
Tumbling Down the Rabbit Hole: Exploring the Idiosyncrasies of
Botmaster Systems in a Multi-Tier Botnet Infrastructure

Chris Nunnery, Greg Sinclair, and Brent ByungHoon Kang
University of North Carolina at Charlotte
{cenunner, gssincla, bbkang}@uncc.edu

Abstract

In this study, we advance the understanding of botmaster-owned systems in an advanced botnet, Waledac, through
the analysis of file-system and network trace data from the upper-tiers in its architecture. The functionality and existence
of these systems has to-date only been postulated as existing knowledge has generally been limited to behavioral obser-
vations from hosts infected by bot binaries. We describe ournew findings for this botnet relating to botmaster interaction,
topological nuances, provided services, and malicious output, providing a more complete view of the botnet infrastruc-
ture and insight into the motivations and methods of sophisticated botnet deployment. The exposure of these explicit
details of Waledac reveals and clarifies overall trends in the construction of advanced botnets with tiered architectures,
both past, such as the Storm botnet which featured a highly similar architecture, and future. Implications of our find-
ings are discussed, addressing how the botnet’s auditing activities, authenticated spam dispersion technique, repacking
method, and tier utilization affect remediation and challenge current notions of botnet configuration and behavior.

1 Introduction

Recent increases in malware sophistication are largely
driven by a desire to generate profit in a thriving under-
ground economy despite advances in malware defense.
Botnet architectures, which are no exception to this trend,
have become considerably more advanced than their an-
cestral counterparts, often functioning as elaborate and
resilient infrastructures supporting numerous services.In
the Waledac and Storm botnets, notable for their longevity
and resilience, bot nodes have been used for relaying web
content and malicious binaries, providing peer data to
other nodes, and participating in fast-flux DNS services.

While the host-level behavior of bot nodes and their
malicious activities in these advanced, tiered architectures
has been explored in numerous works [3, 13, 11, 10, 4, 9,
12], their complete architectures are poorly understood.
Current knowledge is largely limited to the behavior ex-
hibited by bot binaries on infected hosts and information
obtained through network probing, which does not reveal
the structure, configuration, or behavior of the systems in
the upper-tiers deployed and directly controlled by botnet
operators.

In this paper we expose the behavior and configuration
of systems in the highest tiers of the Waledac architec-
ture. In doing so, we illuminate previously nebulous areas
of this infrastructure, allowing one to better understand
how these systems are utilized in the network to com-
mand, protect, and ultimately, generate profit as a part of
the complete architecture. By revealing details relating to
the deployment and functionality of botmaster-operated
systems in a multi-tier botnet architecture, those in the in-

formation security community can better respond to these
threats and further their understanding of the motivations
and techniques employed to operate a botnet.

The protocol details of the Waledac botnet with regard
to communication and encryption are outside the scope
of this study and are not included. These details, along
with the functionality and behavior of nodes in the low-
est two tiers in Waledac, comprised of infected hosts and
known asRepeaters andSpammers, have been accurately
described in existing literature [9, 1, 12].

The remainder of this paper is structured as follows:
In Section 2, we accurately describe the botmaster-owned
components of the Waledac infrastructure based on ob-
tained network traces and file-system data from the sys-
tems in the highest tiers of its architecture. Section 3 de-
scribes the implications of our findings, documenting pre-
viously unknown behavior. A discussion of related work
is included in Section 4. We conclude in Section 5.

2 Exploring Waledac’s Components

2.1 Overview

Waledac emerged in late 2008 as a possible successor to
the Storm botnet. The Waledac botnet on a macroscopic
scale can be described as a spam-generating phishing in-
frastructure with fast-flux functionality. Waledac employs
a hierarchical architecture with four tiers. The bottom two
layers, theRepeater andSpammer tiers, are comprised of
infected hosts, while the top two layers, theUTS andTSL
tiers, are deployed and managed by the botnet operator(s).
This topology is shown in Figure 1.

For the sake of clarity, it is worth noting that the terms
TSL and UTS have only arbitrary meaning. The identifier

1

UTS
Tier

TSL
Tier

Repeater
Tier

Spammer
Tier

Botmaster-Owned

Infrastructure

Infected

Hosts

Figure 1: The hierarchical topology of Waledac.

