of probe packets.  We make use of an information-
theoretic measure of test quality to evaluate fingerprint-
ing probes and use this evaluation to derive effective 
probe combinations that minimize probe packets.  
While the default configuration of Nmap’s second gen-
eration operating system detection transmits 16 differ-
ent probe packets, we demonstrate successful finger-
printing with one to three packets.  Furthermore, these 
packets are valid TCP SYN packets to open ports, 
which are less likely to be detected as fingerprinting 
probes than malformed packets or packets that are not 
part of a valid TCP three-way handshake. 

1. Introduction 
An attacker can use operating system fingerprinting to 
discover possible security vulnerabilities and evaluate 
the attack potential of a target machine.   Open source 
tools are publicly available that permit an attacker to 
gain this intelligence remotely.  However, the use of 
these tools may be easily detected because the default 
configurations generate too many probe packets or gen-
erate packets that are unusual, malformed, or otherwise 
easily identified as probe packets. 

To understand how to build operating system finger-
printing tools that are more difficult to detect we make 
use of a measure to evaluate fingerprinting tests based 
on information gain developed in [11].  Fingerprinting 
tests with high information gain eliminate a lot of un-
certainty about the target system while fingerprinting 
tests with low information gain leave a lot of uncer-
tainty about the target system and are only worthwhile 
if higher quality tests are too costly.  Test cost may be 
expressed in terms of the number of probes needed for 
the test and the likelihood that a probe will be detected 
by IDS/NIDS.  Once we understand the quality of indi-
vidual fingerprinting tests we can evaluate the quality 
of a probe that enables multiple fingerprinting tests.  

We can then select a minimum set of probes to perform 
operating system fingerprinting with low probability of 
detection.     

We provide both analytical and empirical support for 
building operating system fingerprinting tools that use 
very few probes yet provide effective operating system 
classifications.  The main contribution of this paper is 
to demonstrate the use of the theoretical results in [11] 
to evaluate fingerprinting probe packets.  We addition-
ally provide empirical results to substantiate these ana-
lytical insights. We demonstrate several sets of probes 
that provide highly accurate operating system finger-
printing with very few probes.  Accuracy is measured 
in terms of the probability of correctly guessing the 
target operating system based on the results of a prob-
ing experiment. Furthermore, we argue that these 
probes are unlikely to be detected or modified by de-
fensive devices.  We provide accurate solutions using 
as few as a single probe packet. 

We first provide, in Section 2, background material on 
operating system fingerprinting and theoretical results 
applying information gain to evaluate the 13 TCP 
probes used in Nmap version 4.21ALPHA4 [8]. Given 
the information gain evaluation of Section 2, we de-
velop in Section 3 a set of 23 experiments to determine 
how few probes we can apply while still providing ac-
curate classification.  We empirically evaluate the accu-
racy of each of these experiments on several target sys-
tems.  In Section 4 we argue that subsets of accurate 
probes are unlikely to be detected or modified by de-
fensive devices.  Finally we provide a discussion of 
alternative evaluations and related work in Section 5.  
An Appendix is included to summarize the analytical 
techniques developed in [11]. 

2. Evaluating Information Gain across 
Tests for Nmap Probes 
In order to evaluate a fingerprinting test, we compare 
how accurately we could guess the classification of a 
target system before and after performing the test.  The 
difference is called the information gain.  The test with 
the highest information gain provides the most dis-
criminative power in fingerprinting.  Information gain 



is built on the principles of information theory [20] and 
is an important tool in building decision tree classifiers 
[15][17][19].  Information gain is used to select the 
next test at each step in growing a decision tree.  Deci-
sion tree classifiers have been used in many fields.    

Prior to fingerprinting a target system, we can guess the 
operating system based on the a priori distribution of 
operating system classifications, over all possible clas-
sifications.  After performing a fingerprinting test we 
can guess the operating system based on the a posteriori 
distribution of operating system classifications. Let X 
be a random variable that describes the classification of 
the operating system of a target system.  The entropy in 
X is the amount of uncertainty there is in classifying an 
unknown system.  Let Testi be a random variable that 
describes the result of applying test i to the probe re-
sponses of a target system.  Knowing the value of Testi  
might tell us something about the value of X.  This can 
be captured in the conditional entropy of X given Testi.. 
A measure of the amount of information we gain about 
X if we know the value Testi is called the mutual infor-
mation, or information gain, of X and Testi.  This can 
be expressed as the difference between the entropy in 
the classification before taking the test and the condi-
tional entropy in the classification, conditioned on the 
value of the test. The fingerprinting test with the high-
est information gain removes the most uncertainty 
about the OS classification of a target system.     

