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Abstract

Flayer is a tool for dynamically exposing application
innards for security testing and analysis. It is imple-
mented on the dynamic binary instrumentation frame-
work Valgrind [17] and its memory error detection plug-
in, Memcheck[21]. This paper focuses on the implemen-
tation of Flayer, its supporting libraries, and their appli-
cation to software security.

Flayer provides tainted, or marked, data flow analy-
sis and instrumentation mechanisms for arbitrarily alter-
ing that flow. Flayer improves upon prior taint tracing
tools with bit-precision. Taint propagation calculations
are performed for each value-creating memory or regis-
ter operation. These calculations are embedded in the
target application’s running code using dynamic instru-
mentation. The same technique has been employed to al-
low the user to control the outcome of conditional jumps
and step over function calls.

Flayer’s functionality provides a robust foundation for
the implementation of security tools and techniques. In
particular, this paper presents an effective fault injection
testing technique and an automation library,LibFlayer.
Alongside these contributions, it explores techniques for
vulnerability patch analysis and guided source code au-
diting.

Flayer finds errors in real software. In the past year, its
use has yielded the expedient discovery of flaws in secu-
rity critical software including OpenSSH and OpenSSL.

1 Introduction

Vulnerabilities often lay undiscovered in software due to
the complexity of the code paths leading to them. Re-
cent tools attempt to understand these paths and mod-
ify running application code, detecting flaws ranging
from undefined memory use [21] to signedness conver-
sion errors [15] to unbounded memory access [32]. In
addition, symbolic evaluation and analysis frameworks,

like EXE [8] and SAGE [12], and other multiple ex-
ecution path analysis tools [16], have begun to aug-
ment this effort through the automated generation of dan-
gerous input. While execution path, or flow, analysis
techniques have been in use for over three decades [7],
practical analysis tools for white box testing and audit-
ing scenarios have only recently become commonplace
[15] [12] [8] [32] [19].

This paper presentsFlayer, an execution flow analy-
sis and modification tool, and a complementaryfuzz test-
ing [14] technique. Flayer is implemented as a plug-in
to the dynamic binary instrumentation frameworkVal-
grind [17] using core functionality from its memory error
detection plug-in,Memcheck[21]. It traces the flow of
tainted, or marked, input data through an application dur-
ing execution and logs the traversal of conditional jumps
and system calls. Recent works, such asautodaf́e [32]
andByakugan[19], also rely on understanding input flow
through a process. However, these tools use input pattern
matching techniques for taint tracing which lack the ac-
curacy of Flayer’s dynamic binary instrumentation based
approach. Flayer improves on existing taint tracing soft-
ware, likeTaintCheck[18] andCatchconv[15], through
the addition of bit-precise taint propagation. This pre-
cision allows for taintedness to propagate into bitfields
and bit arrays creating a more accurate view of the im-
pact input has on an application’s execution. Further-
more, Flayer is not solely a taint tracing tool. It also
provides the ability to redirect the flow irrespective of in-
put. Flayer can instrument the outcome of conditional
jumps and function calls in the execution path based on
user-supplied arguments. In addition, a library for au-
tomated execution and output processing,LibFlayer, is
available for use along with an interactive shell interface,
FlayerSh, for easy human interaction.

The application of Flayer’s flow tracing and alteration
functionality, flaying, provides a means to directly ex-
pose code obscured behind complex code paths for di-
rect testing. This approach combined with random fuzz



testing results in a lightweight, yet effective testing tech-
nique.

1.1 Paper structure

The remainder of this paper discusses Flayer, its imple-
mentation and applications. Section 2 covers the detailed
implementation of Flayer. Section 3 introduces a new
fuzz testing technique. Section 4 discusses other tech-
niques enabled through the use of Flayer and its support-
ing libraries. Section 5 provides real world experiences
where the presented software and techniques have suc-
cessfully discovered security-related application flaws.
Section 6 details the possibilities for future work, and
Section 7 gives the conclusions drawn.

2 Flayer

2.1 Foundation

Flayer is implemented as a plug-in to Valgrind, a frame-
work for instrumenting machine code at runtime. In
particular, it is based upon functionality from Mem-
check. Memcheck is a Valgrind plug-in that provides
four types of memory error detection: byte-level address-
ability, heap allocations, memory block argument over-
lapping, and definedness checking. Of these, definedness
checking was the basis for Flayer’s taint propagation fea-
ture. Other functionality provided directly by Valgrind
was leveraged for implementing taint sources and control
flow alteration. In addition, Valgrind’s default error out-
put and robust command line argument handling mech-
anisms enabled easy automation with a simple wrapper
library, LibFlayer.

