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Abstract

In this paper we explore the potential of leveraging proper-
ties inherent to domain registrations and their appearance in
DNS zone files to predict the malicious use of domains proac-
tively, using only minimal observation of known-bad domains
to drive our inference. Our analysis demonstrates that our in-
ference procedure derives on average 3.5 to 15 new domains
from a given known-bad domain. 93% of these inferred do-
mains subsequently appear suspect (based on third-party as-
sessments), and nearly 73% eventually appear on blacklists
themselves. For these latter, proactively blocking based on our
predictions provides a median headstart of about 2 days versus
using a reactive blacklist, though this gain varies widely for
different domains.

1 Introduction

One of the primary techniques for protecting people
from financial scams, malicious web pages, and other
nuisances on the Internet is the use of blacklists: contin-
uously updated lists that enumerate known-bad entities
that systems can check before potentially harmful inter-
action with an entity takes place. Upon finding the entity
on a blacklist, the system prevents access and/or gener-
ates a warning indicating the danger. A large number
of organizations maintain such blacklists, listing enti-
ties such as the IP addresses of senders of spam,1 do-
main names or IP addresses involved in scams,? and
URLSs leading to malicious web pages.®> Substantial fil-
tering machinery exists throughout the Internet (for ex-
ample in mail user/relay agents and web browsers) that
queries these lists to recognize and treat accordingly en-
tities known to be dangerous.

Blacklists provide the benefit of lookup efficiency:
systems can conduct lookups quickly and precisely.
However, blacklists have the major drawback of oper-
ating in an overwhelmingly reactive fashion: blacklist
maintainers learn of malicious entities only after these

lE.g. CBL, SBL, SpamCop, and SORBS.

2E.g. ivmURI, JWSDB , SURBL, and URIBL.

3E.g. PhishTank, the SafeBrowsing API, and IE 8’s SmartScreen
service.

entities have become active (e.g., due to messages ap-
pearing in a “‘spam trap” account, or a crawled web page
returning malicious code). Thus, a window of vulnera-
bility remains during which users can suffer from mali-
cious exposure because an active entity has not yet ap-
peared on a blacklist. Since the perpetrators of Internet
crime operate their scam campaigns on infrastructures
of substantial scale, however, once we have detected an
initial seed entity of badness, we might have an oppor-
tunity to predict pending badness by other as-of-yet in-
conspicuous entities if we find these associated with the
same perpetrators. Such proactive blacklisting would of-
fer the major benefit of diminishing the window of expo-
sure, thus often preventing malicious infrastructure from
functioning before its operators even put it to use. On the
other hand, the prediction mechanism must work with
high accuracy to avoid causing “collateral damage” due
to errors.

In this paper we take a first look at the potential of
proactive blacklisting in the context of domain names.
We observe that miscreants frequently register domains
used in Internet scams in bulk, and operate them using
related sets of name servers. We propose a method for
inferring sets of malicious, not-yet-blacklisted domains
based on initial “seed” domains that we observe used
maliciously through their appearance on non-proactive
blacklists. For our inference we draw upon DNS zone
file data along with limited “WHOIS” domain registra-
tion data. We measure the accuracy of our predictions
using a combination of several popular blacklists plus
services that themselves make predictions about future
misuse. We find that from a fairly modest set of initial
seeds we can predict a large set of additional malicious
domains, with arguably quite low false positives.

We next provide background on domain registration
procedures and existing work on blacklisting (§ 2).
In § 3 we describe our methodology in detail and fol-
low with an evaluation of it using real-world blacklist-
ing data (§ 4). We discuss our findings in § 5 and briefly
conclude in § 6.
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2 Background

Domain Registration. To register a domain, a cus-
tomer interacts with a domain registrar accredited by
ICANN to lease domains as permissible by the relevant
top-level domain (TLD) registry, such as VeriSign for
.com, or DENIC for .de. The registry is mainly re-
sponsible for coordinating the registration procedure for
a given TLD and maintaining the corresponding domain
registration database. When a domain becomes active,
the registry includes its DNS information in the corre-
sponding DNS zone file, which lists for each domain its
authoritative name servers.

For our study we focus on . com, the largest collec-
tion of Internet domains. Its zone file lists authorita-
tive name servers for each . com domain, along with the
“glue” records for each name server that cannot be in-
dependently resolved. The zone file currently contains
~ 80M domains, with ~ 70-100K domains added and
70K domains deleted each day. We have obtained a daily
snapshot of the . com zone file from VeriSign since May
2009, and hence can retrieve past associations between
domains and name servers.