In [11] we detail a method that uses information gain to 
evaluate fingerprinting tests.  This method is summa-
rized in an appendix below.  That paper tackles several 
hurdles in order to apply information gain in this con-
text.  The first hurdle is that information gain is gener-
ally computed from collections of training samples of 
test results from known systems.  However, a finger-
printing tool stores information about known systems in 
a digested signature database rather than as raw training 
samples.  This removes and obscures distribution in-
formation.  Since a signature database is once-removed 
from the training samples used to create the database, 
we must derive calculations to take advantage of the 
knowledge represented in the signature database and 
make assumptions about the knowledge that has been 
lost.  Our calculation also resolves issues concerning 
the use of data that is represented as disjunctive lists 
and ranges, and the handling of missing test values. 

2.1 Nmap Probes 
By default, Nmap version 4.21ALPHA4 sends a total 
of 16 probes (excluding re-transmissions) to a target 
system and applies tests to the probe responses. The test 

values are combined into a fingerprint, also known as a 
signature.  The fingerprint of a target system is com-
pared against reference fingerprints in a signature data-
base in order to find matches to help classify the oper-
ating system of the target system.  Nmap’s 16 default 
probes include six TCP SYN packets to an open port on 
the target machine (Pkt1-6), three TCP packets with 
various flags to an open port (T2-T4), three TCP pack-
ets with various flags to a closed port (T5-T7), one 
TCP packet to an open port with the Explicit Conges-
tion Notification (ECN) control flags set, two ICMP 
ECHO packets (IE), and one UDP packet sent to a 
closed port to elicit an ICMP port unreachable packet.  
In this paper we focus on the 13 TCP probes.  We do 
not study UDP and ICMP probes because (1) they are 
more easily blocked by defensive devices, and (2) our 
information gain evaluation reveals that they are of 
marginal value.  More detail about the evaluation of 
ICMP and UDP probes are provided in [10] and [11].    

R Responsiveness 
DF IP don’t fragment bit 
T IP initial time-to-live (TTL) 
TG Guessed IP TTL 
W TCP initial window size 
S TCP sequence number 
A TCP acknowledgement number 
F TCP flags 
O TCP options 
RD TCP checksum 
TOS IP type of service 
Q TCP miscellaneous quirks 
SP TCP initial sequence number (ISN) 

predictability index 
GCD TCP ISN greatest common denomina-

tor 
ISR TCP ISN counter rate 
TI IP header ID sequence generation 
TS TCP timestamp option generation 

Table 1: Nmap Tests  
Table 1 summarizes the tests applied to the responses 
of the 13 TCP probes of Nmap version 4.21ALPHA4.  
Pkts 1-6 serve a dual purpose.  They are (1) used to 
determine TCP/IP properties that can only be derived 
by sequences of timed packets and (2) used as addi-
tional sources of TCP initial window size (W) and TCP 
options (O) data.  These probes vary only in TCP op-
tions and TCP window fields.   Pkt1 is also called T1 
and its response is subject to the same tests as re-
sponses from probes T2-T7.  The sequence tests in-
clude testing the TCP initial sequence number (ISN) 
generation algorithm (tests SP, GCD, and ISR).  These 
tests require responses from at least four of the six 



Pkt1-6 probes.  Other sequence tests include IP header 
ID (IPID) sequence generation (TI), requiring re-
sponses from three of the six Pkt1-6 probes, and TCP 
timestamp option generation algorithm (TS), requiring 
responses from at least two of the six Pkt1-6 probes. 

Probes T2-T7 vary in TCP flags, initial window size, 
and don’t fragment bit setting.  The responses to each 
of the T1-T7 probes are tested for responsiveness (R), 
IP don’t fragment bit (DF), IP initial time-to-live (T), 
guessed IP initial time-to-live (TG), TCP initial win-
dow size (W), TCP sequence number (S), TCP ac-
knowledgement number (A), TCP flags (F), TCP op-
tions field (O), TCP checksum (RD), IP type of service 
(TOS), and miscellaneous quirks (Q).  Note that the IP 
initial time-to-live value test (T) requires both one of 
the T1-T7 probes and the ICMP response from the 
UDP probe to reconstruct the initial time-to-live value.  
This additional probe can be avoided by guessing the 
IP initial-time-to-live value (TG).  The ECN probe is 
subject to the same tests as responses from probes T2-
T7, as well as a congestion control (CC) test.  A de-
scription of these probes and tests is provided in [8].  

The different TCP options and initial window sizes sent 
in the 13 TCP probes can cause a target system to 
change the window size value in its response packet.  
Similarly, since TCP options fields are optional, many 
TCP/IP implementations differ in how they handle 
them.  As shown below, TCP options and initial win-
dow size tests are important for accurate fingerprinting.   