2.2 Bit-precision taint tracing

Tainting is the process of tagging data with metadata
that is propagated when that data is involved in a value-
creating operation. The implementation of bit-precision
taint tracing may be divided into three logical pieces: ini-
tial taint assignment, taint propagation and notification,
and taint removal.

Taint is assigned to data based on the data sources
specified on the command line. The following sources
are supported: network, file, and stdin. All data originat-
ing from the network, the file system, or standard input
are tainted through the instrumentation of system calls
made by the target application. In most cases, this is
handled by theread system call. As data enters the ap-
plication via this kernel interface, the instrumented call
checks if the source file descriptor is tainted and appro-
priately marks the destination memory addresses. In ad-
dition, recvmsg andrecvfrom are instrumented in

the same manner. File descriptor-based tainting is man-
aged in two ways. If standard input tainting is speci-
fied, data originating from file descriptor0 is tainted.
For network and file tainting, file descriptor tracking
is handled through the instrumentation of the follow-
ing system calls:open, socket, connect, accept,
socketpair, and close. When the data sourced
from the file system is to be tainted,open controls
whether a file descriptor is marked as providing tainted
data. By default, if file tainting is enabled, all file de-
scriptors opened withopen will be marked. When a
file descriptor is closed withclose, it is unmarked
as providing tainted data. However, tainting all input
from open file descriptors may taint a large amount of
data as shared libraries are loaded and files are read
by the target application. The command line argument
--file-filter exists to mitigate this problem. The
argument takes a string which specifies a path prefix to
the desired file, or files, to be tainted. This allows for tar-
geted tainting of file input data. Unfortunately, there are
no such filters for network tainting. If enabled, all net-
work file descriptors are assumed to produce tainted data.
Usually, this is not a burden given that network opera-
tions are not fundamental to process initialization. Along
with system call instrumentation, taint may be assigned
through one other mechanism: client calls. Valgrind pro-
vides a mechanism where special machine instructions
may be inserted into an application, or library, at com-
pile time through the use of C macros. Usually used from
preloaded shared objects, these client calls may taint, un-
taint, or examine chunks of application memory.

The propagation oftaintedness, whether data is tainted
or not, is largely implemented using the undefinedness
propagation technique implemented in Memcheck. In
this technique, all bits in memory and registers have as-
sociated bits of metadata, shadow bits, which track taint-
edness. Furthermore, each value-creating memory oper-
ation has a shadow operation which calculates the taint-
edness of the result. This direct memory propagation ap-
proach performs the majority of the taintedness propa-
gation. Flayer also implements an indirect technique to
further expand coverage. Flayer preloads a shared library
that replaces several functions in the target application
which operate on strings and raw memory:strnlen,
strlen, strncmp, strcmp, memcmp, andbcmp. In
practice, these functions operate on memory that may be
tainted but will not propagate taintedness to their return
value because that value is not the direct result of a mem-
ory operation. For example,x = y + 1 results inx
being tainted ify is tainted. However, in the following
examplelen will not be tainted even ifs is:

char *c = s; size_t len = 0;
for( ; *c; c++ ) { len++; }
return len;



While it is clear to a human that the final value stored
in len is based completely on the contents ofs, direct
memory-to-memory propagation cannot address the sit-
uation. To work around this, the replacement functions
listed make use of client calls to determine if the source
memory is tainted and taint the return value appropri-
ately. If these functions have been inlined, or custom
equivalents are used, the preloaded versions will not be
used and taintedness will not propagate indirectly.

Taintedness propagation functions generate external
notification messages. Given that Memcheck already re-
ports on traversed conditional jumps, system call argu-
ment usage, memory access, and SIMD or FP register
memory loads, Flayer inherited output that is sufficiently
rich without the addition of further messages.

Memory must be untainted when it no longer con-
tains a tainted value to avoid false positives. In most
cases, memory is untainted through the taint propagation
code. If an untainted value is written directly to a tainted
memory location, that location will become untainted.
Memory is also untainted when it is allocated or freed
on the heap throughmalloc/free wrapper functions.
All other cases are handled through Valgrind callbacks:
stack creation, stack destruction, and client calls.

