
CensMon: A Web Censorship Monitor

Andreas Sfakianakis, Elias Athanasopoulos, Sotiris Ioannidis

Institute of Computer Science

Foundation for Research and Technology, Hellas

{sfakiana, elathan, sotiris}@ics.forth.gr

Abstract
The Internet has traditionally been the most free

medium for publishing and accessing information. It is

also quickly becoming the dominant medium for quick

and easy access to news. It is therefore not surprising that

there are significant efforts to censor certain news articles

or even entire web sites. For this reason, it is paramount

to try to detect what is censored and by whom. In this

paper we present the design and implemention of a web

censorship monitor, called CensMon. CensMon is dis-

tributed in nature, operates automatically and does not

rely on Internet users to report censored web sites, can

differentiate access network failures from possible cen-

sorship, and uses multiple input streams to determine

what kind of censored data to look for. Our evaluation

shows that CensMon can successfully detect censored

content and spot the filtering technique used by the cen-

sor.

1 Introduction

Censorship on the world wide web appears to be tak-

ing place more than ever before. The OpenNet Initiative

(ONI) reports that there are almost 60 countries that ei-

ther filter or are suspected of filtering web content [7].

Furthermore, in 2011, the Freedom House released a

report that examined Internet-freedom in 37 countries

around the world, and found that there is a diverse and

growing threat to Internet-freedom [2]. Also, from 2000

onwards, many web censorship-related stories can be

found by performing a simple web search in Slashdot’s

Your Rights Online section (YRO) [10].

Web users can learn about filtered content in countries

from various articles on popular news websites. How-

ever, the information provided is usually very sparse and

in most cases, limited to a few filtered URLs per country.

Thus, there is a need for a service that provides more de-

tailed information about up-to-date web censorship, such

as ONI’s Herdict Web [8].

Censorship is a phenomenon that changes over time.

The main criteria used for censorship-checking by all

these web services is whether a specific web site is ac-

cessible or not. ONI’s Herdict Web [8], which is the ma-

jor web censorship monitoring service, depends on user-

generated feeds to determine the accessibility or inacces-

sibility of a web site. This fact alone may result in false

positives, since often users cannot differentiate network

failures from actual censorship. Therefore, there is need

for a service that does not depend on user input, and runs

transparently to track all the changes in the accessibility

state of web pages.

In this paper, we present the design and implemen-

tation of CensMon, a system that offers users real-time

information about filtered web content, without actu-

ally depending on their experience. Specifically our sys-

tems has three design characteristics: (i) it uses Planet-
Lab’s [9] nodes, to create a worldwide web censorship

monitor, (ii) it uses plug-in feed modules, that stream

newly published, possibly sensitive, content to our sys-

tem for censorship-checking, and (iii) we maintain his-

torical data by continuously monitoring sites that have

been censored. Our results, by using many different web

sources, show that our system can exploit these sources

to detect censored content and identify the filtering tech-

nique used.

2 Background and Related Work

Background about internet filtering mechanisms is pro-

vided in detail by Deibert et al. [14]. Wolfgarten [21] and

Dornseif [15], apart from describing filtering techniques,

provide information concerning filtering circumvention.

Zittrain and Edelman [23] have found a number of

blocked websites in China associated with sensitive ma-

terial. They used URLs from search results from web

searches as input to test for blocking, making their prob-

ing more efficient and more targeted. In order to evaluate

our system we used their methodology as one source of

1



our system’s inputs.

Clayton et al. [12] give a detailed presentation of how

web content blocking works. The main focus of their

work is to reveal the mechanisms behind the Great Fire-

wall of China. Moreover, they propose a naive but effec-

tive way to circumvent the Chinese firewall by just ignor-

ing the injected TCP RST packets that the firewall gener-

ates. This work further motivates our effort and provide

us with information about characteristics of the specific

content blocking mechanism.