TSL comes from the Windows registry key Repeaters use
to store the list of servers in this tier. The termUTS was
assigned by the authors to identify both the tier and single
server located at the highest point in the hierarchy. The
term is derived from the labelUpper Tier Server. To avoid
confusion, when referring to the tier (e.g. the network
hierarchy level) the termUTS tier is used, while when
referring to the Command and Control server of Waledac,
the termUTS is used alone.

2.2 Analysis Methods

Reconstructing and discerning the functionality of the up-
per tiers in the Waledac infrastructure was possible due to
both file system data from two TSL systems and network
traces from the TSL and UTS systems. Servers located
within these top two tiers are hosted by third-party hosting
providers. The TSL tier is located largely in the Nether-
lands, Germany, and Russia. Through cooperation with
two of the affected hosting providers in the Netherlands,
we were able to obtain two of the TSL server images im-
mediately after they were taken offline. We were also
provided with network trace data and file system artifacts
from the single UTS server also located in the Nether-
lands. This rare opportunity provided detailed insight into
the operation and makeup of the servers in the upper-tiers
of Waledac’s infrastructure. We also verified the behavior
and functionality of nodes in the lower two layers, com-
prised of infected hosts, by studying network traffic and
reverse-engineering bot binaries.

2.3 Infected-Host Systems

The bottom two layers in the Waledac botnet are com-
prised ofRepeaters and Spammers. Both of these lay-
ers are comprised of systems infected with Waledac bina-
ries. Nodes are relegated to either of these layers based
on IP addresses; publicly accessible systems become Re-
peaters. Systems located behind NAT devices are desig-
nated as Spammers. Each Repeater node operates as a
HTTP proxy as well as a DNS server and facilitates com-

munication between the Spammer tier and the botmaster.
Nodes in the spammer tier, which retrieve commands in a
pull-based scheme, are used to distribute unauthenticated
spam and harvest local data such as email addresses and
network credentials. As these layers and the communi-
cation scheme they use have been correctly described in
various literature [1, 9, 12] the paper focuses on the tiers
above the Repeater layer, the functionality and very exis-
tence of which have only been speculated.

2.4 Botmaster-Owned Infrastructure: TSL

The TSL is the last victim-exposed tier and the first ob-
fuscated tier in the Waledac infrastructure. As such, re-
searchers have come to make assumptions about the intent
and functionality of this tier [9]. It is important to under-
stand that there are actually two sides to a TSL server (and
the TSL tier on the whole): thepublic side and thehidden
side.

In terms of visible functionality, the TSL tier is a simple
proxy and obfuscation layer. From the perspective of the
Repeater tier, the TSL tier does little more than to relay
requests from the Repeaters (and by extension, the Spam-
mer tier and neighboring Repeaters) to the next, unknown
tier in the botnet. The assertion that the TSL tier is itself
only one layer amongst additional upper, hidden tiers has
been largely unproven until the research disclosed in this
paper. The fact that these servers operate in a coordinated
manner indicates that either the servers are in some way
self-organizing to share information or they independently
report to a central repository and control server. Given the
streamlined architecture of the Waledac botnet when com-
pared to its more complex ancestor, Storm, more weight
can be given to the centralized control server theory as this
model matches more closely with the rest of the botnet’s
design. We have found that there is indeed an additional
tier beyond the TSL tier consisting of a single, controlling
server known as the UTS.

The hidden side of the TSL tier, which faces into the
higher tiers of the Waledac botnet, contains several sur-
prising characteristics. Whereas the public side of the
TSL proxies communication between the Repeater (and
subsequently the Spammer) tier to the upper tiers, the pri-
vate side of the TSL does the inverse by marshaling com-
munication in the opposite direction, from the upper tier
back into the Repeater tier. What hasn’t been known un-
til now is that the TSL servers within the TSL tier per-
form additional functions such as targeted spam gener-
ation. Before delving into the functionality of the TSL
servers, it is worthwhile to understand the construction of
these servers.

2

2.4.1 Deployment and Configuration

At its core, each TSL rides on a pre-furnished Linux op-
erating system image. Upon this image the botmaster
installs several standard services and applications such
as the Network Time Protocol (ntp) daemon, the DNS
server BIND, PHP, OpenVPN, BZip2, and the nginx [15]
proxy. In order to ease the process of installation, the
botmaster deploys many of these services with a pre-
generated configuration file common to all TSL servers.
These configuration files are not by themselves accurate
upon their initial installation, however. Thenginx.conf
andiptables files require the botmaster to manually con-
figure the proxy settings and filtering rules for the next
higher tier before the TSL can properly marshal commu-
nication between the Repeater tier and the next tier (UTS).