2.3 Execution path alteration

Flayer alters a target program’s execution path through
direct instrumentation of its machine code, a practice
classically used in software cracking. In particular, two
types of alterations are possible: forcing conditional
jumps and stepping over function calls. The instrumenta-
tion occurs after machine code is translated to Valgrind’s
intermediate representation (IR) and before it is trans-
lated back to machine code.

Conditional jump alteration is controlled by the
--alter-branch command line argument. This
argument takes a comma-separated list of instruc-
tion pointer and value pairs joined by colons, e.g.
--alter-branch=0x8080:1,0x9090:0. The
value specified after the instruction pointer is that of the
guard of the conditional jump. A value of0 indicates
that the branch should not be followed while a value of
1 will result in the branch being followed. This behavior
occurs irrespective of the values involved in the condi-
tional itself. Any conditional jump may be altered using
this technique regardless of whether it is visible during
taint analysis.

In addition to forcing conditional jump outcomes,
Flayer allows function calls to be stepped over using the
--alter-fn command line argument. This argument
takes a similar format to--alter-branch except that
the value may be any 32-bit integer. The address sup-
plied is not that of the function to be skipped, but in-

stead, the address where the function is called. At this
address, Flayer adds two instructions. The first sets the
value of the EAX register to the 32-bit value supplied in
the command line argument. The second is a jump to the
next physical instruction after the call site. This forces
the function call to be bypassed while still providing a
controllable return value.

2.4 LibFlayer

LibFlayer is a Python library which provides a program-
matic interface to Flayer. It is comprised of several com-
ponents, the most important of which is the Flayer class.

The Flayer class is the core interface of the library.
It supplies the getters and setters for managing Flayer
command line arguments and provides interfaces for in-
teracting with parsed output. Through these interfaces it
is possible to specify what input type to taint, what file
paths to filter, and what conditional jump addresses to
modify. The interface can be used directly or wrapped
further for higher levels of abstraction. One such wrap-
per provides the interactive shell interface used by Flay-
erSh. In addition, some effort has been invested in
the automated exploration of execution path trees using
LibFlayer.

3 A new fuzz testing technique

3.1 Background

Random fault injection-based testing, or fuzz testing, is
the technique of supplying random input to an applica-
tion with the intent of discovering an unseen, and poten-
tially dangerous, code path. Traditional fuzz testing is
often underutilized due to its inherent limitations. In par-
ticular, exhaustive testing of an application’s input space
quickly becomes infeasible. Fuzz testing one or two
bytes may not be prohibitive, but testing even a small set
of 500 bytes requires28∗500 combinations to completely
exercise the input space.

While there are many specialized techniques to mit-
igate this exponential explosion of combinations, two
generalized practices have arisen. The first is block-
based [4], or format aware, fuzz testing.Spike[5], PRO-
TOS [20], andPeach[11], among others, use this ap-
proach to limit the randomness in the data to just the
mutation of format-specific components. This approach
has shown its efficacy [4] but requires a substantial ini-
tial investment in the form of extensive format specifica-
tion. Even in systems where this specification is gen-
erated automatically [32] [6], fuzz testing based on a
protocol definition may not exercise code from undoc-
umented features or proprietary vendor extensions and
may waste significant resources testing unimplemented



specification features. For example, consider testing a
HTTP server. WebDAV [13] alone adds nine new HTTP
methods in addition to multiple new HTTP headers. The
combination of these HTTP methods, headers, and their
arguments takes a substantial time to explore regardless
of whether the server supports the functionality.

The second technique is exemplified in the work by
Vuagnoux called autodafé [32], as well as Pusscat’s
Byakugan [19]. The approach focuses on the use of
recognizable patterns in the input stream which are de-
tected through function hijacking or frequent memory
scanning. This technique is useful for detecting which
pieces of input reach specific locations, but it is limited
by design. Not only is it possible for the marker text to
be modified beyond recognition during execution, but the
method itself introduces uncertainties in measurement.
The values in the marker text will dictate which code
paths are taken and intrinsically limit the coverage.