Related Work. Several studies have examined IP ad-
dress blacklists that enumerate abusive senders, mostly
to assess their effectiveness. Jung and Sit character-
ized spam traffic to an academic institution, finding lists
covered up to 80% of spam senders, while 14% of the
DNS lookups at the site were blacklist queries [1]. Ra-
machandran et al. developed techniques for leveraging
blacklist queries in order to identify botmasters check-
ing the listing status of their own bots [8], and presented
evidence that while address-based blacklists may have
limited coverage of a botnet’s members, those bots that
are detected are generally listed quickly [7]. Sinha et
al. compared four prominent blacklists and found false
negatives ranging from 35% to 98.4% and false positives
between 0.2% and 9.5% [10].

Similar effectiveness studies exist for phishing URL
blacklists. Sheng et al. found that two thirds of phishing
campaigns last at most two hours before being listed,
although coverage at the appearance of a campaign is
generally poor [9]. By contrast, Ludl et al.’s comparison
of the effectiveness of Google and Microsoft’s phishing
URL blacklists found that 90% of the campaigns studied
were covered by Google’s list at the time of the authors’
initial query [3]. Makey compiled membership compar-
isons of sender blacklists from MTA logs of a large aca-
demic institution, finding that large blacklists generally
provide broad coverage, while smaller ones frequently
filter specific sender sets with high accuracy [5].

Another line of work aims to improve the accuracy of
blacklists by distinguishing global and local “badness”
information. Zhang et al. proposed Highly Predictive

Blacklisting (HPB), a mechanism to customize global
blacklists taking into account the relevance of different
entries for local targets [13]. HPB strikes a balance be-
tween globally compiled blacklists (likely to contain ir-
relevant entries) and locally compiled ones (likely in-
complete) by computing relevance scores for individual
users of the blacklist. Soldo et al. expanded HPB by also
factoring temporal considerations into the prediction al-
gorithm [12]. Neither approach is truly proactive—they
narrow the existing global offender list to one relevant
for a particular blacklist subscriber, but do not predict
novel arrivals on the blacklist. Sinha et al. proposed
a similar approach but with the addition of proactive
blacklisting of notorious sender networks unless they ex-
hibit high (positive) relevance to a receiver network [11],
leveraging the observation that spam senders frequently
appear co-located in narrow network prefixes.

To avoid the reactive nature of blacklists, Ma et al.
proposed a classifier leveraging host-based features ex-
posed in URLSs (such as IP addresses, WHOIS records,
and geography) as well as their lexical structure. Based
on a training corpus of URLs leading to malicious con-
tent they achieve 95-99% classification accuracy [4].
Prakash et al. likewise observed common lexical prop-
erties of URLs, and proposed a proactive filtering mech-
anism for phishing URLs by constructing likely URLs
from known instances [6]. These approaches are com-
plementary to ours.

Closest to our work is the “gold list” published by
URIBL.* The list consists of domains predicted to ap-
pear on blacklists in the future. It contains 1,000s to
10,000s of domains, though from the statistics on the
web site not many of these appear to indeed cross over
to the regular URIBL blacklist.

3 Methodology

We base our approach on the insight that in order to op-
erate scams in an ongoing fashion, miscreants must em-
ploy a sizable number of domains to avoid ready black-
listing. They can obtain large numbers of domains by
registering in bulk with a given registrar. (In a previ-
ous study of spam campaign orchestration [2], we wit-
nessed bulk registration of hundreds of domains at a
time.) Leveraging this observation, we take known-bad
domains as input and derive from them associated do-
mains likely to see employment in related scams in the
future. We call the set of initial known-bad domains the
seeds and the prediction result the inferred domain set.
Thus, our method operates in a proactive fashion given
an initial reactive component to drive the prediction al-
gorithm. Note that our approach is complementary to
reactive domain assessments, such as employed in the
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Figure 1: Experimental setup. @ Blacklisted entries in JWSDB are selected as seed domains. @ Clusters of predicted domains are
produced using zone file and WHOIS information. ® Using additional sources, we quantify correct, likely correct, and potentially
incorrect predictions. The shaded area indicates machinery required for live blacklist operation.

upcoming domain blocklist (DBL) of spamhaus.org—
our approach could extend the set of domains evaluated
by such assessments.