2.2 Using Information Gain to Minimize 
Probing Cost 
We apply our information gain calculation to the tests 
of Nmap version 4.21ALPHA4 [8].  Table 2 depicts 
these results, grouped according to Nmap’s 13 TCP 
probes.  Each row corresponds to exactly one probe 
(except for the IP initial time-to-live (T) test which 
makes use of the ICMP response to a UDP probe to 
calculate initial time-to-live).  Each column in Table 2 
corresponds to a test on the response to that probe.  
Table 3 depicts the tests that are computed over more 
than one probe.  The entries in these tables correspond 
to the information gain of the corresponding test com-
puted based on the Nmap version 4.21ALPHA4 signa-
ture database.  Note that the same type of test may have 
a different information gain value depending on the 
probe packet sent to the target. Values that are very 
similar for the same test may be attributed to noise in 
the signature database. 

The Nmap version 4.21ALPHA4 signature database 
has 417 entries with total entropy prior to testing of 
8.70.  Values in Tables 2 and 3 are coded based on the 
percentage of total uncertainty that is removed by each 
test.  Values in bold font remove at least 50% of the 
total uncertainty, while values in italicized font remove 
at least 25%.  All other values remove less than 25% of 
the total uncertainty.  The results in these tables assume 
a target system is equally likely to be any entry in the 
database and that all possible values of a test for a 
given entry are also equally likely.  Other assumptions 
or a priori information about classification or test value 
distributions (e.g. normal distributions over ranges) can 
be accommodated by adapting the calculations in [11].     

Fingerprinting tests with high information gain elimi-
nate a lot of uncertainty about the target system and 
may be used to build effective fingerprinting tools.  
Tests with low information gain leave a lot of uncer-
tainty about the target system and are only worthwhile 
if higher quality tests are too costly.  Even so, they are 
unlikely to be useful independently.   

Test cost may be expressed in terms of the number of 
probes needed for the test and the likelihood that a 
probe will be detected by IDS/NIDS.  Each row in Ta-
ble 2 corresponds to a collection of tests that cost one 
probe total, while the tests in Table 3 are tests that re-
quire between two and six probes.  Our goal is to select 
the rows from Table 2 and, optionally, tests from Table 
3 that provide accurate fingerprinting with low prob-
ability of detection.  Information gain provides one 
analytical tool for making this optimization choice.  In 
Section 3 we verify these analytical results with ex-
periments on several target systems using a combina-
tion of probes. 

From Table 2 we can see that the W and O tests to open 
ports provide the most information gain.  These tests 
can be achieved with any of the Pkt1-6 probes, the 
ECN probe, or the T3 probe.  The T2 and T4 probes 
provide less information and the probes to closed ports 
(T5-T7) provide very little information about W and O.   
Probes to closed ports often elicit TCP RST responses 
that can provide some information.  Of the remaining 
tests that can be accomplished with one probe, only the 
time-to-live tests (T, TG) remove more than 25% of the 
classification uncertainty.  The quality of these tests 
does not vary much over the applicable probes.  To 
gain the benefits of the most discriminative tests we can 
choose the ECN, T1 or T3 probes.  We can substitute 
any of the Pkt2-6 probes for the T1 probe, and apply 
tests R, DF, T, TG, S, A, F, RD, and Q without addi-
tional cost.     



SP (4) GCD (4) ISR (4) TI (3) TS (2) 
3.02 1.45 2.62 1.62 2.67 

Table 3: Information Gain for Multi-Probe Tests 
(number of probes in parentheses) 

Several of the sequence generation prediction tests de-
picted in Table 3 remove greater than 25% of the clas-
sification uncertainty.  Each has a varying cost.  The 
SP, GCD, and ISR tests costs at least four probes, while 
the TI test requires at least three probes and the TS test 
requires at least two.  The costs of these tests overlap 
each other and the Pkt1-6 test costs.  If four probes are 
used for SP, GCD and ISR then no additional probes 
are needed for TI and TS.  If used for sequence predic-
tion, Pkt1-6 incur an additional cost in terms of delay.   

In [11] we further derive information gain over the sub-
families of signature entries corresponding to Microsoft 
Windows, Linux, and a collection of embedded systems 
(routers, firewalls, and switches).  There are interesting 
differences that lead to variations over which probes 
are most effective for detecting systems within these 
subfamilies.  While the W and O tests remain the most 
discriminative over these sub-families, the W test is 
more discriminative than the O for Windows and em-
bedded systems while the opposite is true for Linux, by 
a substantial margin.  The TTL tests are discriminative 
for embedded systems and less so for Linux and Win-
dows.  The ISN tests are discriminative for Windows 
and embedded systems but not discriminative for 
Linux.   The T3 probe is more useful in differentiating 
Linux versions than it is in general.  