Recently, variations on directed fuzz testing have been
introduced parallel to the work presented in this pa-
per. Jared DeMott’sEvolutionary Fuzzing System[10]
uses genetic algorithms to construct viable input sets
based on reproductive criteria driven by the amount of
code coverage of each successive run. It eliminates the
risks of wasting effort on unimplemented functionality
and of failing to exercise undocumented features. Like
fuzz [14], it still must overcome basic protocol input val-
idation tests. Usually, these tests are used in software
to determine the format of incoming user input. This
might be a version check similar to the protocol banner
in OpenSSH [3] or a file format type indicator like the
magic check in LibTIFF [2]. While this limitation may
not affect the approach dramatically, other techniques,
inspired by fuzz testing, address this issue through ap-
plication flow analysis. Catchconv [15], EXE [8], and
SAGE [12] leverage symbolic execution to guide input
error detection and generation. Constraints are extracted
by tracing the execution of an application on fixed in-
put, such as a known good file. The extracted constraints
are then explored through virtualized execution and, in
some cases, through repeated execution on input mutated
based on code coverage heuristics. These approaches
have shown promising results but are limited by approx-
imation errors in symbolic execution and the potential of
poor initial input selection.

3.2 Fuzzing flayed applications

Fuzzing flayed applications is a lightweight testing ap-
proach which minimizes the initial time investment re-
quired from the auditor. The only initial work required is
flaying. It does not require a protocol aware input gener-
ator, a large testing harness, or any input selection work.
Instead, a time investment is required when a crash con-

dition is uncovered. The auditor must spend time creat-
ing viable input or determining if the bug is unreachable
in normal circumstances.

Flaying is an iterative process for increasing the reach-
ability of complex application code by removing the
outer layers of application defenses. Initially, an audi-
tor must supply random input to a target application and
analyze the resulting taint tracing output. As uninterest-
ing, or non-state building, sanity and error checks are
traversed, they must be forcibly followed or bypassed
using Flayer’s flow alteration commands. This process
is repeated until the desired code is directly exposed for
testing. Once exposed, traditional random fuzz testing is
used to uncover vulnerabilities. Upon the discovery of a
vulnerability, the malicious input must be crafted by the
auditor such that it will bypass the removed checks in
an unaltered version of the software. The success of this
technique is discussed in Section 5.

$ valgrind \
--tool=flayer \
--taint-network=yes \
--trace-children=yes \
--alter-fn=0x8A2E:3 \
/usr/sbin/sshd -ddd -f \

$PWD/sshd_config -p 2222 -D

Figure 1: Bypassing the ”Protocol Mismatch” error
check on an Ubuntu Feisty OpenSSH 4.3p2-8ubuntu1 bi-
nary

Flayer may be used on an application regardless of the
availability of the source code or debugging symbols.
While the availability of this data will speed the flay-
ing and creation of valid input, simple heuristics work
in many cases which make them unnecessary. For in-
stance, if testing of OpenSSH’s cipher suite negotiation
is desirable, then it would be useful to bypass the SSH
protocol version check. This is done in Figure 1 by step-
ping over asscanf call. Address0x8A2E was identi-
fied as the call site to the offending check as it preceded
the first tainted call to the logging function which gen-
erated the bad protocol version error message. Only the
libc symbols were used to infer this. With the check
removed, it becomes possible to build a simple test har-
ness that copies data from/dev/urandom and sends
it to the flayedsshd. In addition, it is trivial to intro-
duce the required data into any payload by prepending a
proper version value. While this is a simplistic example,
it captures the essence of the technique.

It is worth noting that the fuzz testing of flayed ap-
plications does not require Flayer. This technique was
first performed manually through the removal of error



and sanity checks using interactive debugging and source
code modification. However, the automation of the iter-
ative discovery and modification process greatly speeds
the use. The primary benefit of manual flaying is the
ability to bypass state building statements through code
addition.

4 Further uses

The Flayer tool suite provides a useful feature set for
software auditors, developers, and maintainers. The abil-
ity to comprehend and interact with the flow of data
through an application provides unique insight into that
application’s operation and makes other useful security
auditing and testing techniques possible.

4.1 Guided source code auditing

Many of the more dangerous vulnerabilities, such as re-
mote execution of code, result from malicious user in-
put. Therefore, it is quite useful to determine input entry
points and input-tainted functions when auditing an ap-
plication. This is where Flayer proves useful.