By default, thengnix.conf file, seen in Figure 2, con-
tains a simple set of proxy transformations. The primary
function of the proxy transformations is the translation of
requests from the public side of the TSL tier to a format
acceptable to the higher tiers of the botnet. These trans-
formations focus primarily on ensuring that the request
originated from within the Repeater tier of the botnet,
as indicated by the user-agent field of the HTTP request
containing the stringLMK. With three exceptions (/pr/,
/lm/, and/tds/), the proxy will return a HTTP 404
error code if the user-agent does not contain theLMK sub-
string. This effectively weeds out non-Repeater tier orig-
inating requests while at the same time preventing addi-
tional work for the UTS tier.

The three exceptions to theLMK rule relate to traffic
originating from outside of the Repeater tier. These ex-
ceptions establish the fact that what was originally con-
sidered a simple proxy tier is actually an entry point for
third party access. The exceptions allow third party ac-
tors (such as affiliates) to interface with the Waledac bot-
net in order to facilitate the underground commerce the
Waledac botnet generates. The/pr/ exception allows
the botmaster to transfer content between the botmaster-
controlled tiers (TSL and UTS) without significant over-
head and provides a means for phishing webpages to serve
content such as graphics and executables.

The concept of the TSL servers act as proxies to the
obfuscated tiers is by no means a new revelation. Com-
mon sense and experience have shown that botmasters
routinely generate malicious servers using pre-configured
scripts and packages. As evident by the creation of
the TSL servers, this deployment takes an insignificant
amount of time allowing the botmaster to quickly “stand-
up” new servers when needed or after a takedown of ex-
isting servers.

The fact that the botmaster is actively using the TSL

location /mr.txt {
proxy_pass http://85.x.x.x/lm/data/hosting/mr.txt;
proxy_redirect off;
proxy_set_header Host $host;
proxy_set_header X-Real-IP $remote_addr;

}
location /pr/ {

proxy_pass http://85.x.x.x/lm/data/hosting/partnerka/;
proxy_redirect off;
proxy_set_header Host $host;
proxy_set_header X-Real-IP $remote_addr;

}
location /tds/ {

proxy_pass http://{removed}.name/tds/;
proxy_redirect off;
proxy_set_header X-Real-IP $remote_addr;
proxy_set_header User-Agent $http_user_agent;
proxy_set_header Referer $http_referer;
proxy_pass_header Client-Host;

}
location / {

if ($http_user_agent !~ (.+)LMK$) {
error_page 403 404 500 502 503 504 /404.html;
return 404;

}
proxy_pass http://85.x.x.x/lm/data/hosting/;
proxy_redirect off;
proxy_set_header Host $host;
proxy_set_header X-Real-IP $remote_addr;

}
location ~ ^/[a-z]*\.(png|htm)$ {

if ($http_user_agent !~ (.+)LMK$) {
error_page 403 404 500 502 503 504 /404.html;
return 404;

}
rewrite ^/[a-z]*\.(png|htm)$ /lm/main.php last;

}
location /lm/ {

if ($http_user_agent !~ (.+)LMK$) {
return 404;
error_page 403 404 500 502 503 504 /404.html;

}
proxy_pass http://85.x.x.x/lm/;
proxy_redirect off;
proxy_set_header Host $host;
proxy_set_header X-Real-IP $remote_addr;

}

Figure 2: The default TSLnginx.conf configuration for
the TSL servers defines the translation of HTTP requests
from the public interface of the TSL to the next tier in
the hierarchy (UTS). This configuration specifies how Re-
peater nodes must conform to a specific user-agent in or-
der to pass traffic through the TSL tier.

servers for additional functions such as targeted spam gen-
eration is until now an unknown fact. After installing and
configuring the TSL server to act as a proxy, the botmaster
installs PHP, proxychains, BIND and a custom package
known asphp mailer. The combination of these appli-
cations allows the botmaster to send specifically targeted
email from the TSL through a series of proxies.