The composition of a signature database can have a 
strong effect on our information gain metric.  We re-
view this effect by comparing the tests from the first 

generation and second generation Nmap, using their 
respective databases.  First generation Nmap has four 
times as many entries as the current second generation 
database (1684 vs. 417).  In addition to database size, 
the distribution over types of systems (e.g. Linux, Win-
dows, embedded) changes across databases, as does the 
distribution of newer versus older systems.  The second 
generation database is skewed toward newer systems.  
W, O and ISN-based tests remain the most discrimina-
tive tests across both databases.  However, O is signifi-
cantly more discriminative in the second generation 
database than in the first.  This may be attributed to the 
larger proportion of Linux systems in the second gen-
eration database.  This may also be attributed to 
changes made between first and second generation 
Nmap.  First generation Nmap does not test the per-
formance-improving selective acknowledgment 
(SACK) option or the value of the window scale op-
tion.  Similarly, ISN-based tests are less discriminative 
in the second generation database than in the first.  This 
may be attributed to the larger proportion of modern 
OS’s (e.g. Linux 2.6.X, Microsoft Windows XP) in the 
second generation database.  Modern OS’s have more 
random ISN generation algorithms, making this test 
less useful for fingerprinting.  Finally, note that in [10] 
we evaluate Xprobe [2] tests.  Xprobe has a signature 
database of 224 signatures dating from 2005 and ear-
lier.  Despite the smaller database and date of the data-
base, the results are similar.  In particular, window size, 
options ordering, and TTL prove especially discrimina-
tive.   

 R DF T TG W S A F O RD Q 
Pkt 2     4.76    5.39   
Pkt 3     4.74    5.07   
Pkt 4     4.75    5.36   
Pkt 5     4.76    5.29   
Pkt 6     4.76    4.40   
ECN 0.09 1.03 2.57 2.57 4.61    4.89  0.23 
Pkt1/T1 0.68 1.01 2.55 2.55 4.71 0.19 0.29 0.29 5.27 0.62 0.62 
T2 0.89 1.05 1.81 1.80 1.04 1.13 0.95 1.05 0.02 0.93 0.44 
T3 0.71 1.49 2.76 2.76 4.51 1.14 1.31 1.61 4.33 0.68 0.26 
T4 0.44 1.30 2.73 2.73 1.48 0.52 1.26 0.76 0.02 0.47 0.02 
T5 0 0.98 2.57 2.57 0.18 0.44 0.20 0.23 0 0.08 0.04 
T6 0.30 1.23 2.67 2.66 0.46 0.44 1.23 0.70 0.02 0.38 0.02 
T7 0.55 1.36 2.77 2.77 0.72 0.90 1.52 0.74 0.02 0.59 0.04 

Table 2: Information Gain for Single-Probe Tests in Nmap Version 4.21ALPHA4, Grouped by Probe Packets 
(each row corresponds to one probe packet) 



3. Experimental Evaluation of Nmap 
Probes 
Given the information gain evaluation above, we de-
veloped a set of experiments to determine how few 
probes we can apply while still providing accurate clas-
sification.  We chose three target machines from cur-
rent and slightly dated general computing platforms: (1) 
Microsoft Windows NT 4.00.1381 SP4, (2) Linux Fe-
dora Core 4 kernel 2.6.11, and (3) Microsoft Windows 
XP Professional SP2.  The results of 23 experimental 
combinations of Nmap probes against each target ma-
chine are reported in Table 4.  Each row of this table is 
a probing experiment made up of tests from between 1 
to 16 probe packets.  The number of probes used in 
each experiment is given in brackets.  We do not in-
clude the cost of the UDP probe for test T, as the test 
TG provides equivalent results without the UDP probe.   

Each column of Table 4 corresponds to a target system.  
The values indicate how accurately the probing ex-
periment classified the target system when choosing 
from among all 417 possible classifications in the sig-
nature database.  This includes choosing from among 
different versions of an OS (e.g. Linux 2.4.22 vs. Linux 
2.6.18) and even the same version of an operating sys-
tem on machines that yield differing reference signa-
tures due to differences such as drivers or hardware.   

In order to evaluate the accuracy of each probing ex-
periment we must establish what we mean by a “cor-
rect” result.  We first run the full set of 16 Nmap probes 
against our target machine and call this result the “cor-
rect” baseline classification.  Nmap reports an accuracy 
percentage for each reference signature that is roughly 
the number of tests that match the signature divided by 
the total number of tests, assuming no weighting of 
tests.  To take into account noise in signature entries 
and test results, we take each signature entry that re-
ceives an accuracy percentage of at least 95% and call 
them all equivalently correct signatures for a target 
machine.  For each experiment reported in Table 4, we 
take as the classification output all signature entries that 
receive an accuracy percentage of at least 95%.  In 
other words, there are a set of signatures that we con-
sider “correct” classifications based on the full set of 
probes and a set of signatures that are considered out-
put classifications for each experimental set of probes.  
We compare these two sets to yield a new accuracy 
result as described below.  We experimented with other 
thresholds and found that 95% was reasonable across 
all experiments.  A few experiments in which a thresh-
old of 93% yielded perfect results are marked * in Ta-
ble 4.  In a few experiments there were no signatures 

that achieved an accuracy percentage greater than 95%.  
In those cases we took the signatures with the highest 
accuracy percentage below 95% and considered them 
the “correct” result.  These cases are marked ** in Ta-
ble 4. 