By running a given application, compiled with debug-
ging symbols, through Flayer with an arbitrary input set,
the auditor can see which conditional jumps are traversed
by the data along with the containing functions. Given
that the direct output from Flayer is not always immedi-
ately comprehensible to a human auditor, this technique
is augmented by the use of FlayerSh.

FlayerSh parses the output of Flayer providing error
summaries, branch alteration, and source code snippet
listing. Figure 2 provides an example session which
shows a run oftiffinfo on random input, locations
where tainted values were used, and the source code
from one such use in a magic value check. Using this
shell, it is possible to rapidly follow the data flow as well
as review snippets of source code surrounding locations
where tainted data was used. This allows for quick in-
sight into the operation of the target application and im-
mediately displays error checking locations without the
need for additional tools or software.

FlayerSh does not replace interactive debuggers or dis-
assemblers, such asGDB [1] or IDA Pro [9], but it does
provide a compromise between single stepping through
code execution and manually locating application error
checking code.

4.2 Patch and vulnerability analysis

In complement to auditing and testing, Flayer and Flay-
erSh, in particular, prove useful when analyzing input
data flow through variants of the same piece of software.

$ dd if=/dev/urandom of=rnd.tiff \
bs=1k count=1

$ FlayerSh ./tiffinfo /demo/rnd.tiff
>>> filter(file="/demo/rnd.tiff")
>>> run();summary()

==> UninitCondition
id frame information
0x0 0x4051CC0 TIFFClientOpen

/demo/libtiff/tif_open.c:359
0x1 0x4051CD0 TIFFClientOpen

/demo/libtiff/tif_open.c:359
0x2 0x4051CE0 TIFFClientOpen

/demo/libtiff/tif_open.c:359
0x4 0x413F6A3 _itoa_word
0xd 0x41413B2 vfprintf
0xf 0x413F6BD _itoa_word
==> UninitValue
id frame information
0x3 0x413F69B _itoa_word
0xe 0x413F6B7 _itoa_word

>>> snippet(0x1, 2)

* Setup the byte order handling.

*/
| if (tif->tif_header.tiff_magic !=

TIFF_BIGENDIAN &&
tif->tif_header.tiff_magic !=
TIFF_LITTLEENDIAN

>> alter(0x0, 1)
...

Figure 2: A snippet of a guided auditing session in Flay-
erSh reviewing a magic check intiffinfo (LibTIFF-3.8.2).

This scenario occurs quite frequently in both the com-
mercial and open source worlds: projects fork, operating
system distributions apply different patches to the same
original application, and systems become dependent on
old versions of software. When vulnerabilities are an-
nounced, patches to the original source code will often
not be useful to the maintainers of modified source.

It is possible to run two instances of FlayerSh, one
on the patched original application and one on an un-
patched variant, with a known bad input. This approach
allows one to review the code snippet of each of the con-
ditional jumps along the code path of both versions, and,
if needed, to force specific behavior to locate any vulner-
able code. Performing this simultaneous analysis results
in a quick assessment of the variant’s behavior.

Figure 3 provides an example of this. It shows a small
piece of a FlayerSh session for a version of LibTIFF
patched for the directory offset overflow and one that
is not. In particular, it is displaying the affected tainted
conditional where a safety check has been added in one
version but is missing in the original.



>>> # LibTIFF 3.8.2 unpatched | >>> # LibTIFF 3.8.2 patched
>>> snippet(0x2) | >>> snippet(0x2)

* Read offset to next directory for sequential |

* scans. | /*
*/ | * Check for integer overflow when
(void) ReadOK(tif, &nextdiroff, | * validating the dir_off, otherwise

sizeof (uint32)); | * a very high offset may cause an
} else { | * OOB read and crash the client.
toff_t off = tif->tif_diroff; | * -- taviso@google.com, 14 Jun 2006.

| */
|if (off + sizeof (uint16) > tif->tif_size) { | |if (off + sizeof (uint16) > tif->tif_size ||

TIFFErrorExt(tif->tif_clientdata, module, | off > (UINT_MAX - sizeof(uint16))) {
"%s: Can not read TIFF directory count", | TIFFErrorExt(tif->tif_clientdata, module,
tif->tif_name); | "%s: Can not read TIFF directory count",

return (0); | tif->tif_name);
>>> | >>>

Figure 3: Patch analysis of LibTIFF version 3.8.2 using two FlayerSh instances.