2.4.2 Spamming Models: HQS and LQS

• Low Quality Spam (LQS)

The bulk of Waledac’s spam is generated through the
Spammer tier. Nodes in this tier receive their spam cam-
paigns from the UTS via the various tiers between them.
The end result of this type of spam campaign is bulk spam

3

with a higher probability of being blacklisted due to the
originating IP addresses being dynamically assigned (e.g.
residential cable modems or DSL services). The Spam-
mer nodes that ultimately transmit this type of Low Qual-
ity Spam (LQS) keep detailed statistics on if a particu-
lar piece of spam from a particular campaign destined for
a particular email address was successfully transmitted.
This indicates that the spam sent by the Spammer tier is
possibly generated as part of a bulk order from another ac-
tor using Waledac as a spam generator. The use of statis-
tics allows the purchasing actor to determine the ultimate
number of spam messages delivered and the final bill for
the campaign.

• High Quality Spam (HQS)

As LQS is likely to be impeded by blacklists, the bot-
master has developed a solution to this particular problem
by relying on legitimate email accounts and their corre-
sponding SMTP servers. The botmaster, as part of the ini-
tial deployment of a TSL server, installs a custom PHP ap-
plication calledphp mailer. This application is a sim-
ple bulk mailer that is coupled with an open source pack-
age known as proxychains. Equipped with a collection
of validated SMTP login credentials, the botmaster gen-
erates between 100 and 300 instances ofphp mailer.
The bulk mailer connects to a cloud of proxy servers via
SOCKS5. These proxies in turn connect to the specified
SMTP server via TCP port 25. Thephp mailer appli-
cation uses valid login credentials to authenticate with the
SMTP server before sending multiple spam emails from
the victim’s account. The result of this attack is a spam
campaign with a higher probability of success, resulting
in a High Quality Spam (HQS) campaign.

The source of the SMTP credentials is presently un-
known however, it is within reason to assume the Waledac
bots, which now actively monitor an infected machine’s
network traffic for SMTP, HTTP and FTP credentials, are
the source of this intelligence. Thephp mailer ap-
plication contains two small PHP scripts which down-
load both a list of current SOCKS5 proxies and validated
SMTP server credentials. These scripts access the TSL
tier using thewget application. The location of the two
lists contains the path/pr/ resulting in the TSL tier for-
warding the request to the UTS tier. Therefore, while the
request is destined for the TSL tier it is actually the UTS
tier that contains the required information.

The source of the targeted email addresses for the HQS
campaign is obtained from a download from UTS by the
TSL server in question. The download takes the form
of http://Neighboring TSL Server IP/ pr/
short name.gz. This URL is itself interesting by the
fact that thenginx proxy will retrieve the information from

thepartnerka [1] directory indicating, again, that the spam
is part of a paid service to third party underground actors.
As explained in the next section, one possible source for
the information at the UTS level is the spam clearinghouse
calledspamit.com. This fact further adds credence to the
theory of Waledac’s spam as a service model. Figure 3
illustrates the process of generatingHQS.

Unlike LQS campaigns, the botmaster puts significant
effort into HQS campaigns by not only using compro-
mised SMTP accounts to circumvent blacklists, but by
testing the campaigns before they are delivered. Con-
tained within thephp mailer directory is a list of tar-
get email addresses forHQS campaigns. Before the target
list is engaged, the botmaster uses a list labeled “test” to
run the first batch of the campaign. The test file contains
four email addresses each with the same username but
with a differing domain name (yahoo.com, hotmail.com,
mail.ru, and gmail.com). The four email addresses are re-
peated several times in the test file ensuring that the same
spam email is sent to each of the email accounts multi-
ple times. In this way the botmaster can determine if the
current spam campaign will face any blocks at the email
provider level. If the spam emails will end up in the spam
or junk folder of the email provider, the botmaster can ad-
just the spam message and run the test again. Once the
spam emails have been successfully delivered to the in-
box of each of the four test email accounts the botmaster
can safely assume the spam will not be blocked by the
recipients’ providers and the mainHQS campaign may
commence. This same technique along with the same test
email addresses were used by the Storm botnet. This is
another example of the strong relationship between Storm
and Waledac.

When running 100 to 300php mailer instances, a
significant amount of DNS queries must occur to locate
the appropriate SMTP server for each victim. The sheer
quantity of theMX andA records generated by this pro-
cess can raise flags when using an ISP’s DNS servers. To
avoid this situation or perhaps to increase the through-
put for DNS queries, the botmaster manually installs the
BIND server on the TSL server during the initializa-
tion process. The DNS server is configured as a sim-
ple caching DNS server that uses the root DNS servers
instead of the ISP’s DNS servers to handleMX and A
record location. Evidence of this behavior was found in
thenamed.run file of the TSL.