The accuracy of each experiment is reported in terms of 
the probability of correctly guessing the target OS after 
probing.  In other words, if we randomly choose from 
among the signatures one that has an accuracy greater 
than 95% after probing and report it as the classifica-
tion of the target system, what is the probability of be-
ing correct? More specifically, let Bt be the baseline set 
of correct signatures for target system t (i.e. signatures 
that receive an accuracy percentage of at least 95% 
using the full set of 16 Nmap probes).  Let Et be the set 
of signatures returned as output (with at least 95% ac-
curacy) using experiment E on target system t.  The 
accuracy of experiment E is the probability that we 
would guess one of the correct signatures if drawing 
uniformly from the output signatures, namely  

t t

t

B E
E
∩  

For example, if there are 6 correct baseline signatures 
and 10 output signatures in an experiment and 4 of 
these signatures are the same as baseline signatures we 
have an accuracy of 4/10 or 0.40.  If we randomly 
choose any signature as our target system classification 
from the 10 returned signatures we have a 0.40 prob-
ability of being correct.  Note that the accuracy of the 
full set of 16 Nmap probes is 1.0 by definition. 

There is very little probability guessing the target sys-
tem classification correctly without probing.  There are 
417 entries in the Nmap 4.21ALPHA4 signature data-
base and the baseline sets (using the 95% accuracy 
threshold) for our three target systems have 6, 6, and 10 
signatures, respectively.  Prior to any testing the prob-
ability of guessing correctly for the NT and Fedora 
systems are 6/417 = 0.014 and for the XP system it is 
10/417 = 0.024.  Thus, we are very unlikely to ran-
domly guess the target system classification without 
probing. This assumes that each entry in the signature 
database is equally likely a priori.  These probabilities 
may be modified if distribution information is avail-
able.   



We can make many observations about low-cost fin-
gerprinting from these experiments.  As expected from 
our information gain results, probes T2, T4-T7 are not 
very useful by themselves (experiments 11-15), espe-
cially for Linux target systems.  Similarly, the ISN pre-
diction tests (experiment 16) are not very useful by 
themselves, except for Windows NT, where they are 
perfectly accurate.  This is consistent with our informa-
tion gain results in which ISN is discriminative overall 
but not for Linux systems.  In this case Windows XP 
has similar behavior to Linux in generating ISNs.   

Probes Pkt1/T1,T3, and ECN (experiments 7, 9, and 
10) are each individually almost perfectly accurate pre-
dictors of target system classification at the cost of a 
single probe.  Interestingly, Pkt1/T1 performs even 
better if we only test W and O, rather than the full set 
of tests (experiment 4).  Experiments 5 and 6 show that 
adding the T and/or TG tests to W and O does not im-
prove accuracy, in fact they decrease the accuracy.  
This is contrary to our information gain results that 
indicate that time-to-live is a discriminative test, inde-
pendent of other tests.  The results for Pkt1/T1 hold if 
any probe Pkt2-6 is substituted for Pkt1/T1.  T3 is es-
pecially effective for Linux but may not be useable in 
practice, as discussed below. 

To further investigate the value of W and O we see in 
experiments 1, 2, 3, and 19 that removing W and/or O 
tests from the original set of 16 Nmap probes severely 
reduces the accuracy of fingerprinting, especially for 
the Linux target system.  For Windows the effects are 
not as pronounced.  Removing O for those systems has 
less effect compared to removing W.  For Linux, re-
moving W and O together has a cumulative effect 
greater than removing each independently, demonstrat-
ing that these are non-overlapping effects. 

If the accuracy of the low-cost single probe solutions, 
Pkt1-6 using W and O or ECN or T3, are not sufficient 
we can augment these probes.  Experiment 23 shows 
that an effective addition is to combine T3 with W and 
O from Pkt1/T1 and TS and TI from Pkt1-6. This re-
quires at least 4 probes and obtains results equivalent to 
the 16 probe Nmap detection for the target systems.  
Experiments 18 and 21 provide compromises by 
achieving almost equivalent accuracy with as few as 3 
probes.  To summarize, high accuracy can be achieved 
with as few as 1 probe packet and perfect accuracy can 
be achieved with no more than 3 or 4 probe packets. 