In 2007, Crandall et al. [13] proposed Concept-

doppler, an approach based on Latent Semantic Analy-

sis (LSA) [17] to semi-automatically extract filtered key-

words in China. In Conceptdoppler, words that were

related to concepts that are deemed sensitive were ex-

tracted using LSA and then active measurements were

conducted to evaluate their results. Moreover, Park and

Crandall’s latest work [19] is focusing on HTML re-

sponse filtering and the discontinuation of this technique

in China. Both these works influenced our methodology

in order to spot URL keyword filtering and differenti-

ate it from HTTP response keyword filtering and HTTP

Header keyword filtering.

Mathrani et al. [18] tried to get a snapshot of censor-

ship in 10 countries. Their design methodology of their

probingmechanism influenced us in enabling us to detect

the root cause of the filtering that was reported.

Xu et al. [22] use low-level network characteristics in

order to detect the location of the filtering devices. To ac-

complish that, they use PlanetLab nodes for their probes,

an approach that we follow as well.

The Open Net Initiative [7] is an organization that in-

vestigates and analyses Internet filtering. They provide

country profiles that describe the social background and

the reasons why censorship is employed, and release

reports on different countries that censor the Internet.

Moreover, they provide statistics about internet usage at

each country, as well as a service called HerdictWeb [8]

that informs web site visitors about what is censored in

each one of these countries. Herdict Web allows one

to see what is inaccessible, where it is inaccessible, and

for how long. It uses crowd-sourcing to get information

about censorship and present a real-time view of the ex-

periences of users around the globe. Unfortunately, this

service relies heavily on web users that can sometimes

falsely report the inaccessibility of a site, raising a need

for differentiation between censorship and network error.

CensMon does not have access to as many nodes as Her-

dict, but it can work in a complementary fashion since it

uses an automated mechanism.

Finally, there a few other existing applications that

monitor Internet censorship events which are either fo-

cused on a specific country [5] or their agent network is

still quite limited to have an accurate global view [6].

3 CensMon Architecture

CensMon is a system that conducts extensive accessibil-

ity tests, trying not only to detect the presence of filtering

but also to spot the root cause of it, if possible. It consists

of two basic building blocks: the central server and the

network of sensing nodes. We refer to the sensing nodes

as CensMon’s agents. In this section, we describe the

properties of CensMon’s central server and demonstrate

the design of our system by providing a test case.

3.1 Central Server

The central server is the core of the entire system. The

web front-end runs there as well as all the scripts han-

dling CensMon’s input. Also it runs the database that

stores all probing information and the filtering history.

3.2 Filtering Detection Procedure

We will now describe the methodology followed by our

system. There are eight steps that take place in our sys-

tem:

1. At the start, the central server receives as input a

URL to test. It then forwards this URL to all alive

agents in CensMon’s network to be tested. To avoid

a flood of messages to all agents, we have inserted

a small time-out between messages that are sent to

the agents.

2. Once an agent receives a URL from the server, its

initial task is to make a DNS request for the do-

main of the URL so as to get the corresponding IP

address or addresses. If no IP address is returned

from the DNS server then the agent reports to the

central server the probable cause of the DNS failure

(e.g. connection refused, connection timed out or

non-existing domain) to take further action.

3. If the agent successfully resolves the IP address of

the domain in question, it tries to connect to that IP

address at port 80, in an attempt to detect whether

IP address blacklisting takes place. Upon successful

connecting to the remote port, the agent continues

to the next step of our protocol, otherwise it reports

the connectivity problem to the central server.

4. Having determined there is no IP address blocking,

the agent tries to find out if there is any kind of

filtering at the application level (HTTP). The agent

tries to detect URL keyword filtering. Inspired

by Park’s [19] approach, we have set up a seper-

ate web server serving null (empty) content so

as to avoid HTML response keyword filtering.