At a high level, our experimental setup operates in
three stages, summarized in Figure 1. First, using a
source of known-bad domains we select initial black-
listed domains as seeds. From these domains, we pre-
dict clusters of related domains likely to be blacklisted
in the future based on nameserver features and registra-
tion information. We can apply our procedures for ana-
lyzing this features in either order: we only infer likely
future malicious behavior for domains that have both the
requisite name server features and the requisite registra-
tion features. Finally, we evaluate the accuracy of the
predicted clusters using additional blacklists. We now
discuss these phases in more detail.

3.1 Obtaining Bad Domains For Seeding

We seed our domain inference with a set of domains
viewed as definitely malicious. For our study, we se-
lected domains that appear on the blacklist provided by
joewein.net (JWSDB) in January 2010. The JWSDB
feed consists of a daily blacklist of malicious domains
extracted from URLSs seen in emails sent to mailboxes
operating the spam filter software jwSpamSpy. JWSDB
adds on the order of 500 new domains each day. We
chose the JWSDB feed because it provides historic data
on registration times.

We focused on the . com TLD for two reasons. First,
it still dominates scams: over the past two years, it
has accounted for 44% of all domains blacklisted in
the JWSDB, followed by .cn (38%) and .info (8%).
Second, we can obtain . com’s zone file, enabling access
to historic name server information.

3.2 Name Server Features

Initially, we intended to infer bad domains based on
common registration information. By itself, this lacks
power in two ways. First, because registrars do not pro-
vide bulk listing of domains registered with them, we

cannot readily extrapolate a bad seed to the full set of
associated miscreant domains. Second, even if we could
obtain such listings, if we only have the limited top-level
WHOIS information then the fact that benign actors will
also register domains with the same registrar on the same
day makes it difficult to determine which domains in the
listings indeed reflect the same miscreant.

We can address both of these considerations by lever-
aging domain zone information, when available. Among
the information a zone file provides is an exhaustive list
of all subdomains in the zone as well as their authorita-
tive name servers (NSs). In addition, a domain’s date of
activation is implicitly provided by the domain’s appear-
ance in the list. We can thus use zone files to leverage
our observation that miscreants manage their domains in
batches, not only during registration, but also by serving
multiple domains from the same NS.

We use the . com zone file to identify all authorita-
tive NSs that have in the past resolved a JWSDB domain
between May 2009 and January 2010. Figure 2 plots
the distribution of the number of distinct name servers
serving a given JWSDB domain. We observe that the
majority of domains have only a few name servers dur-
ing their lifetime, but some change name servers sev-
eral times. Moreover, the domains that employ new or
self-resolving name servers are likely to encounter more
name servers than those domains that do not match any
of our NS features. We hypothesize that these changes
between new NSs reflect double-fluxing, i.e., the owner
quickly changes the name server to avoid outages due to
blacklisting of the NS itself.

We initially considered all such NSs as a potential
source for inference, but this did not lead to satisfactory
results: some of the NSs belong to major hosting com-
panies, which host large numbers of legitimate domains
as well. To avoid this problem, we observe that NSs for
malicious domains tend to satisfy two criteria:

1. Freshness: The domain of the NS itself was
registered only recently. For example, for NS
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Figure 2: Distribution of the number of distinct NSs resolving
a JWSDB domain over the course of its lifetime: total num-
ber of NSs (thick), fresh and/or self-resolving ones (thin), and
those that are neither (dashed).

ns.example.com, the age of example.comis
low. We use an age of less than one year to indicate
youth—as shown in Figure 3, almost 90% of NSs
involved in hosting malicious domains are younger

than a year.
2. Self-Resolution: The NS resolves its own do-
main name. For example, example.com’s

name server is ns.example.com rather than
ns.thirdparty.com.

We leverage these two features as follows. If a bad
domain switched to a new NS at time 7', then we search
for all domains that switched to the same NS at time
T. Note that our NS-based inference is conservative,
as there could be other pending-malicious domains that
switch to the same NS but at a different time. If a domain
switches to self-resolution at time 7', then we search the
entire zone file for all domains that switched to self-
resolution at time 7" and with the same registration pro-
file.

Figure 4 shows the distribution of NS features,
grouped by the number of NSs employed by the seed do-
mains in the JWSDB dataset. Our two criteria dominate
all NS usage patterns, from a single NS up to 44, with
the exception of a set of domains using 5 NSs (we dis-
cuss this case in § 5). 82.2% of all blacklisted domains
encounter at least one new NS during their lifetime. Fur-
thermore, many bad domains switch to a self-resolving
NS at some point in time. Thus, the NS features of fresh-
ness and self-resolution hold promise for finding com-
panion domains associated with known-bad domains.
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Figure 3: Distribution of all name server ages for domains
blacklisted in the JWSDB between May 2009 and January
2010.