5 Real world experience

Fuzz testing of flayed applications has been used with
some success since the summer of 2006. This work re-
sulted in the discovery of multiple vulnerabilities in well
known open source applications:

- Seven vulnerabilities in LibTIFF version 3.8.2 were
disclosed [22] [23] [24] [25] [26] [27] [28].

-- A remote denial of service vulnerability was discov-
ered [30] in OpenSSH which affected all versions
before 4.4.

- An out of band read was discovered [31] in libPNG
which affected versions 1.0.6 through 1.2.12.

- A NULL pointer dereference was disclosed [29] in
OpenSSL which affected all current clients.

In addition, FlayerSh has been used to determine if
variants of LibTIFF and OpenSSH were affected by these
vulnerabilities.

5.1 Finding a LibTIFF overflow

One of the recently reported vulnerabilities in LibTIFF
resulted from an unchecked integer value which had pre-
viously gone unnoticed. The value was that of the TIFF
directory entry offset read directly from a supplied TIFF
image file. This section provides a simple procedure for
finding this vulnerability with Flayer.

The first step is identifying a good test application. For
the purposes of this vulnerability,tiffinfo is used.
LibTIFF version 3.8.2 was downloaded and compiled
with debugging symbols. With this completed, the com-
piled tool is run under Flayer with some random input as
seen in Figure 4.

$ dd if=/dev/urandom of=test.tiff \
bs=1k count=1

$ valgrind --tool=flayer \
--taint-file=yes \
--file-filter=$PWD/test.tiff \
./tiffinfo $PWD/test.tiff

Figure 4: Tracing random input throughtiffinfo

The first run will result in an error mes-
sage about the TIFF header magic. E.g.,
”Not a TIFF or MDI file, ...”. In the
Flayer output, there are three tainted conditional jump
events which occur prior to the firstprintf call.
It is assumed that this call issues the error message.
Each of these identified conditional jumps are tested
by supplying each instruction pointer address at which
the event occur to Flayer. One such test is shown in
Figure 5.

$ valgrind --tool=flayer \
--taint-file=yes \
--file-filter=$PWD/test.tiff \
--alter-branch=0x4049E66:1 \
./tiffinfo $PWD/test.tiff

Figure 5: Testing a tainted conditional jump intiffinfo

After some trial and error, it is possible
to circumvent the BigTIFF and version error
checking resulting in a different error message:
”Can not read TIFF directory count”.



With the version checks cleared, the directory count
code may be exercised by the test harness provided in
Figure 6.

#!/bin/bash
while /bin/true; do
dd if=/dev/urandom \

of=test.tiff bs=1k \
count=1

valgrind --tool=flayer \
--taint-file=yes \
--file-filter=$PWD/test.tiff \
--alter-branch="0x4049E6C:1,

0x4049EA6:1" \
./tiffinfo ./test.tiff

if [[ $? -ne 0 && $? -ne 1 ]]
then; break; fi

done

Figure 6: An example Flayer test harness

The test harness is simple but has proved effective with
LibTIFF and several other tested applications. However,
for this vulnerability, once the directory count error mes-
sage is triggered, a quick review of the source code at
the specified line number reveals an integer overflow. In
addition, if the auditor attempted to force the conditional
jump with a guard value of0 at that location, it would
have immediately resulted in a segmentation fault.

5.2 The good and the bad

Flayer and flaying have been used extensively for real
world application auditing and fuzz testing. With use, the
strengths and weaknesses of this tool and related tech-
niques are clear.

For patch analysis and guided auditing, Flayer has
worked well for the authors’ needs, but auditing style
is largely personal preference. With debugging sym-
bols and available source code, however, it has proved a
straightforward means for discovering input entry points
to an application. This allowed for targeted audits which
follow the data flow through the audited application with-
out any initial analysis of the source code. In addition,
the ability to step over functions and force conditionals
was useful in analyzing foreign binary behavior. It is pos-
sible to guide binary analysis by indicating the addresses
where interesting behavior occurs and forcing that be-
havior to continue. In many cases, if the target appli-
cation crashes, it is possible to infer the data primitives
expected by examining the resulting logs.