The agent contacts our webserver requesting our

2



webserver’s default URL concatenated with the

URL requested from CensMon server. This is,

if the requested URL is http://www.cnn.com,

then our agent’s HTTP request becomes

http://www.ourdomain.com/www.cnn.com. This

way the agent detects whether there is any kind

of URL keyword filtering or the expected 404 Not

Found Status Code is returned. Again, if the agent

detects URL keyword filtering it reports it to the

central server.

5. Finally, the agent attempts to access the initial URL

(using HTTP 1.1) and sends the received status

code, HTML code and information gathered from

the previous steps to the central server. In case of

redirection the agent additionally reports the final

URL and the final IP address visited.

6. Since all the agents have reported their findings for

a specific probe, the central server starts its post-

mortem analysis of the agents’ reports. CensMon

can detect filtering that uses DNS Name hijack-

ing (probable redirection to a block-page) by us-

ing whois service and by correlating the resolved

IP addresses (matching IP prefixes) returned by

DNS servers to all our agents concerning a specific

URL. Nevertheless, if a domain name has more than

one associated IP addresses, then our data are not

enough to determine DNS manilupation with preci-

sion.

7. Next, CensMon tries to identify censorship of par-

tial content in a web page. Since the HTML code of

a web page that was successfully accessed by one

of our agents is stored at the server, CensMon anal-

yses the HTML code of the web pages returned by

all agents and are associated with the same URL.

When the md5 hashings of the URLs’ HTML code

differ, CensMon uses Arc90’s Readability function-

ality [1] in order to extract the content that is most

likely to be the stuff a user wants to read (and what

the censor wants to filter). Python port of arc90’s

readability traverses the DOM and uses a scoring

function that rewards an element for containing text,

punctuation, and class or id attributes typically as-

sociated with the main content of a site. This way

CensMon deals with automatic changing/updated

contents (such as news sites, e.g. nytimes.com) or

contents that are localized (depending on where the

user is coming from). CensMon uses fuzzy hash-

ing [16] for comparing the URLs’ readable HTML

code and detecting partial filtering.

8. Lastly, when an inaccessibility event is reported,

CensMon marks it as suspicious for filtering and be-

gins to track the specific URL with the agent that

Figure 1: The CensMon Architecture.

reported the inaccessibility. This tracking is manda-

tory for CensMon to be able to differentiate between

filtering, in cases where inaccessibility is repeat-

edly reported, network errors, if the URL finally be-

comes accessible, or change in censor policy.

The architecture of CensMon is illustrated in Figure 1.

Figure 1 shows a user accessing CensMon’s web front

end, which is one of the possible systems inputs (in the

upper right part of there figure are the inputs used during

the evaluation period). The user can choose if they want

to forward the URL in question to a specific alive agent

or to all of CensMon’s agents. Then the central server

will forward the query and will try to detect possible fil-

tering of the user request. Afterwards, server stores the

results reported by the agents in the database. Finally,

CensMon informs the user via web front-end, if a spe-

cific agent was chosen, or via email, if the entire agent

nework was selected.

4 Evaluation

In this section we present the results of a preliminary

evaluation of CensMon . First, we describe the exper-

imental setup and then we present all the experimental

results.

4.1 CensMon Agent Network

For our testbed we used nodes from PlanetLab. We run

CensMon agents on PlanetLab nodes forming the Cens-

Mon network. More precisely, we have deployed 174

agents in 33 different countries (141 distinct ASes, 130

3



Country #Agent
#ASes

Country #Agent
#ASes

Country #Agent
#ASes

Code Nodes Code Nodes Code Nodes

AR 1 1 GR 2 1 NZ 2 2

BE 1 1 HK 2 2 PL 5 3

BR 5 3 HU 1 1 PT 2 1

CA 7 7 IE 1 1 RU 2 2

CH 5 1 IL 3 1 SE 2 2

CN 1 1 IT 2 1 SG 2 2

DE 15 4 JO 1 1 SI 1 1

ES 4 3 JP 10 8 TR 1 1

FI 1 1 KR 3 3 TW 5 4

FR 7 4 NL 3 2 US 72 72

GB 3 2 NO 1 1 UY 1 1

Table 1: Number of CensMon agents and number of ASes per country.

distinct cities) in PlanetLab. Table 1 shows the coun-

tries, the number of deployed agents in each one of them

as well as the number of the corresponding ASes. In

order to evaluate our system we used input from differ-

ent sources. We now discuss how these sources provide

CensMon with URLs to test.