 Micro
soft 
Win-
dows 
NT 
4.00.1
381 
SP4  

Linux 
Fedora 
Core 4 
kernel 
2.6.11  
 

Micro-
soft 
Win-
dows 
XP Pro 
SP2  

All, Nmap 4.21ALPHA4 1.00 1.00 1.00 
1. All, Except W [16] 1.00 0.25 0.48 

2. All, Except O [16] 0.86* 0.12 0.91 

3. All, Except W,O [16] 0.75 0.07 0.43 

4. Pkt1/T1 (W,O) [1] 0.67* 0.86 1.00 

5. Pkt1 (W,O,TG) [1] 0.67* 0.86 1.00 

6. Pkt1 (W,O,T,TG) [1] 0.50* 0.75 1.00 

7. Pkt1 (ALL) [1] 0.50* 0.75 1.00 

8. Pkt1 (R,DF,T,TG,S, 
A,F,RD,Q) [1] 

0.14 0.00 0.24 

9. T3 (ALL) [1] 0.50* 1.00 1.00 

10. ECN (ALL) [1] 0.50* 0.86 1.00 

11. T2 (ALL) [1] 0.15 0.00 0.27 

12. T4 (ALL) [1] 0.50* 0.00 0.30 

13. T5 (ALL) [1] 0.13 0.04 0.26 

14. T6 (ALL) [1] 0.50* 0.00 0.30 

15. T7 (ALL) [1] 0.14 0.05 0.28 

16. Pkt1-6 (SP,GCD,ISR) 
[4-6] 

1.00 0.06 0.00 

17. Pkt1-6 (TS) [2-6] 0.00 0.00 0.34 

18. Pkt1 (W,O), Pkt1-6 
(TI) [3-6] 

1.0 0.75 1.00 

19. Pkt1(W),Pkt1-6(TI) 
[3-6] 

0.83* 0.11 0.24 

20. Pkt1 (W,O,TG), 
Pkt1-6 (TS) [2-6]  

0.67* 0.86** 1.00 

21. Pkt1 (W,O,TG), 
Pkt1-6 (TS, TI) [3-6] 

1.00 0.86** 1.00 

22. Pkt1 (All), Pkt1-6 
(TS,TI) [3-6] 

1.00 0.86** 1.00 

23. Pkt1 (W,O), Pkt1-6 
(TS,TI), T3(All) [4-7] 

1.00 1.00** 1.00 

Table 4:  Probability of Correctly Classifying Target 
Operating System From 417 Possible Classifications 
For Each Probing Experiment Using 95% Accuracy 

Threshold (*1.00 for accuracy threshold of 93%; **No 
matches above 95% accuracy threshold, but choosing from 

among the top matches would yield correct classification with this 
probability.) 



4. Effective Stealth 
In the previous section we identified low-cost sets of 
probes that provide highly accurate operating system 
fingerprinting.  In order for these probes to provide 
effective stealth they must be able to reach the target 
system and elicit responses unblocked, unmodified, and 
undetected by defensive devices.  Probes that begin 
with TCP SYN to an open port are less likely to be 
blocked (i.e. Pkts1-6 and ECN), while many ICMP 
packets are commonly blocked by default [22].  ICMP 
may further cause alerts by intrusion detection systems 
like Snort [18].  Malformed TCP packets (e.g. T3) are 
likely to scrubbed or dropped by defensive devices.  

Smart et. al. [21][23] studied the problem of defeating 
TCP/IP fingerprinting and found that certain probes 
and responses used in fingerprinting tests could be 
modified or blocked without affecting TCP/IP perform-
ance. They designed a network scrubber that only al-
lows packets that are part of a standard TCP three-way 
handshake.  Packets that are not part of a valid three-
way handshake include T2, T3, T4, T6 and T7.  A net-
work scrubber can also perform a canonical ordering of 
the TCP options.  In similar work [12][16] propose 
normalizing TCP traffic to remove protocol ambiguities 
for use in network intrusion detection.  A canonical 
ordering of TCP options would affect the information 
gain of the O tests.  However, the option values cannot 
be scrubbed without affecting TCP performance 
[21][23], thus, retaining some information gain.  Simi-
larly, normalizing the initial window size (W) to defeat 
operating system fingerprinting may not be worth the 
performance trade-offs [23].  TCP/IP fingerprinting 
defeat has also been discussed in [4].   

We have empirically demonstrated [10] that defensive 
devices like the PF network filter [13], despite having 
traffic normalizing features, are not commonly config-
ured to defeat OS fingerprinting.  From our results in 
Section 3 we empirically observe that, as long as initial 
window size and TCP options are not normalized, ef-
fective fingerprinting is possible with very few probes.  
Thus, Pkts1-6 and ECN can include the highly dis-
criminative W and O tests and have a high likelihood of 
being able to reach a target system undetected.  As long 
as initial window size and TCP options are not normal-
ized, effective stealthy fingerprinting is possible. 