2.5 Botmaster-Owned Infrastructure: UTS

For the most part, despite its additional functionality, the
TSL tier is largely a buffer between the infected machine
tiers (Repeater and Spammer layers) and the upper tiers
of the botnet. With regards to the botnet communication,

4

 Proxy

 Cloud

 Spammer Cloud

Spam Target's
SMTP Servers

Repeater

Cloud

Victim's
SMTP Server

UTS

TSLs

Botmaster

spam
target
list

spamit.com harvested
emails

email
addresses

target list,
SMTP credentials

SSH

SOCKS

SMTP (w/ Creds)

spam

spam

spam

Figure 3: Waledac supports the unique ability to send spam using stolen email credentials. This provides a high
delivery success rate. We refer to this asHigh Quality Spam (HQS). In theLow Quality Spam (LQS) campaigns,
nodes in the Spammer tiers send the more common type of spam described in Section 2.4.2.

the TSL tier relies on communication with the Upper-Tier
Server (UTS) tier in order to pass instructions to the in-
fected machine tiers. As with the TSL servers, we were
able to obtain file system artifacts from the UTS server
giving unprecedented insight into the Command and Con-
trol infrastructure of the botnet.

2.5.1 Configuration

From the network traffic alone it is possible to deter-
mine the operating system the UTS tier is based upon
due to its periodic requests to theyum repository to
look for updated packages. In these requests, XML
request containing the operating system and platform
can be found. The UTS server under observation sent
a standard HTTP request made up of the stringGET
/pub/centos/5.3/os/x86 64/repodata/
repomd.xml. This indicates that like the TSL servers,
the UTS servers are based on CentOS 5.3 running on a
64-bit platform.

The core of the control software uses PHP. Like other
botnets such as Zeus and Capricinus, the use of PHP gives
the botmaster the ability to use a variety of server plat-
forms without the need to reconfigure or recode the bot-
net’s master control system. With the availability of host-
ing services offering multiple OS platforms, the trend of
using largely OS independent control software will con-
tinue.

2.5.2 Role in Spam Dissemination

While the TSL may be responsible for the production
of HQS and the Spammer tier responsible for LQS,

ultimately the UTS tier is responsible for acquiring the
information to place in the spam campaigns. Evidence
of this behavior is found in a series of requests to
the spam warehouse website atspamit.com [7]. The
Spamit system is a known clearinghouse for so-called
Canadian Pharmacy websites. On multiple occasions
in a very short period of time (less than one hour) the
UTS used thewget application to query the Spamit
website for new domains to enter into the current spam
campaign. The UTS queries the spamit.com server using
a simple HTTP GET request that takes the form ofGET
/export.php?aid={affliateID}&mode=
personal&design=blue&secure={hash
token}.

The request generates a simple list of domain
names such ashttp://offerled.com, http://toldtool.com and
http://hourshine.com with each domain name separated
by a newline break. This information is disseminated
downward into the botnet depending on which type of
campaign is currently being produced by the botnet (HQS
or LQS). This use ofspamit.com shows that the Waledac
botnet is undoubtedly part of an affiliate network where
money is given for revenue generated by spam campaigns.
This revenue source may account for some portion of the
funding required to support the TSL tier and UTS tier
hosting costs.

2.5.3 Third-Party Repacking Service

While Spamit and Rogue A/V vendors may be a source
of income, Waledac relies on a specialized pay service
for its daily operation. Waledac does not employ rootkits

5

in order to hide from antivirus applications, but rather
it uses a constantly changing set of packed binaries to
avoid signature detection. There are approximately 50
known versions of Waledac in the wild, but there are
over 3200 different binaries for these 50 versions [14].
The Waledac binary is routinely repacked resulting in
the large number of binaries each with a unique MD5
hash (or signature). The frequency at which these
binaries are repacked is exceedingly high and requires
automation. From the UTS network traffic, we observed
the UTS employing a third party service provider at
crypt.j-roger.com and cservice.j-roger.com to repack
Waledac binaries. In order to repack a binary, the
UTS server sends a POST request to one of the two
URLs crypt.j-roger.com/api/apicrypt2/
{16 hexadecimal digit hash} or
cservice.j-roger.com/api/apicrypt2/
{16 hexadecimal digit hash}. Contained
within the POST is an action form detailing the specifics
of the repacking request along with the binary to pack in
a modified version of Base64.