User Input. CensMon has a front-end which enables

users to insert URLs in the system. Users should specify

the URL as well as the agent they want the system to

forward the request to. After a successful request, users

get the respective response and the HTML code of the

requested URL. Another option is to insert a URL to be

forwarded to all the CensMon agent network.

Google Alerts. Apart from user input, we use Google

Alerts [4], a service provide by Google, for automati-

cally inserting URLs of interest in our system. Google

Alerts are email updates of the latest relevant Google re-

sults based on a topic of choice. The characteristics of an

alert is the topic that we are interested, the frequency of

receiving alerts (we choose to receive web alerts as they

happen) and finally the type of the alert. Google Alerts

offer five types of alerts for a specific topic: News alerts

(related URLs from news sites), Blog alerts (URLs from

Blogs), Real-time alerts (latest related Tweets), Discus-

sion alerts (related threads from various fora) and Video

alerts (newly published related videos).

Using Google Alerts as an input source we can check

web content that may be censored and test how Cens-

Mon responds to this newly published content. We reg-

istered a Gmail account and added 4 topics to our alert

services. These topics was internet censorship, net neu-

trality, freedom of speech and human rights. For each of

these topics our email account receives alerts for all four

type of alerts presented above. Using an IMAP client we

fetch and insert all alerts to CensMon .

Internet Trends. In parallel, we want to test URLs that

are associated with current trends discussed over the In-

ternet. For this reason, we use the popular social network

Twitter [11] and Google Hot Trends [3] for extracting pe-

riodically popular trends. Google Hot Trends [3] is a ser-

vice provided by Google, where one can see a snapshot

of people’s interests. Nevertheless, since Twitter trends

and Google Hot Trends do not include necessarily URLs,

we extract characteristic keywords associated with these

trends and then, by using the Google Search Engine, we

feed CensMon with the top-10 URLs returned by Google

for a given trend.

Herdict’s Web Reported URLs. Since the OpenNet Ini-

tiative [7] is the best source of information for Internet

censorship, we use as input the latest reported URLs by

web users from the Herdict Web [8] site to test them with

our infrastructure. We were periodically visiting Her-

dict Web site and automatically extracting the URLs that

were reported by web users.

ONI’s Categories for Internet Censorship. ONI [7]

has released a list of categories in the global URL list

for Internet censorship research. We chose ten of them

in order to find related URLs and insert them to Cens-

Mon . The ten categories that we selected are: news out-

lets, freedom of speech, entertainment, government, ter-

rorism, porn, gambling, religion, net neutrality and hu-

man rights. We then proceed and search through Google

Search Engine to find the top-100 results for each cate-

gory. The resulting 1000 URLs of the above categories

were inserted to CensMon so as to be tested through the

agent network.

4.2 Experimental Results

All evaluation measurements were conducted during a

14-day period in April 2011. At this period CensMon

tested 4950 unique URLs from 2500 domains. More-

over, CensMon detected 951 unique URLs from 193 do-

mains as filtered. Table 2 depicts the number of unique

domains found as censored by CensMon during the eval-

uation period.

4



AR 0 GR 0 NZ 0

BE 0 HK 2 PL 0

BR 0 HU 1 PT 0

CA 0 IE 1 RU 0

CH 0 IL 0 SE 0

CN 176 IT 0 SG 0

DE 1 JO 5 SI 0

ES 0 JP 1 TR 6

FI 0 KR 0 TW 0

FR 0 NL 0 US 0

GB 0 NO 0 UY 0

Table 2: Censored domains found per country by Cens-

Mon.