5. Discussion 
We provide both analytical and empirical support for 
building fingerprinting tools that use few probes yet 
provide effective operating system classifications.  We 

make use of an information-theoretic measure of test 
quality to evaluate fingerprinting probes and use this 
evaluation to derive effective probe combinations that 
minimize probe packets.  We demonstrate successful 
fingerprinting with as few as one packet.  Furthermore, 
we use valid TCP SYN packets to open ports, which 
are less likely to be detected as fingerprinting probes 
than malformed packets or packets that are not part of a 
valid TCP three-way handshake. 

Fyodor [7] provides a discussion of fingerprinting tests, 
including the history and influences of fingerprinting 
prior to Nmap. Taleck [22] discusses additional TCP 
fingerprinting tests.  Arkin [1] provides a study of the 
use of ICMP in fingerprinting and implements these 
techniques in Xprobe [2].   Zalewski [24] and Auffret 
[3] describe fingerprinting using passively captured 
packets instead of active probes. Passive fingerprinting 
using a single SYN or SYN ACK packet is available in 
p0f [24].  The information gain metric presented here 
can help establish the quality of the tests used in these 
tools and guide the improvement of these tools to be 
accurate stealthy alternatives to active probing.  The 
analytical tools presented here can be used to evaluate 
newly developed fingerprinting tests as well as to re-
evaluate the quality of existing tests as TCP/IP imple-
mentations and the distribution of deployed operating 
systems change over time.   

In [10] we empirically evaluate the robustness of fin-
gerprinting tests to defensive devices. Nmap includes a 
system for weighing the comparative value of its fin-
gerprinting tests, called MatchPoints [8].  MatchPoints 
are heuristic estimates of fingerprinting test quality that 
combine notions of classification value and reliability.  
Fyodor [9] mentions that some fingerprinting tests (e.g. 
TOS, SP, ISR) are given low weights if they are com-
monly affected by network conditions or otherwise 
viewed as unreliable.   

Beverly [5] develops a method to classify operating 
systems based on passive observation of TCP/IP head-
ers.  That study builds classifiers to combine TCP/IP 
header fields using probabilistic learning.   Burroni and 
Sarraute [6] build an operating system classifier using 
neural network learning techniques.  In that work they 
try to improve on Nmap’s classification results by 
building and combining a set of hierarchical classifiers 
based on Nmap’s fingerprinting tests.  Their classifiers 
are learned from a dataset created by randomly sam-
pling entries in the Nmap signature database.   In our 
work, we derive probabilities directly from signature 
database entries, rather than through sampling.  The 
approaches in [5][6] both differ from ours in that we 



use signature databases to understand the information 
provided by fingerprinting tests used by open source 
tools, rather than build classifiers that combine these 
tests.  In future work we will apply this understanding 
toward creating improved operating system classifiers.   

In the experimental evaluation in this paper, other al-
ternative measures of “correctness” are possible.  One 
alternative is to insert exact fingerprints of the target 
machines into the database and use those as the correct 
signatures.  However, those fingerprints would differ 
from the generalized fingerprints in the database and 
may skew the results.  Other alternatives include modi-
fying the threshold accuracy percentage or considering 
only perfect matches.   

Information gain is not a perfect measure of test qual-
ity.  One well-known weakness is that information gain 
tends to overestimate the quality of tests that have many 
possible values.  We discuss the impact of this weak-
ness in [11].  Alternatives to information gain that are 
less biased toward multi-valued tests, but retain other 
weaknesses, include gain ratio [17] and minimum de-
scription length [14].  

An interesting application of this work is to develop 
targeted attacks that use the same probe packets to both 
test for a specific open port and fingerprint the operat-
ing system, simultaneously.  Since effective probes are 
TCP SYN packets, the attacker can complete the three-
way handshake and proceed to fingerprint the service 
on that port before completing the attack.  Following-
up the TCP SYN probe with a complete handshake 
further reduces the chance of detection or blocking. 
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7. Appendix:  Information Gain as a Met-
ric for Evaluating Fingerprinting Tests 
 

In the following discussion we outline the calculation 
of information gain using signature databases as data, 
including the handling of disjunctive lists and ranges of 
values.  More detail on these calculations is available in 
[11].  Let X be a random variable that describes the 
classification of the operating system of a target system.  
Let X take on n possible values, each with an a prior 
probability p(xj), 1 ≤ j ≤ n.   The entropy in X is the 
amount of uncertainty there is in classifying an un-
known system.  This can also be referred to as the in-
formation content of knowing the correct classification.  
It can be expressed as: 
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Let Testi be a random variable that describes the result 
of applying test i to the probe responses of a target sys-
tem.  Let Testi take on ni values, each with probability 
p(testik), 1 ≤ k ≤ ni. Knowing the value of Testi may tell 
us something about the value of X.  This can be cap-
tured in the conditional entropy of X given Testi.. Con-
ditional entropy can be expressed as: 
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A measure of the amount of information we gain about 
X if we know the value Testi is called the mutual in-
formation, or information gain, of X and iTest .  This 
can be expressed as: 

( ; ) ( ) ( | )
i i

H X Test H X H X Test= −  

The fingerprinting test that tells us the most about the 
operating system classification of a target system is the 
one that removes the most uncertainty about the classi-
fication, namely the test with the highest information 
gain.     