On average, the packing service atj-roger.com returned
a repacked binary in 4 seconds. This allows the UTS to
repack multiple binaries in a very short period of time.
During a two hour period, Waledac was observed request-
ing (and receiving) 157 binaries through thej-roger.com
service. When the service returns the binary to the UTS,
the server uses a similar format as the request.

2.5.4 Auditing Activities

The Waledac botnet is open to observation as this paper
and others related to this topic have shown [8, 9, 1, 12].
The botnet has limited protection from poisoning attacks
at the Repeater tier. To monitor and prevent such attacks,
the botmaster uses the UTS as a self-auditing compo-
nent to ensure that only legitimate Waledac bots are in-
troducing traffic into the botnet. Simulating the behavior
of a Waledac Repeater node is possible given the open
XML format the botnet uses for communication. Pro-
vided that the simulated Repeater node properly handles
the encryption and compression required to transmit the
XML through the botnet, it is a trivial matter to con-
struct a simulated Repeater node that appears to be a le-
gitimate Repeater node. The Waledac botmaster has de-
veloped creative solutions to determine simulated (illegit-
imate) Repeater nodes.

The first test performed by a UTS server when auditing
a node is known as the Executable Request Proxy (ERP)
test. When developing a simulated node, it is conceiv-
able that the researcher would prevent the node from being
used to propagate Waledac or other malicious nodes. As
such, the node would drop any request for an executable

by an outside (victim) entity. TheERP test plays against
this fact by having the UTS issue a request for a specific
file namedreadme.exe. The UTS will directly contact
the node under audit with the URL/readme.exe. A
real node will pass this request to the TSL server which
will in turn pass the request to the UTS server. There-
fore, it is possible for the UTS to track from start to fin-
ish the request and reply forreadme.exe. The contents of
readme.exe consist of two bytes which simulate the DOS
header of a PE/COFF file, the lettersMZ. A variation of
the ERP test is also performed randomly when the UTS
requestsreadme.txt instead ofreadme.exe. The reply to
this variation of theERP test is the stringHello. During
a two hour period, the observed UTS server issued 597
ERP tests.

The second test performed by a UTS server focuses on
the DNS component of a Repeater node. Since a simu-
lated Repeater node would not necessarily need to par-
ticipate in the DNS portion of the Waledac fast-flux net-
work, it is conceivable that researchers would simply ig-
nore DNS requests. To test for this possibility, the bot-
master introduced a new domain into the Waledac fast-
flux configuration namedhellohello123.com in August of
2009. The domain currently does not have an associated
name server and as such cannot be resolved though the
.com Top Level Domain (TLD). The Domain Response
(DR) test uses the fast-flux network configuration in order
to determine the validity of the audited node. The UTS
issues a DNS lookup forhellohello123.com by querying
the node under review. Sincehellohello123.com is part of
the fast-flux network configuration, a valid repeater would
return one of the predefined IP addresses from the config-
uration data. A simulated repeater would potentially fail
this test by either returning invalid information or not re-
sponding at all. Therefore theDR test can identify invalid
Repeater nodes based solely on their response to a spe-
cific, non-resolvable domain query. The UTS issued 693
DR tests during a two hour period of observation.

3 Implications

In this section, we delineate the implications from our
analysis of the complete Waledac infrastructure. Specif-
ically, we describe aspects of the botnet infrastructure
which contradict current notions of how advanced botnets
function.

3.1 Multi-Service Tiers

The body of research on the Storm botnet and early stud-
ies into the function and structure of Waledac concluded
that some layers in the hierarchy were used exclusively as
proxies to occlude the location of nodes owned by the bot-
net operator. While this is partly true, we have found that

6

the TSL systems, in a tier previously described as a “proxy
layer,” provide additional services. In addition to relay-
ing traffic between the UTS and Repeater tiers, the TSL
systems are also used in the High Quality Spam (HQS)
campaigns. Botnet operators log in directly to the TSL
systems viassh to start instances ofphp mailer. This
finding also demonstrates that botnet operators use more
than one tier to distribute commands, as the UTS tier is
also used.

The trend of using layers of the botnet for numerous
functions has been widely documented for the Repeater
tier, but the inclusion of the TSL layer as a multi-service
tier shows this trend persists throughout the botnet. Our
findings show that modern, advanced botnet architecture
are immensely capable, and serve as full infrastructures,
not mere collections of systems loosely coupled together.
Nodes in the network have specific roles and responsibil-
ities, and are leveraged to their fullest potential for prof-
itability. Rarely are systems used for a single purpose.