HTTP Filtering(48.5%)

IP Blocking(33.3%)

DNS Manipulation (18.2%)

Figure 2: Percentage breakup of the layer at which the

filtering was detected during CensMon ’s evaluation pe-

riod.

In Figure 2 we can see the percentage of the filtering

techniques concerning the censored URLs found during

the evaluation period. Furthermore, CensMon reported

that for the domains that was detected filtering at HTTP

level in China, 71% of these domains were censored due

to URL keyword filtering. Finally, throughout the evalu-

ation period CensMon did not detect any partial filtering

of a web page.

Figure 3 shows the distribution of the unique domains

that CensMon has detected as censored for all the agent

nodes. As we can see, about 86% of the agent nodes have

not reported any filtering event to be categorized as cen-

sored by CensMon . Moreover, about 10% of the agent

nodes have found 1 to 6 domains as censored. The Chi-

nese agent node was by far the one that reported filtering

in 176 domains marked as censored.

CensMon can detect whether an inaccessibility was re-

ported due to temporary failure or filtering after a number

of tracking attempts. Whenever our system gets informa-

tion by one of the agents that a specific URL is inaccessi-

ble, it tracks it in order to spot the differentiation between

filtering and a possible network error events. As Fig-

ure 4 depicts, 21% of all the URLs that CensMon started

to track were accessible after the first tracking attempt

and during all the rest of the evaluation period, conclud-

ing that the initial inaccessibility had been caused due

to network failure. Moreover, the decrease of the per-

centage after the first tracking attempt can be explained

due to the fact that the very first attempt is done by all

Number of Domains Found as Censored
1 5 10 176

C
u

m
u

la
ti
v
e

 F
ra

c
ti
o

n
 o

f 
A

g
e

n
t 

N
o

d
e

s

0.7

0.75

0.8

0.85

0.9

0.95

1

Figure 3: Cumulative distribution of the unique censored

domains found during evaluation period.

Number of CensMon tracking attempts per URL
0 1 2 3 4 5

P
e

rc
e

n
ta

g
e

 (
%

) 
o

f 
te

m
p

o
ra

ry
 n

e
tw

o
rk

 f
a

ilu
re

s
 d

e
te

c
te

d

0

5

10

15

20

25

.1 1

Figure 4: Percentage of temporary network failures de-

tected after a varying number of CensMon tracking at-

tempts.

agent nodes trying to reach the same web server, while

tracking attempts are more lightweight. Therefore, after

3 tracking times we can be confident that what CensMon

tracks is rather a filtering event than an early and tempo-

rary network failure. However, we have tested manually

these 193 domains that were reported as censored in or-

der to check for false positives and we have found that 3

of them were falsely marked.

Finally, 123 distinct URLs that were inserted as input

to CensMon through ONI’s Herdict Web site. CensMon

started to track 245 cases that an inaccessibility was re-

ported coming from 75 agent nodes in 20 countries. At

last, 192 of the 245 cases of reported inaccessibility were

at least one time accessible from our system while the

rest 53 cases were reported as inaccessible during all our

evaluation period.

5



5 Discussion

One limitation of our work for now is the fact that Cens-

Mon can only monitor the extent of censorship of a coun-

try within which we are able to access a PlanetLab node.

However, we can overcome this issue by using web prox-

ies worldwide as agents conducting simple accessibility

tests or by developing a software client or even a Firefox

add-on that will act as a CensMon agent.

Another direction that we plan to explore further

is monitoring specific news sites via RSS feeds, and

measure Internet censorship concerning realtime news

events. Moreover, we can use our agent network to mea-

sure filtering of non-HTTP traffic and ports (e.g. P2P,

SMTP, VPN etc.) or execute network level probes in or-

der to test network infrastructure in terms of censorship.