Fuzzing flayed applications is a highly effective tech-
nique for testing binary input such as image files and
some network protocols. The values supplied by gener-
ating random data from/dev/urandom will fully ex-

ercise the handlers for the incoming binary code once the
blocking checks are removed. However, when the input
format is highly structured, such as the ASCII protocol
HTTP, this coverage drops off significantly. The likeli-
hood of data originating from/dev/urandom generat-
ing valid HTTP messages is extremely low. This does not
completely discount the use of flaying and Flayer from
these scenarios, though. Instead, the fully random data
source may be replaced with a somewhat protocol aware
payload generator. While a fully protocol aware payload
generator may yield the most thorough protocol cover-
age, merging Flayer with a partially protocol aware gen-
erator allows for the execution path taken to be targeted.
For example, Flayer may be used to bypass the HTTP
version check in order to allow for a HTTP BNF-based
fuzzer to generate acceptable data without forcing it to
be aware of which versions of the protocol are normally
implemented.

Flayer has its own limitations. The largest of these
is that skipping sections of code, conditional jump
branches or entire functions, may result in missing re-
quired runtime state. While this is often not a problem,
in some cases values are derived from the source data
which need to fall within a small range, and that value is
used in subsequent calculations or even memory alloca-
tions. When this occurs, Flayer is less useful and man-
ual code modification is required to force correct state.
Flayer suffers from another limitation. If a conditional
jump is forced, it is forced every time. When that condi-
tional jump determines whether loop should continue, it
is possible to lock the application in a never ending loop.
Flayer provides no mechanism yet to alter the outcome
of a conditional a specific number of times.

A practical limitation of Flayer is that it does not yet
provide full coverage of all useful taint source system
calls. One notable example ismmap. This system call is
used to map a file on the file system directly into process
memory. Surprisingly, instrumenting this system call has
not been necessary in testing and analysis done so far.
Given that instrumentation has been added as needed,
this is only a minor limitation.

6 Future Work

There are many avenues left to explore with Flayer. Most
immediately, Flayer’s implementation limitations should
be removed. This includes expanding the coverage of
tainting input vectors, adding support for conditional
jump alteration a controllable number of times, adding
network taint filtering, as well as adding an assignment
operator to conditional jumps. In the case of an assign-
ment operator, instead of forcing a jump by replacing the
guard value, the actual tainted value would be reassigned
to the value it is being tested against. This would address



state building challenges in a simple, but effective way.

Other, more challenging, work is possible. One exam-
ple is the addition of origin tracking of tainted memory.
There is a Memcheck code branch which supports this
concept, but it does not do so in a way compatible with
Flayer. Adding this feature to the existing tool would al-
low further automated analysis and potentially, the auto-
matic generation of input for interesting code paths. An
alternate approach for reaching the same goal would be
integrating Flayer’s output with a program slicing [33]
system. This approach would remove the need for origin
tracking while still automatically generating input.

Additional work automating programmatic control
flow comprehension is another viable direction. It is pos-
sible to automate the process of flaying through brute
force flow alteration testing or through the integration
with more sophisticated systems. For instance, integra-
tion with a code coverage tool would allow for automated
runs of Flayer with randomly selected conditional jumps
to be optimized. This integration would enable a tree
view of the code path and provide pruning of dead end
code paths from the analysis enhancing the quality of
testing.

Along with these extensions, further integration of
Flayer with other fuzz testing techniques will yield very
useful results. Flayer may be used to force other fuzz
testing software to test more targeted areas of code than
they were previously able to. More investigation into the
compatibility and benefit will be explored.

7 Conclusions

The Flayer tool suite, built on the Valgrind framework
using core concepts from Memcheck, should be added to
the toolkit of anyone who regularly performs application
auditing or vulnerability patch analysis.

Flayer provides mechanisms to trace input flow
through an application and to arbitrarily modify that
flow. LibFlayer layers a convenient interface on Flayer.
FlayerSh provides a reference tool implemented on
LibFlayer. This suite enables multiple security auditing
and testing techniques, such as flaying. In concert, these
tools and techniques allow one to more effectively audit
software.

The Flayer tool suite is a starting point for application
auditing and analysis that requires extremely little ini-
tial investment while yielding solid results. Even though
Flayer is still at an early stage, its techniques have proved
their efficacy through the discovery of vulnerabilities in
Internet security critical applications, such as OpenSSH
and OpenSSL. This software is available for public use
and enhancement.

7.1 Availability

This entire tool suite is publicly available li-
censed under the GPL. It can be downloaded at
http://code.google.com/p/flayer. Contributions are
encouraged.
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