By understanding that multiple tiers may engage in pre-
viously unknown activities (such as proxies engaging in
spam generation), it is now possible to re-evaluate enu-
meration techniques to look for overlap between these
multiple tiers. Moveover, finding nodes that behave out-
side of the normal functionality for their destinated tier
can lead to the discovery of more advanced services of-
fered by a particular botnet.

3.2 Authenticated Spam

Stock et al. described Waledac’s ability to harvest email
account credentials [12], but we have further discovered
that stolen email credentials are used by the botnet for
spam dissemination, as seen in Figure 3. We consider
authenticated spam distribution a deviation from conven-
tional botnet behavior [5].

Unlike traditional spam dissemination techniques
which rely on open mail relays or use bot nodes them-
selves to send mail directly, the Waledac infrastructure al-
lows the operator to distribute mail usingSMTP-AUTH.
Members of the proxy-cloud which receive email creden-
tials from the TSL layer effectively log in to an SMTP
server to send emails. Mail distributed in this manner is
more likely to be successfully delivered as it could evade
blacklists. In Waledac, mail distributed using this tech-
nique is limited and requires initiation from the botnet
operator. Waledac also distributes spam using the more
traditional unauthenticated method in mass quantities, but
these spam campaigns are more autonomous.

While still a relatively uncommon practice, the use of
authenicated spam can lead to spam filtering problems in
the near future. Botnets that automate authenicated spam
will defeat spam filtering based on dynamic IP addresses.

Although the Waledac botnet requires botmaster interven-
tion to initiate an authenticated spam campaign, it would
be exceedingly easy to automate the process in order to
farm these spam campaigns to worker nodes.

3.3 Node Auditing

In peer-to-peer systems, nodeauditing or vetting keeps
untrusted or malicious nodes from stressing or polluting
indexing systems, wasting bandwidth, and eavesdropping
in the network. In Storm, evidence of node auditing has
not been disclosed, though aggressively crawling the bot-
net was known to trigger defensive denial of service at-
tacks [2]. Beyond the careful control of peer lists, where
active nodes were not excised from routing tables when
new nodes announced their presence, Storm accepted ille-
gitimate peers willingly. This resulted in many successful
infiltrations by several research groups [5, 4]. A miscon-
ception about Waledac has been that node-auditing does
not occur. As we discussed in Section 2.5, we have found
that the UTS system routinely audits the Repeater layer.

It should be noted that the botnet itself features a black-
list containing untrusted and illegitimate nodes in the Re-
peater tier. This blacklisting ability provides the ability to
block nodes engaging in aggressive or disruptive system
activity on the network and those that fail to passERP
andDR tests. With botnets such as Waledac employing
blacklisting techniques, node-vetting becomes a frighten-
ing prospect which can interfere with attempts to measure
and directly combat these threats.

Node auditing is a simple process that blends in with
normal botnet network chatter. This makes node auditing
difficult to detect, but not impossible. When more large
scale botnets begin to employ a similar technique, it will
become increasingly more important to properly under-
stand every aspect of the bots that make up the botnet in
order to infiltrate the network to gain intelligence or per-
form disruptive actions.

4 Related Work

In an exploration of the history of botnets and emerging
peer-to-peer architectures, Grizzard et al. presented a case
study on an early version of the Storm botnet [3]. Stew-
art, who presented the first exploration of Storm’s intri-
cacies [11] furthered the understanding of this botnet by
later exposing its hierarchical nature [10]. Numerous re-
search groups have proposed possible mitigation strate-
gies and infiltration techniques for modern, formidable
botnets [5, 9]. Enumeration accuracy and completeness
has also been explored [4, 6].

The communication protocol of the Waledac botnet was
first documented by Sinclair et al. [8, 9]. Population esti-
mates and a monitoring methodology for this botnet were

7

pursued by Stock et al. [12]. These works discussed the
protocols in the lower Repeater and Spammer tiers, where
a researcher can observe network traffic from running bot
samples. None of these works have exposed the architec-
tural and implementation details of the tiers higher in the
botnet, which are owned by the operators of the botnet.

5 Conclusions

Many of the information security community’s correct no-
tions about Waledac and other botnets of its caliber are
due to the ability to dissect binaries and observe bot mal-
ware during execution. The tiered architecture of this bot-
net naturally obfuscates the behaviors, purposes, and very
existence of nodes in upper tiers. Our unique insight was
possible due to network traces and file system data ob-
tained from these systems deployed by the operators of
the botnet.