To calculate information gain we need the probability 
of each classification, p(xj), 1 ≤ j ≤ n, the probability of 
each test value, p(testik), 1 ≤ k ≤ ni, for test Testi, and 
the conditional probability of each classification with 
respect to each test value, p(xj |testik), 1 ≤ j ≤ n and 1 ≤ 
k ≤ ni.  Given a collection of training samples and the 
assumption that the data are representative of the fre-
quency with which classifications and test values occur 
in practice, these probabilities can be calculated di-
rectly.  However, we assume access to a signature data-
base rather than a collection of training samples.  Sig-
nature databases remove much of the information about 
distributions over classifications and distributions over 
test values that are represented in sets of training sam-
ples.  To make up for this lost information, we need to 
re-express p(testik) and p(xj |testik) in terms of p(xj) and 
p(testik | xj ).  These latter quantities are more easily 
measured from a signature database or other sources.   

Through a combination of marginalization and the 
product rule we obtain:  
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Thus, we can calculate the probability of each test value 
by summing, over all classifications (entries in the sig-
nature database), the multiplication of probability of 
that classification times the probability of the test value 
given the classification.   

Making use of Bayes rule we can express the probabil-
ity of a classification given a specific test value, p(xj 
|testik), as the following ratio:    
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These equations allow us to calculate information gain 
as long as we have the distribution over classifications 
p(xj) and distributions over test values given a known 
classification p(testik | xj ).  There is not enough infor-
mation in a signature database to tell us anything di-
rectly about p(xj).   We can, however, make use of in-
formation in a signature database to calculate      



p(testik| xj).  To do so we must take into account the 
four types of database entries: 

1. tests that match a single discrete value 
2. tests that match one of a disjunctive set of val-

ues 
3. tests that match one of a range of values 
4. tests that match a disjunctive set of discrete 

values or ranges 
 
Prior to fingerprinting a target system, we can guess the 
operating system based on the a priori distribution of 
operating system classifications, p(xj), over all possible 
classifications. After performing a fingerprinting test 
we can guess the operating system based on the a pos-
teriori distribution of operating system classifications, 
p(xj |testik).  This a posteriori distribution is conditioned 
on the test result.  For tests with a single discrete value 
per operating system, the tests partition the database 
into mutually exclusive sets.   p(xj |testik) can then be 
computed by just considering the set in which xj falls.  
When we consider tests with disjunctions or ranges of 
values, the resulting sets are not mutually exclusive.  
Each classification may contribute to the probability of 
more than one test value per test. We must consider 
each set that a classification can be in (i.e. each value it 
takes on) and combine the probability of each set in 
order to derive p(xj |testik). 

We first consider the case in which a test has one dis-
crete value, testik, per classification, xj.  In this case, 
p(testik|xj)=1 for that value and p(testik|xj)=0 for all oth-
ers.  The remaining three cases require information 
about distributions over test values given a classifica-
tion.  If this information is indicated in the signature 
database we can use it here.  Without that information 
we assume that each test value specified in a classifica-
tion is equally likely.  Other assumptions or a priori 
information about test value distributions (e.g. normal 
distributions over ranges) can be accommodated.   

Let sizeij be the number of values that Testi can take on 
in classification entry xj.  If Testi is disjunctive this is 
the sum of discrete values; if Testi is a range this is the 
size of the range; if Testi is a combination of disjunctive 
values and ranges this is the sum of sizes of each dis-
junct.  If we assume that each test value is equally 
likely, then p(testik | xj )=1/sizeij for each test value testik 
that occurs in the classification entry for classification 
xj and zero for all other test values. We then have: 
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One way to interpret this is that each classification con-
tributes a fractional value to the total probability of 
each test value, weighted by the probability of the clas-
sification and the probability of the value within the 
classification.   Note that this subsumes the first case, 
where 1/sizeij =1 for each test value testik that occurs in 
the classification entry for classification xj and zero for 
all other test values. We then have p(xj |testik)=0 for 
each value testik that is not included in xj, and for each 
value testik that is included in xj: 
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Recall that there is not enough information in a signa-
ture database to tell us anything directly about p(xj). If 
we assume that all classifications xj are equally likely 
we have p(xj |testik)=0 for each value testik that is not 
included in xj, and for each value testik that is included 
in xj: 
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.  For uniformly 

distributed classifications and uniformly distributed test 
values per classification, conditional entropy can be 
expressed as: 
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We may then calculate information gain from a signa-
ture database as follows: 
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