3.3 Registration Information

Using WHOIS, we obtain registration information for
the entire set of domains inferred using the two NS fea-
tures. Our goal here is to narrow down the inferred set
of domains to those that are co-registered with one of
the seed domains. We call this remaining set of inferred
domains the inferred clusters.

Before proceeding, we can double-check our basic
assumption that miscreants register domains in groups.
We performed WHOIS queries to obtain the registra-
tion information for all domains in the JWSDB blacklist
from May 2009 through January 2010. Generally, a do-
main’s WHOIS record provides the registrar’s name and
WHOIS server, the domain’s authoritative name servers,
the domain’s current status, and the dates of domain reg-
istration, update, and expiration. One can further ex-
plore registration information by contacting the regis-
trar’s WHOIS server to obtain the name, address, phone
number and email of the registrant, and the domain’s ad-
ministrative, technical, and billing contacts. However,
registrars rate-limit queries to their WHOIS service, so
for our assessment we only drew upon the initial set of
general WHOIS information.

The majority of these registration groups are small:
50% contain only one domain and 10% have more
than 25 members. We also find that the majority of do-
mains do not belong to these small registration groups:
93% of the domains in JWSDB were jointly registered
with another domain, on the same day, and using the
same registrar and 80% of the JWSDB domains were
registered in batches of at least 10 domains. Figure 5
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Figure 4: Distribution of NSs that are fresh and/or self-
resolving, grouped by the number of name servers per known-
bad seed domain.

compares the distributions.

3.4 Validation of Malice

In the final stage, we evaluate the accuracy of our in-
ferences using sources of known and suspected bad do-
mains.

To verify known-bad behavior, we test inferred do-
mains for membership in any of (1) the original IWSDB
blacklist and (2) the URIBL blacklist. As we main-
tain historical data for all of these, we can retrieve
the historical behavior of malicious domains. In ad-
dition to these blacklists we also test the domains us-
ing McAfee’s SiteAdvisor’ domain reputation service.
SiteAdvisor provides a “threat level” in its reports of
green/yellow/red, for which we consider red as reflect-
ing known-bad.

To assess “likely but unconfirmed” bad domains, we
use two sources: (1) historical data from the URIBL
“gold list” mentioned above and (2) SiteAdvisor reports
indicating a “yellow” threat level, or that multiple users
have reported the domain as malicious.

Any remaining domains have unknown maliciousness
and may potentially present false positives. Here, the
possibility arises that URIBL might use the same sort
of inference procedure as we do for constructing their
“gold list”, which would make evaluating against it un-
sound. However, we note that URIBL reports that only
a small proportion of their gold list eventually appears
on their regular blacklist, while many of our inferred do-
mains do. In addition, we find that we frequently are
able to infer malice considerably earlier than is done on
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Figure 5: Cumulative distribution of number of registration
groups vs. total number of domains.

the “gold list”. These disparities suggest that URIBL’s
“gold list” candidate selection methodology differs from
ours.

Finally, we note that we have hand-checked a number
of the potential false positives and find circumstantial
evidence that the domains are in fact malicious. For ex-
ample, we frequently observethe use of two seemingly
unrelated English nouns together to form a single do-
main name—widely employed in various online scams.
As we lack a systematic way to determine definitively
that these domains are benign, we assume they are in
fact false positives.

4 Evaluation

We now present an evaluation of our approach. We dis-
cuss the characteristics of the inference process, assess
the correctness of the inferences, and examine the poten-
tial time savings afforded by the proactive nature of our
method.

4.1 Inference Characteristics

Using 41,159 domains in the JWSDB blacklist from
May 2009 through January 2010, we find that they clus-
ter into 4,875 groups of common registrations (same
day and same registrar). Table 1 compares the world’s
ten largest domain registrars to those registering the
JWSDB domains. The difference suggests that miscre-
ants find most of the world’s largest registrars difficult to
work with, either because they employ successful abuse-
tracking mechanisms or have requirements that render
them harder to register with in the first place.