As Rogers proposed in [20], we can make use of Cens-

Mon’s infrastructure to find known blocked content on

unblocked sites within a country.

Finally, by conducting long-term measurements and

since in CensMon each URL is forwarded to all its

agents, we could detect common domains censored by

different countries. As a result, we can extract infor-

mation about common worldwide web filtering trends

among countries.

6 Conclusion

In this paper we presented CensMon, an Internet censor-

ship monitoring infrastructure. The increase of global

web censorship motivated us to design and build a sys-

tem that can detect filtering characteristics and also be

capable of differentiating between censorship and net-

work failures. We implemented our design and evaluated

it on the PlanetLab testbed using information streams au-

tomatically extracted from a plethora of sources. Based

on our experience with using CensMon, as well as on

the experimental results presented in this paper, we be-

lieve that CensMon can be a valuable resource for Inter-

net censorship detection, and can provide useful infor-

mation for both researchers and regular web users.

Acknowledgements

This work was supported in part by the Marie Curie Ac-

tions – Reintegration Grants project PASS. Elias Athana-

sopoulos is funded by the Microsoft Research PhD

Scholarship project, which is provided by Microsoft Re-

search Cambridge.

References

[1] Arc90’s Readability. http://www.readability.

com.

[2] Freedom House. Freedom on the Net 2011.

http://www.freedomhouse.org/template.

cfm?page=664.

[3] Google Hot Trends. https://www.google.com/

trends/hottrends.

[4] Google Web Alerts. http://www.google.com/

alerts.

[5] GreatFirewall.biz. http://www.greatfirewall.

biz.

[6] Net Neutrality Monitor. http://www.neumon.org.

[7] Open Net Initiative. http://www.opennet.net.

[8] OpenNet Initiative’s Herdict Web. http://www.

herdict.org/web/.

[9] PlanetLab. http://www.planet-lab.org.

[10] Slashdot. Your Rights Online. http://yro.

slashdot.org.

[11] Twitter. http://twitter.com/.

[12] R. Clayton, S. Murdoch, and R. Watson. Ignoring the

great firewall of china. In Privacy Enhancing Technolo-

gies, pages 20–35. Springer, 2006.

[13] J.R. Crandall, D. Zinn, M. Byrd, E. Barr, and R. East.

Conceptdoppler: A weather tracker for internet censor-

ship. In 14th ACM Conference on Computer and Com-

munications Security, 2007.

[14] R. Deibert. Access denied: the practice and policy of

global Internet filtering. The MIT Press, 2008.

[15] M. Dornseif. Government mandated blocking of foreign

Web content. Arxiv preprint cs/0404005, 2004.

[16] J. Kornblum. Identifying almost identical files using con-

text triggered piecewise hashing. digital investigation,

3:91–97, 2006.

[17] T.K. Landauer, P.W. Foltz, and D. Laham. An introduc-

tion to latent semantic analysis. Discourse processes,

25(2):259–284, 1998.

[18] A. Mathrani and M. Alipour. Website Blocking Across

Ten Countries: A Snapshot. 2010.

[19] J.C. Park and J.R. Crandall. Empirical Study of a

National-Scale Distributed Intrusion Detection System:

Backbone-Level Filtering of HTML Responses in China.

In 2010 International Conference on Distributed Comput-

ing Systems, pages 315–326. IEEE, 2010.

[20] R. Rogers. A New Media Approach to the Study of

State Internet Censorship. http://www.govcom.

org, 2009.

[21] S. Wolfgarten. Investigating large-scale Internet content

filtering. M. Sc. in Security and Forensic Computing,

2006, 2005.

[22] X. Xu, Z. Mao, and J. Halderman. Internet Censorship in

China: Where Does the Filtering Occur? In Passive and

Active Measurement, pages 133–142. Springer, 2011.

[23] J. Zittrain and B. Edelman. Internet filtering in China.

Internet Computing, IEEE, 7(2):70–77, 2003.

6