In this study, we described the deployment specifics
of the botmaster-owned nodes in the Waledac infrastruc-
ture, system purposes and behaviors, and botmaster inter-
action. We disclosed how Waledac functions as a robust
and complete infrastructure, providing numerous services
throughout its tiers. We also discussed Waledac’s tech-
nique for sending authenticated spam, which challenges
the notion that botnets only send unsolicited email di-
rectly or via open mail relays. Waledac’s novel approach
to identify illegitimate Repeater nodes using a form of
self-auditing was also discovered. The third-party binary
repacking service Waledac employs was also discussed,
which has not been documented in prior studies of ad-
vanced botnet behavior.

It is the intent of this paper to advance the understand-
ing of sophisticated botnet architectures, such as those
used by Waledac and Storm, to broaden the understanding
of their deployment and operations, and to provide the in-
formation security community with knowledge necessary
to defend against these advanced threats. Given the in-
formation disclosed in this study and the alarming growth
rate of architectural and behavioral sophistication it im-
plies, the information security community should respond
accordingly.

6 Acknowledgements

C. Nunnery and B. Kang are in part supported by a grant
from ETRI (B551179-09-01-00) and a GAANN fellow-
ship. Any opinions, findings, and conclusions or rec-
ommendations expressed in this material are those of the
authors or originators and do not necessarily reflect the
views of their employers or funding sponsors.

References

[1] J. Calvet, C. Davis, and P M. Bureau. Malware Au-
thors Don’t Learn, and That’s Good. InMALWARE

2009: The Fourth Annual Conference on Malicious
and Unwanted Software, October 2009.

[2] G. Keizer. ‘We’re Not Scared’ of Storm, Say Re-
searchers. http://tinyurl.com/ygyyrc2,
October 2007.

[3] J. Grizzard, V.Sharma, C. Nunnery, B. Kang, and
D. Dagon. Peer-to-Peer Botnets: Overview and Case
Study. InFirst Usenix Workshop on Hot Topics in
Understanding Botnets, April 2007.

[4] B. Kang, E. Chan-Tin, C. Lee, J. Tyra, H. J. Kang,
C. Nunnery, Z. Wadler, G. Sinclair, N. Hopper,
D. Dagon, and Y. Kim. Towards Complete Node
Enumeration in a Peer-to-Peer Botnet. InASIACCS
2009: ACM Symposium on Information, Computer
and Communication Security, March 2009.

[5] C. Kanich, C. Kreibich, K. Levchenko, B. Enright,
G. Voelker, V. Paxson, and S. Savage. Spamalyt-
ics: An Empirical Analysis of Spam Marketing Con-
version. InCCS 2008: ACM Conference on Com-
puter and Communications Security, pages 3–14,
New York, NY, USA, 2008. ACM.

[6] C. Kanich, K. Levchenko, B. Enright, G. Voelker,
and S. Savage. The Heisenbot Uncertainty Problem:
Challenges in Separating Bots from Chaff. InPro-
ceedings of the First USENIX Workshop on Large
Scale Exploits and Emergent Threats. USENIX As-
sociation, April 2008.

[7] D. Samosseiko. The Partnerka - What is it, and
why should you care? InVirus Bulletin Conference,
September 2009.

[8] G. Sinclair. Blog Post: Waledac’s Communication
Protocol.http://tinyurl.com/y9u4v98.

[9] G. Sinclair, C. Nunnery, and B. Kang. The Waledac
Protocol: The How and Why. InMALWARE 2009:
The Fourth Annual Conference on Malicious and
Unwanted Software, October 2009.

[10] J. Stewart. Protocols and Encryption of The Storm
Botnet.http://tinyurl.com/yhgwlod.

[11] J. Stewart. Storm worm DDoS Attack.http://
tinyurl.com/686ugd, February 2007.

[12] B. Stock, M. Engelberth, F. Freiling, and T. Holz.
Walowdac - Analysis of a Peer-to-Peer Botnet. In
EC2ND 2009: European Conference on Computer
Network Defense, November 2009.

[13] S. Stover, D. Dittrich, J. Hernandez, and S. Deitrich.
Analysis of the Storm and Nugache Trojans - P2P is
Here.Login, 32(6), December 2007.

[14] Sudosecure. Waledac Tracker. http:
//www.sudosecure.net/waledac/
bmd5updatecycle.php.

[15] I. Sysoev. nginx.http://nginx.net/.

8