To examine patterns of name server and registrar com-
monality further, we look at differing sets of seeds taken
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REGISTRAR COUNTRY DOMAINS %
Godaddy Inc. [N 32.6M 29.7
eNom Inc. US 9.IM 8.3
Tucows Inc. CA 7.4M 6.8
Network Sol. Inc. US 6.5M 59
1&1 AG DE 4.7M 4.3
Melbourne IT AU 4.5M 4.1
Wild West Domains US 3.1M 2.9
Moniker Inc. US 2.8M 2.5
Register.com usS 2.5M 2.3
ResellerClub.com IN 2.4M 2.2
Planet Online Corp. (SN 6.6K 16.1
Webzero Inc. (SN 6.0K 14.7
China Springboard CN 49K 119
eNom Inc. US 44K 10.7
Xin Net Corp. CN 29K 69
Ename Corp. CN 1.5K 3.6
Moniker Inc. US 1.3K 3.2
Bizcen.com Inc. CN 1.2K 2.9
OnlineNIC Inc. usS 0.9K 2.2
Hupo.com CN 0.8K 1.9

Table 1: Top 10 registrars worldwide (top, from webhost-
ing.info) vs. those registering domains in the JWSDB (bot-
tom).

from JWSDB. First, we explore inference based on us-
ing a large set of seeds: all domains blacklisted by the
JWSDB in January 2010. There were 3,653 such seed
domains, for which the . com zone files show a total of
16,690 NSs, of which 2,730 are distinct. 88% of this
distinct set were “fresh” by our definition (registered
in 2009 or later), and all self-resolving domains were
hosted on new NSs.

Our inference method based on NS features (§ 3.2)
and registration commonalities (§ 3.3) predicts 12,799
domains based on the 3,653 bad seeds. This reflects
an overall expansion factor of 3.5 of our inference al-
gorithm. We deem these domains malicious and likely
to be used in the future in a spam campaign or other ma-
licious activity.

A basic next question concerns to what degree we can
obtain effective inference using a more modest set of ini-
tial seeds rather than an entire month’s worth of data.
Starting with a smaller sample set, we are more likely to
choose domains that are in distinct inference clusters. To
assess this effect, we selected random seed domains of
increasing sample size from the total set of JWSDB do-
mains in Jan 2010 and computed the size of the inferred
cluster, performing 5 runs for each sample size. Table 2
shows the inference algorithm’s results for seed sample
sizes ranging from 25 domains at a time to the entire
month’s dataset. The inference suggests a large set of
new domains when using a small number of seeds, and
we discover new, potentially malicious domains even if

SAMPLE CL. SIZE MULTIP. TP FP?
25 443.0 17.7  74.1 1.3
50 649.7 13.0 814 2.3
100 1,178.6 11.8 804 1.4
200 1,997.2 10.0 78.0 3.5
400 2,816.7 7.0 78.0 2.4
800 3,536.0 44 78.8 2.9
3653 11,053.0 3.0 737 6.6
3653 12,799.0 35 637 192
Table 2: Inference productivity averaged for different seed

sample sizes, JWSDB dataset, January 2010. The second col-
umn shows resulting cluster sizes followed by multiplication
factors from initial seed sets to cluster sizes, true positive rates,
and potential false positive rates. The “Albanian outlier clus-
ter” is excluded in all but the last row, marked with an asterisk,
which repeats the results for the entire January dataset to allow
for comparison.

the seed sample contains many domains.

Of special interest is a single, large inference clus-
ter containing 1,746 domains, roughly five times bigger
than the second-largest cluster. During the evaluation,
we could not confirm that domains in this cluster are in-
deed malicious, but we find considerable circumstantial
evidence that in fact they are. They exclusively belong
to a huge group over 80,000 domains registered under
a single name in Albania in January and February 2010.
Since this outlier has decisive impact on the sampling re-
sults, we excluded it from the evaluation for any sample
size smaller than the whole January 2010 dataset.

4.2 Inference Accuracy

Figure 6 summarizes the outcome of each of the inferred
registration clusters. The inferences generally work very
well: based on a small number of seed domains we un-
earth large clusters of associated domains, with an aver-
age of 42 domains in a group, and reaching up to 389 do-
mains (excluding the outlier cluster of 1,746 domains).
In Figure 6, 10% of the clusters contain only a single
domain, hence for these clusters our inference is ineffec-
tive. Two-thirds of the time, a seed from JWSDB leads
us to additional domains not seen in JWSDB itself, and
often we obtain dozens of such additions. Thus our ap-
proach can amplify modest observations of bad behav-
ior in the wild to numerous new candidates for proactive
blacklisting.

Of the domains we inferred, we find 73% subse-
quently appeared on one of our evaluation blacklists.
(Recall that the URIBL “gold list” only claims a rate of
around 4%.) Using the URIBL gold list and McAfee
SiteAdvisor to flag potentially suspect (but not con-
firmed) domains, as discussed above, we find that 93%
of the inferred domains are either known-bad or sus-
pected to become so. Note that 84% of our clusters con-
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Figure 7: Distribution of time saved by proactive blacklisting.

tain only known-bad and suspected bad domains.

In addition, almost all of the potential false positives
lie in 10 top “missed” clusters. Besides the major outlier
cluster mentioned earlier, we visually inspected several
of these “missed” clusters and assert that many of them
are likely to be true positives.

4.3 Time to Blacklisting

Proactive blacklisting does not provide a benefit unless
it enables a head-start over regular, reactive blacklisting.
To quantify the savings in time, we study for each in-
ferred domain its temporal difference, i.e., the timespan
from the earliest domain blacklisted from its cluster un-
til the domain itself is eventually blacklisted. We find
proactive blacklisting immediately worthwhile: 75% of

the domains are spread over more than 6 hours, 60%
over at least one day, and 12% over more than a week
(see Figure 7). We also observe that in 8% of the
cases, proactive blacklisting does not help as domains
are blacklisted at the same time as the earliest seed do-
main in a cluster. Even halving these time frames to
weaken the assumption that we identify clusters at the
beginning of their lifespan provides substantial benefit.

5 Discussion

Registration clustering. We define registration clus-
ters based on the registrar’s name and the time at which
the domain was registered. This is an optimistic defi-
nition, as domains in the same campaign could be reg-
istered over time or at several registrars. To allow the
possibility of miscreants registering domains at the same
registrar over a period of time, our approach would re-
quire a different and less specific definition of registra-
tion cluster.

NS heuristics. We base our cluster inference on two
insights, namely that malicious domains and their NSs
are (i) likely to be new and (i) typically managed to-
gether, increasing the chances of overlap and reuse.
These assumptions need not always hold. Some do-
mains are hosted on more established name servers that
our heuristics do not cover. In particular, a substantial
set of domains in our dataset registered with eNom Inc.
did not switch to new NSs, but rather kept the eNom
name servers as the authoritative NS. This effect is visi-
ble in Figure 4 in the set of domains with 5 NSs, which
is exactly the number of NSs eNom Inc assigns to new
domains.

Available information. We largely drive our method-
ology by NS information in the zone file. Hence, we



can only execute our method if we have access to the
zone file for the specific TLD. For most of the major
gTLDs, this is the case, and thus we have ample oppor-
tunity as currently the . com, .info, and .net TLDs
cover 55-70% of the domains in major blacklists. For
ccTLDs, however, only their registries have access to the
given zone file, and availability can be difficult (such as
for . ru). Another potential bottleneck is access to the
WHOIS database. Fortunately, VeriSign makes registry
records for . comand . net available, but many ccTLDs
enforce an impractically low query rate limit.

Evasion techniques. Any defense technique needs to
consider evasive maneuvers by the opponent. Two such
strategies come to mind: distribution of registration over
time and registrars, and distribution of name resolution
over a large number of NSs or well-established NSs. The
former is feasible, but would substantially increase the
effort required to operate a large number of domains.
Note that miscreants likely prefer some registrars due
to their tolerant or negligent domain registration proce-
dures. Another reason for selecting a registrar could be
bullet-proof hosting as a service, in collaboration with
the miscreants. Either way, forcing miscreants to change
registrars frequently would likely increase their opera-
tional costs. The latter would likewise increase oper-
ational costs, while still providing zone file informa-
tion to discover additional sets of bad domains. Alter-
natively, the miscreants could operate their scams from
well-established name servers at major hosting compa-
nies, which would expose them to the detection mecha-
nisms at those companies.

6 Conclusion

Our results present an initial exploration of the potential
of domain-based proactive blacklisting. Starting from a
relatively small set of known bad domains we are able
to infer a large set of other bad domains with only a
small number of false positives. Our methodology is
based only on registration and name server information
and leverages the key observation that Internet miscre-
ants require substantial numbers of domains to main-
tain their scams in an ongoing fashion. We believe that
this direction of defense holds great promise, particu-
larly since parties central to the domain registration life-
cycle and infrastructure operation (such as domain reg-
istries, registrars, and major hosting companies) could
employ methodologies such as ours comparatively eas-
ily and comprehensively.
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